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Abstract

In 1949 and 1950 two papers by M. David on modifications of the Jacobi algorithm
appeared. Although the papers claim that it is easy to state sufficient conditions for
the non-periodicity of cubic irrational numbers, the papers got just passing notice
in Brentjes’ book. Since the problem of periodicity of cubic irrationals is still open
for the Jacobi algorithm, it seemed worthwhile to take a closer look at David’s
papers. It turned out that the result on cubic field with complex conjugates is
correct (see Theorem 1) but the result on totally real cubic fields is not correct.
Only a considerably weaker result is true (Theorem 2).

1. Introduction

We first describe one of David’s algorithms ([3], [4]) in the framework of Schweiger’s
book ([7]). Let x1,z2 € R such that 0 < x; <1, 0 < 9 < 1. Then we define

1 T
d+1=[-] a= [x—iJ

and the map T by

T 1
T(z1,22) = (y1,92) = (2 —a,—— +d +1)
Ty T
which is equivalent to
1 0 1 0 1
Y1 = 0 —a 1 Ty
Y2 -1 d+1 0 T2

Then we find 0 < a < d, 1 < d, and the equation a = d implies y; + y2 < 1. The
inverse branches of the algorithm are given by the matrices
d+1 0 —1 B{" —-B{™ B
Bla,d=| 1 o0 o |=[BY g _po
1 -1 0
a 1 0 Bé ) —Bé ) —Bé )
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Matrix multiplication gives the recursion relations

(n) _ (n=1) (n=2) _ p(n-3)
B = (d, +1)B{" " —a,B""? — BV,

an = a(T" Y21, 20)),dp = d(T" Y (x1,29)), 5 =0,1,2, n > 2.

We first state a useful proposition.
Lemma 1. Let

N B(()n) _B(()n—Q) _B(()n—l)
[I8Gs.d)=| B —-B"™ —B"Y
j=1 Bén) _Bén—2) _Bgn—l)

Then the relations B B"™ = B™ ™Y B{™ > 0 and B™ B{*™ — B" "2 B{" > 0
hold fori=1,2 andn > 1.

Proof. The proof follows from induction. O

Lemma 2. The approzimations satisfy the inequalities

Bgn) B£n+1) Bén) B§n+1)

>~ S xy, S >~
B(()n) B(()n—i—l) B(()n) B(()n+1)

Proof. We prove this easy lemma for ¢ = 1. Then

B£n+1) Bgn) _ B§n+1)B(()n) _ BEH)B(()HJFI) -

Bén-‘rl) - Bén) B(()n+1)Bén) =

Furthermore we find

B%n) Bgn) . B%n—Q)yl . Bgn—l)y2 BYL)

B((Jn) B(()n) . B(()n72)y1 . -B(()nfl)y2 B(()n)

T

_ (BB BBy + (B VB BBy

B (B — By Py — By V) a

O

Assume that the algorithm is purely periodic: T?(x1,x2) = (21, 22), say. Then
@(A) denotes the characteristic polynomial of the periodicity matrix

B(()P) _B((]P_Q) _B(()P_l)
T = B£P) _B§P*2) _B§P*1)
Bép) —Bép_Q) _Bép_l)
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As we will see David’s claim that all eigenvalues are real is correct (Theorem 1).
We denote by A, A and A" the three eigenvalues ordered as X’ < X < .

David claims that x; and zs are linearly independent numbers of a cubic field if
the algorithm becomes periodic. This assertion is not true. Immediate counterex-
amples are given by the periodic algorithms

({L‘hxg): < d;l )

The characteristic polynomial of 3(d —1,d) is ¢(\) = A3 — (d+1)A2 + (d — )X +1,
which shows ¢(1) = 0. If we take d = 1 we also see that the algorithm is not
convergent in all cases. The two points (g,¢?) and (1,1) which correspond to the
eigenvalues A = G and X = 1 are invariant (here G > 1 satisfies G2 = G + 1 and
Gg = 1). Therefore the whole segment between (g, g?) and (1, 1) is invariant. Note,
if d > 2 then the point (1,d) lies outside the domain of T and therefore convergence
is not affected. We also remark that \' = 1 occurs in more complex situations. One

example is the periodic algorithm

0 0
(ml,xz)=<1 1

)

Its characteristic polynomial is given as ¢(\) = A3 — 1122 + 11\ — 1.

