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Abstract
In this short note, we closely follow the approach of Green and Tao to extend the
best known bound for recurrence modulo 1 from squares to the largest possible class
of polynomials. The paper concludes with a brief discussion of a consequence of
this result for polynomial structures in sumsets and limitations of the method.

1. Introduction

We begin by recalling the well-known Kronecker approximation theorem:

Theorem A (Kronecker Approximation Theorem). Given aq,...,aq4 € R
and N € N, there exists an integer 1 < n < N such that

Inayll < N~V for all1 < j < d.

Remark on Notation: In Theorem A above, and in the rest of this paper, we use
the standard notations ||| to denote, for a given o € R, the distance from « to
the nearest integer and the Vinogradov symbol < to denote “less than a constant
times”.

Kronecker’s theorem is of course an almost immediate consequence of the pigeon-
hole principle: one simply partitions the torus (R/Z)? into N “boxes” of side length
at most 2N ~'/¢ and considers the orbit of (nay,...,nag). In [3], Green and Tao
presented a proof of the following quadratic analogue of the above theorem, due to
Schmidt [9].
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Theorem B (Simultaneous Quadratic Recurrence, Proposition A.2 in [3]).
Given aq,...,aq € R and N € N, there exists an integer 1 <n < N such that

na,|| < AN~/ forall 1 <j5<d.
J

The argument presented by Green and Tao in [3] was later extended (in a straight-
forward manner) by the second author and Magyar in [6] to any system of polyno-
mials without constant term.

Theorem C (Simultaneous Polynomial Recurrence, consequence of Propo-
sition B.2 in [6]). Given any system of polynomials hy, ..., hq of degree at most
k with real coefficients and no constant term and N € N, there exists an integer
1 <n <N such that

1h;(n)|| < E2AN=F /4 forall 1< j<d,
where C,c > 0 and the implied constant are absolute.

Such a recurrence result does not hold for every polynomial. Specifically, if
h € Z[z] has no root modulo ¢ for some ¢ € N, then ||h(n)/q|| > 1/q for all n € Z,
a local obstruction which leads to the following definition.

Definition 1. We say that h € Z[z] is intersective if for every ¢ € N, there exists
r € Z with g | h(r). Equivalently, h is intersective if it has a root in the p-adic
integers for every prime p.

Intersective polynomials include all polynomials with an integer root, but also
include certain polynomials without rational roots, such as (23 — 19)(z? + z + 1).

2. Recurrence for Intersective Polynomials

The purpose of this note is to extend the argument of Green and Tao [3] to establish
the following quantitative improvement of a result of Lé and Spencer [4].

Theorem 1. Given a,...,aq € R, an intersective polynomial h € Z[z]| of degree
k, and N € N, there exists an integer 1 <n < N with h(n) # 0 and

|h(n)oy|| < AN~/ for all 1 < j < d,
where ¢ > 0 s absolute and the the implied constant depends only on h.

In [4], the right hand side is replaced with N=¢ for some § = (k,d) > 0. Here
we follow Green and Tao’s [3] refinement of Schmidt’s [9] lattice method nearly
verbatim, beginning with the following definitions.
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Definition 2. Suppose that A C R? is a full-rank lattice. For any ¢+ > 0 and

= (21,...,74) € RY we define the theta function
Oa(t,z) == Z e mtlz=ml*,
meAN

Further, we define

Ap = 0,+(1,0) = Z e~mIE = det(A) Z e‘”'m|z7
geEAr meA
where A* = {¢ € R? : £&-m € Z for all m € A} and the last equality follows from the

Poisson summation formula. Finally, for a polynomial h € Z[z], a = (a1,...,aq) €
R?, and N > 0, we define

Fpna(N) = det(A)E1<n<nOa(1, h(n)a).

For the remainder of the discussion, we fix an intersective polynomial h € Z[z] of
degree k, and we let K = 21%% We use C and ¢ to denote sufficiently large and small
absolute constants, respectively, and we allow any implied constants to depend on
h. By definition h has a root at every modulus, but we need to fix a particular root
at each modulus in a consistent way, which we accomplish below.

Definition 3. For each prime p, we fix p-adic integers z, with h(z,) = 0. By
reducing and applying the Chinese Remainder Theorem, the choices of z,, determine,
for each natural number ¢, a unique integer r, € (—g¢, 0], which consequently satisfies
q | h(rq). We define the function A on N by letting A(p) = p™ for each prime p, where
m is the multiplicity of z, as a root of h, and then extending it to be completely
multiplicative.

For each ¢ € N, we define the auziliary polynomial, hq, by

hq(x) = h(rq + qx) /M),
noting that each auxiliary polynomial maintains integral coefficients.