= O

2. Cubic Numbers With Complex Conjugates

We consider the differences D™ = B{"z; — B™ i = 1,2. The recursion relations

translate into
D" = (d, +1)D"™ Y —a, D" — D).

On the other hand, we find for (y1,y2) = T™ (21, 22) the recursion
D" = y,D{" ™V 4+ y D2

This relation follows from induction replacing y; and yo by

_ 1 _at+zm
_d—|—1—22’y2_d+1—22

Y1

where (21, 22) = T(y1,y2) = T"(21,22). For n = 1 this recursion amounts to
(d+1Dx; — 1 =yox1, (d+ 1)xg — a = yowa + y1.

These relations are equivalent to the definition of the map T'.
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Following David’s ideas we introduce the points W,, in XX7 Xs-space by
W, = (B{", B{"”, B{").

In ([4]) he considers the projections of the points W, onto the X; Xs-plane along
the direction of (1,21,x2). Then we obtain the points

M, = (-D{",-D{) = (=B a; + B, ~B{Mx; + BM™).

If the algorithm is periodic then the growth rate of DY‘) and Dén) is governed by
the second eigenvalue X. If |[X'| < 1 then lim, .., M, = (0,0). If |N'| > 1 no
convergence occurs. This invalidates David’s method in ([4]).

In fact, A > 1 occurs. An example is given by the periodic expansion

0 1 1
(x1’$2):<1 1 3)'

The characteristic polynomial is ¢(A) = A% — 7TA2 + 9\ + 1. Here 1 < )\ < 2 and
5 < A < 6. A calculation gives

_2243 4
T _17P T N+

Z1
Theorem 1. If the cubic field K has complex conjugates then no pair (r1,2z2) €
K x K has a periodic expansion.

Proof. Let (z1,x2) have the period p. Then (x1,z2) is also periodic with period
length 2p. Therefore we can assume that p = 0(mod 2). We write

(041,51) = (951,332), (a27ﬁ2) = T($1,$2)7 ) (Olpaﬁp) = Tp_1($1,$2)~

Ei(pﬂ) = D§p+j+1) the relations

If we introduce the auxiliary quantity
Dl(pﬂ’) _ BH_IDZ(?H*U + O(HIDZ(pH%)
can be rewritten as the system
pe+i=1) 0 1 pe+i=2)
( Efp“*” ) N ( ajr1 Bi ) ( E?”“*Q) )’Og‘jgp—l'

The matrix product

(&5)=(a ) (o s)
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has the roots of the equation X% —(A+ D)X +AD— BC = 0 as Floquet multipliers.
Floquet multipliers govern the growth rate of the solutions of a system of homoge-
neous difference equations. We consider as an example the case p = 2 and refer to
[5] for an exposition of the theory. For simplicity we restrict to pure periodicity.
Let
DY =30 1 ;DY

Dz(z) = ﬂgDz(l) + OZQDEO)

but
D¥ = D + a, DV,

Then ‘
DZ@) = 5152[)51) + Oéngl) - 61a2D£0)

= (B2 + al)Dgl) + Oéz(Dgl) - al)Dgfl) = (12 + a1 + az)DEI) - 041042D§71)-

Then the characteristic equation X2 — (6182 + a1 + a2) X + ajas = 0 is exactly the
characteristic equation of the matrix product

A BY [0 1 0 1

Cc D) \a B az P2 )7
In the general case these multipliers therefore concide with \' and \”. Since AD —
BC = ojan...0p and A+ D > ajos...0p—1 + a20u4...cp we find

(A+ D)? —4(AD — BC) > (a1a3...00p—1 — Qaq...qtp)>.

Therefore the multipliers are real numbers. O

3. Cubic Numbers With Real Conjugates

We first make some remarks on periodicity. Let ( Zl ZQ 3” ) be a periodic
1 2 .. P

admissible sequence. Then by Lemma 2

ngp) B égp)

gLHc}o (B((Jgp)’ B(()gp)) =i (21, 22)

exists. Then we find

B(()P) _B(SP*Q) _Bépfl) 1 1
B%P) 7B§I)—2) 7B§P—1) 21 =p 21
ng) —ngiz) —Bépil) z9 z9
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for some eigenvalue p € {A, N, \"}. We introduce

B Bipfl)t + B{P)B((prl) _ B%P*DB((JP)
Bépfl)t _ B%P*UBSP*Q) + B%P*Q)Bépfl)

n(t)

and
By 2t + B B — Y B

- Bép_Q)t + Bép_l)Bép_Q) o ng_Q)Bép_l) ’

Pa(t)

Lemma 3. We have (21, 22) = (¢1(\), ¥2(N)).

Proof. We first note that B(ggp) — B(()gp72)zl — Bégp*l)zg = p9. The trace of the
periodicity matrices gives the relation

Bégp) _ B{QP*Q) _ Bégpfl) =\ + ()\/)g + ()\l/)g.

Therefore B(()gp ) — 4\ 4+ ... with a # 0. The multiplication of the periodicity
matrices gives

1
Bé(ng )p) _ B(p) B B(pfz) ngp) - (pil)Bégp)
B(()gp) 0 0 B(()gp) 0 Bégp) :

Letting g — oo, we obtain A = B(()p) - Bép_z)zl - B(()p_l)ZQ. Hence, we find that
p=A\ O

No result on uniqueness or convergence of this algorithm has been published.

The algorithm mentioned in the introduction, (1) >, provides a counterexample,

namely A = G and ' = 1, which gives

Probably, this is the only counterexample within purely periodic algorithms. If
the periodicity matrix consists of non-negative elements, uniqueness for periodic
algorithms would be provided. For the well-known Jacobi-Perron algorithm, the
relation

A(()pg+3) JrA(()ng)?/Jl()\l)+A(()pg+2)1/)2(>\l) =\
is incompatible with (11 ()\),12(\)) € [0,1]2 (see [6],[7], and [8]). Therefore we
assume the following: if (z1,x2) is periodic then (x1,z2) = (¥1(\), 2(N)).

Theorem 2: Let K be a totally real cubic number field. If the algorithm of a pair
(z1,22) € K X K has a purely periodic expansion then

(x1 — 7)) (w2 — x5) > 0, (21 — 2) (22 — 25) < 0.
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Proof. Using our first lemma we see that ;(¢) is a decreasing function with the
pole
BEP*DB(()P*Q) _ B£P*2)B((JP*1)

B(()Pfl) ’

/’l’ =
But also v5(t) is decreasing. If we calculate its derivative we have to prove
-2 -1 -2 -2 —1 -2 -2 -2
Bép )(Bép )B(()P )7351’ )B(()I) )) < B((JP )(Bép)Bép )7B§P )B(()P))
Since

Bép)Bép—m B Bép—2)Bép) _ (dp + 1)(Bép—1)Bép—2) B Bép—l)Bép—Z))
+B§p*2)B(()p*3) - Bép*S)Bép%)
> 2(Bép_1)Bép_2) . Bép—2)B(()p—1))
and B > B~ this is true.

We now assume again that p = 0(mod2). Then the characteristic polynomial
has three real roots: 0 < A < X < A, which satisfy AN\’ = 1. Therefore we obtain

0<zo<ah<uzy.