As in [3], we make use of the following properties of F', only one of which needs to
be tangibly modified due to the presence of a general intersective polynomial.

Lemma 1 (Properties of Fy A,«). If A C R¢, o € RY, and ¢, N € N, then
(i) (Contraction of N') F, A,a(N) > cFp, Aa(cN) for any c € (10/N,1).
(ii) (Dilation of a) Fy,, A,a(N) > %thq“,\,)\(q/)a(]\f/q’) for any ¢ < N/10.

iii) (Stability) If & € R? with |« — &| < €/ max |hy(n)| and € € (0,1), then
1<n<n Y

Fr,aa(N) > Fy, 40a,0+0a(N).
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Proof. Property (i) follows immediately from the definition of F' and the positivity
of ©, and property (iii) is exactly as in Lemma A.5 in [3]. For property (ii), by
positivity of ©, complete multiplicativity of A, and the fact that r, = r4 mod ¢¢’,
we have
Fryne (N) = det(A)EquranSququ(lv h(n)a/A(q))
n=rq mod q
> det(A)E;, +g<n<ry+qn (1, h(n)a/A(q))

n=rg, mod qq’

1 h(r ;4 qq/n)

> ? det(A)ElfnSN/q/GA (1’ (]:J\(T/))‘(q/)a)
1

- ?thqu/\,k(q’)a(N/q/),

as required. O

The key to the argument is the following “alternative lemma.”

Lemma 2 (Schmidt’s Alternative). If A C R? is a full-rank lattice, a« € R?,
and ¢ < NYE | then one of the following holds:

(i) Fr,aa(N)>1/2

(ii) There exists ¢ < dAS* and a primitive € € A*\ {0} such that

€| < Vd + \/log Ay

and
7€ al| < AFFNTF,

The proof of Lemma 2 is identical to that of the corresponding lemma in [3], once
armed with the following result, which follows from Weyl’s Inequality and observa-
tions of Lucier [5] on auxiliary polynomials.

Lemma 3. If§ € (0,1), ¢ < NYE and |Ey<,<n €™M > 5 then there exists
q' < 67F such that ||¢'8]| < (SN)7F.

Additionally, a proof of Lemma 3 is contained in Section 6.4 of [7]. Precisely as in
[3], the alternative lemma gives the following inductive lower bound on F.

Corollary 1 (Inductive lower bound on Fja,a). If A C RY is a full-rank
lattice, o € R?, N > (dAx)°F for a suitably large absolute constant Cy, and
q < NYE  then one of the following holds:
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(i) Fh,aa(N)>1/2

(ii) There exists o' € R, a full-rank lattice A" C RY™Y N’ > (dApr)~“*N, and
q < (dAN)CF with

An < (Vd +\/log Ax) An (1)
and
Fth,a(N) > (dAA)icthqth/’a/ (N/) (2)

Finally, we use Corollary 1 to obtain a lower bound on F} A . that is sufficient to
prove Theorem 1.

Corollary 2. If « € R? A C R? is a full-rank lattice with det(A) > 1, and
N > (dA))S*Ed for g suitably large absolute constant Cy, then

Fh,A@(N) > (dAA)_de.

Proof. Setting ag = «a, Ag = A, and Ny = N, we repeatedly apply Corollary 1,
obtaining vectors o; € R?—7, lattices A; C R?~J, and integers gj,Njforj=0,1,....
Assuming that N; > (dAs,)“* and ¢; < le/ K throughout the iteration, which we
will show to be the case shortly, we must either pass through case (i) of Proposition
1 at some point, or the iteration continues all the way to dimension 0. The worst
bounds come from the latter scenario, and we note that Fh,, Aaa (Ng) = 1. Using
(1) and the crude inequality vd + yIog X < dX'/?, we see that 4y, < AEO
throughout the iteration. Since N,i1; > (dAAj)_CkNj and g1 < (dAAj)quj, we
see that N; > (dAa,)“°* and ¢; < le/K throughout, provided N > (dA,)¢1FKd
for suitably large Cy. From (2), the result follows. O

2.1. Proof of Theorem 1

Fix real numbers aq,...,aq € R and an intersective polynomial h € Z[z| of de-
gree k. Let R be a quantity to be chosen later, and apply Corollary 2 with
a = (Ray,...,Ray) and A = RZ?. By definition we have

ay=RY S ) < (OB,

meRZ
so if R > Cod and N > C,RC2FK@ for guitably large Cs, Corollary 2 implies

Fupa(N) > RCH,
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Since det(A) = R4, it follows from the definition of F}, 5 o that

ElSTLSN Z 677r\h(n)oz—m|2 > Rka‘d’z
meRZ

The contribution from all n with h(n) = 0 is < (CR)?/N, which is negligible if
N > CoR%FEd I this case we conclude that there exists n € {1,..., N} with
h(n) # 0 and