We now use the following result about difference equations. If for periodic algo-
rithms the quantities B;(np) are linear combinations of A, (A)™, and (A”)" then
the quantities B;npil)Bénpfz) —Bf"piQ)Bénpfl) (and similar expressions) are linear
expressions of the products (AN)™, (MA)™, and (A'\)™.

Now let us replace, for a moment, the period length p by np and consider

_ B§”P*1)Bénl7*2) _ BYLP*Q)B(()”P*U .

Hn —
B(()”P 1)

The periodicity of the algorithm implies u, = ¢(\)™ + o(1). Therefore, we obtain
(A" < py, for n big enough. Then z{ < 0 and we see that in fact 0 < X < p.
Now, we again use the equations

BY — BF Pz — B My = A
ng) - ngiz)l‘l - ngil)a?g = /\1‘1
BY — Bz — BY My = Az,
We use these relations to find the equation for x; in the form

A3173 + A2£L‘2 —|— A1£C + AO = O
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We have
Ay = B§p71)(3£p)3§p71) _ B§p)B§p71)) + ng) (ng)Bépfl) . ngfl)B(()p))
A = Bépfl)(Bépfl)B(()pr)_Bép72)36p71)>+3(()p*2)(B§p*1)B((Jp*2) _Bépfl)ng*Z)).
Then the lemma shows that Az > 0. Furthermore we have the relations
BB — BBy
(BB BB ) 4 (BB - B B

and
B B B

(s A DB VB _ BDBED) | (B DB B ),

Since B BY — BP B = 1 and B B — BP B = 0, we obtain 4, > 0.
Therefore z1z)z} < 0 and 12 > 0. This implies 1 < A" and so x| > x1. O

David uses in his first paper ([3]) the vector products P, = —W,,_; A W,,. He as-
sumes that the direction of these vectors tends to (1,27, x%) or (1,2, z4). However
this direction must be an eigenvector of the transposed matrix ¢ of the periodicity
matrix .

Remark. Unfortunately, Theorem 2 is of no great value since the property stated
in Theorem 2 can be destroyed by the pre-period. Take the pair

= (0 5) = b

where \ > 1 satisfies A\ — 6A2 + 5\ — 1 = 0. Then % <N <XN<l<Xand X\~ 5.
We choose

1 A
TR W |
and
5 34+a1 AT H9N—2  —6A7 + 29\ + 28
5 — T2 5A—1 29 '
Since f(t) = z7- is decreasing we get 0 < a < o/ < o”. But f# < and 8 < 3"

are provided by the inequalities

—6A2 4+ 290 < —6X"2 + 20N, —6A% + 29\ < —6N"? + 29\
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20\ — X)) < 6(A% = N2, 29(\ — \) < 6(A2 — \'"%)
29 < 6(A+ ), 29 <6(N+ ).

Acknowledgement. My thanks go to the referee whose remarks helped to improve
the paper.

References

(1]

2]

(3]

(4]

(6]
(7]
(8]

Bernstein, L. 1971: The Jacobi—Perron algorithm - its theory and application. LNM 207,
Berlin/Heidelberg/New York: Springer Verlag.

Brentjes, A. J. 1981: Multi-dimensional continued fraction algorithms. Mathematical Cen-
tre Tracts 145, Amsterdam: Mathematisch Centrum.

David, M.1949: Sur un algorithme voisin de celui de Jacobi. C. R. Math. Acad. Sci. Paris
229, 965-967.

David, M. 1950: Sur trois algorithmes associés a ’algorithme de Jacobi. C. R. Math. Acad.
Sci. Paris 230, 1445-1446.

Elaydi, S. N, 1996: An Introduction to Difference Equations. New York Heidelberg:
Springer.

Kops, J. Ch. 2011: Selmer’s multiplicative algorithm. Integers 11, #A45.
Schweiger, F. 2000: Multidimensional Continued Fractions. Oxford Univ. Press.

Schweiger, F. 2005: Periodic multiplicative algorithms of Selmer type. Integers 5(1), #A28.