Z 677r|h(n)a7m|2 > Rfckd2 (3)

meERZA

Fixing such an n, if we had |h(n)a —m| > VR for all m € RZ?, then we would

have
e—ﬂ\h(n)a—m\z < e—rrRQ/Qe—‘ir|h(n)a—m|2/2 (4)

for all m € RZ®. By the Poisson summation formula, we have the identity

_ —ml? 1 g2 .
mzé:A el A gA:*e 7l¢[2/t 2mi€-h(n)a (5)
Applying (4) and (5), we conclude that
od/2
det(A)

E efﬂ\h(n)ozfm\2 < efﬂ'R2/2
meRZA

S Bl s h(ma < /2902 Ar
e det(A)
which is < e~ ™7*/2(CR)4, which contradicts (3) if R > Cyd. Therefore, under this
assumption on R, it must be the case that there exists m € RZ? with |h(n)a—m/| <
V'R, which clearly implies that ||h(n)ay|| < 1/v/R forall 1 < j <d.

If N > C3d%*Ed for suitably large Cj, then the theorem follows by choosing
R = d-IN/PkK for 4 sufficiently small absolute constant ¢ > 0. If instead N <
ngc3de2, then the theorem is trivial. O

3. Consequences and Limitations

3.1. Consequences for Sumsets Following Croot-Laba-Sisask

Croot, Laba, and Sisask [1] displayed, using machinery from [2] and [8], that for
sets A, B C Z of small doubling, there exists a low rank, large radius Bohr set T'
with the property that a shift of any (not too large) subset of T is contained in
the sumset A+ B ={a+b:a€ A,be B}. The theorems discussed in this paper
imply the existence of particular polynomial configurations in Bohr sets, and hence
can be incorporated with the techniques found in [1] to establish corresponding
sumset results. Specifically, by replacing the Kronecker Approximation Theorem
with Theorem 1 and C, respectively, in the proof of Theorem 1.4 in [1], one obtains
the following results.
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Theorem 2. Suppose h € Z|x] is an intersective polynomial of degree k, and A, B €
Z with
|A+ B| < K4|A|,Kp|B|.

Then A+ B contains an arithmetic progression
{x+hn)l:1<L<L}

with x,€ Z, n € N, h(n) # 0 and

L > exp (ck( log |4 + B|)6)1/3 — C'log(K 4 log |A\)),

K% (10g QKA
where C,c > 0 are absolute constants, and the implied constant depends only on h.

Theorem 3. Suppose hq, ...,y € Zz] with h;(0) = 0 and deg(h;) < k for 1 <
1</, and A, B € Z with

|A+ B| < K4|Al, Kp|B|.
Then A+ B contains a configuration of the form
{z+hi(n)l:1<i<m, 1<L< L}
withx € Z, n € N, h;j(n) #0 for 1 <i<m, and

log |A + B|
m2K%(log 2K 4

L > exp (ck‘c( )6)1/3 — Clog(mkK 4 log |A|)>,

where C,c > 0 and the implied constant are absolute.

Noting that if A,B C [1,N] with |A] = aN and |B| = N, then one can take
K4 =2a7! and K = 237!, yielding special cases of Theorems 2 and 3 phrased in
terms of densities.

3.2. Limitations Toward Simultaneous Recurrence

Upon inspection of Theorems C and 1, and correspondingly Theorems 2 and 3,
the natural question arises of the possibility of common refinements. Specifically,
if ay,...,aq € Rand hy, -, hy, € Z[z] is a jointly intersective collection of poly-
nomials, meaning the polynomials share a common root at each modulus, can one
simultaneously control ||h;(n)o;|| for 1 < i <m and 1 < j < d? In a qualitative
sense, Lé and Spencer [4] answered this question in the affirmative, but in this con-
text obstructions arise to the application of the methods found in [6] to establish a
bound such as that found in Theorem 1.
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For example, suppose hi(z) = by + biz + bax? and ho(x) = ¢ + c12 + czx3. This
system of polynomials is a “nice” system as defined in [4], but to apply the methods
of [6] it is necessary to firmly control Gauss sums of the form

ol N ari(b b baain® 3
E eQTri(hl(n)al—i-hQ(n)aQ)/q _ Z . i | boai+coaz+(brar+ciaz)n+tbrain®+czazn /q'
n=1

n=1

Control of this sum is lost if bya; + coas, boay, csas, and g all share a large common
factor. While the argument allows us to control (b, bs), (c1,c¢3), and (a1,as,q),
this does not prohibit the aforementioned fatal scenario. While it is likely that an
analog of Theorem C holds for a jointly intersective collection of polynomials, it
appears that new insight is required.
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