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Abstract
It is natural to ask, given a permutation with no three-term ascending subsequence,
at what index the first ascent occurs. We shall show, using both a recursion and a
bijection, that the number of 123-avoiding permutations at which the first ascent
occurs at positions k, k + 1 is given by the k-fold Catalan convolution Cn,k. For
1  k  n, Cn,k is also seen to enumerate the number of 123-avoiding permutations
with n being in the kth position. Two interesting discrete probability distributions,
related obliquely to the Poisson and geometric random variables, are derived as a
result.

1. Introduction

For n � 0, the Catalan numbers Cn are given by

Cn =
1

n + 1

✓
2n
n

◆
;

generalizing this fact, Catalan [3] proved the k-fold Catalan convolution formula

Cn,k :=
X

i1+...+ik=n

kY
r=1

Cir�1 =
k

2n� k
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n

◆
.

The theory of pattern avoidance in permutations is now well-established and thriv-
ing, and a survey of the many results in that area may be found in the text by



INTEGERS: 15 (2015) 2

Kitaev[5]. One of the earliest and most fundamental results in the field is that
the number of permutations of [n] := {1, 2, . . . , n} in which the longest increasing
sequence is of length  2, the so-called 123-avoiding permutations, is given by the
Catalan numbers, and classical bijective techniques give that the each of the ijk-
avoiding permutations with {i, j, k} = {1, 2, 3} are equinumerous. In this paper, we
ask a very natural question, namely in how many permutations in which the longest
increasing subsequence is of length at most 2, does the first ascent occur in positions
k, k +1. Actually, we were web-searching for the answer to this question to use in a
di↵erent context, and were rather surprised to find that the solution appeared to be
not known explicitly: Bousquet-Mélou [2] addressed this question indirectly when
she used the location of the first ascent as a “catalytical variable” in the “laziest
proof, combinatorially speaking,” of the fact that there are Cn 123-avoiding per-
mutations. In Sections 2 and 3 of this paper, we will give recursive and bijective
proofs respectively of the fact that there are Cn,k 123-avoiding permutations on [n]
for which the first ascent occurs at positions k, k + 1. Critical to the bijective proof
are the various combinatorial interpretations of the Catalan convolutions due to
Tedford [9], and the bijections between Dyck paths and avoiding permutations due
to Krattenthaler[7]. In Section 2, additionally, we show that Cn,k also enumerates
123-avoiding permutations with the position of “n” being k 2 [1, n]. Finally, in
Section 4, we produce two interesting probability distributions on Z+ related to
these issues. These are reminiscent of the geometric and Poisson random variables,
and are studied systematically in [4].

2. Recursive Proof

Throughout, we refer to the first ascent as being in position k if the ascent is at the
kth and k + 1st positions of the permutation. If a permutation of [n] letters has no
ascents at all (i.e., it is the descending permutation ⇡ given by ⇡(j) = n+1� j; 1 
j  n), we define it as having first ascent in position n, as though it had a first
ascent “after” the last letter in the permutation – perhaps using a number such as
1.5 in the (n + 1)st spot.

Any 123-avoiding permutation of [n] becomes a 123-avoiding permutation of
[n � 1] when the letter n is removed from it, so we can view each 123-avoiding
permutation of [n] as being grown uniquely by taking a 123-avoiding permutation
of [n� 1] and inserting the letter n into certain positions.

Suppose we have a 123-avoiding permutation of [n � 1] with first ascent in po-
sitions k, k + 1. How can this be grown into a longer 123-avoiding permutation by
inserting n? If n is inserted at the very front of this permutation, the resulting per-
mutation is still 123-avoiding with the original first ascent being “pushed forward”
one position due to the presence of n. If n is inserted anywhere between the very
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front of this permutation and the peak of the original first ascent, i.e., as anything
from the 2nd letter to the k + 1st letter of the permutation, then n becomes the
peak of the new first ascent, which therefore has position 1 less than the position
of n. Furthermore, as there are no ascents before n, and as n cannot be involved in
any subsequent ascents, the new permutation is still 123-avoiding. Finally, if n is
inserted after the original first ascent, then the resulting permutation is no longer
123-avoiding. Note that all of the above hold exactly even if the original permuta-
tion is the descending permutation ⇡ given by ⇡(j) = n�j; 1  j  n�1, with first
ascent in positions n � 1, n. To summarize, a 123-avoiding permutation of length
n � 1 with first ascent in positions k, k + 1 gives rise to exactly one 123-avoiding
permutation of length n with first ascent in position i, i + 1 for each 1  i  k + 1,
and each 123-avoiding permutation of length n must be grown in such a way.

Turning this around, the number An,k of 123-avoiding permutations of length n
with first ascent in position k is equal to the number of 123-avoiding permutations
of length n�1 with first ascent in position k�1 or later, as it is these permutations
that give rise to them. Thus

An,k =
nX

i=k�1

An�1,i

In particular, we note that

An,k =
nX

i=k�1

An�1,i = An�1,k�1 +
nX

i=k

An�1,i = An�1,k�1 + An,k+1.

Since An,0 = 0 for all n, the above recursion indicates that An,1 = An,2 for all n,
with both being equal to the total number of 123-avoiding permutations of length
n � 1. We can see that this is true: any such n � 1 permutation can be uniquely
grown into a 123-avoiding permutation with first ascent in position 2 by inserting
n either as the third letter (if the original permutation did not have first ascent
in position 1) or as the first letter (otherwise); or it can be uniquely grown into a
123-avoiding permutation with first ascent in position 1 by inserting n as the second
letter. Combined with the base cases An,0 = 0 and An,n = 1 for all n � 1, this
recurrence relation is su�cient to fully characterize An,k for any 1  k  n.

Note that Cn,0 = 0 and Cn,n = 1 for all n � 1. Moreover, we find that the
Catalan convolutions Cn,k obey the same recurrence relation as above:
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Since Cn,k obey the same recurrence relation as the An,k, and they have the same
base cases (which generate their values for all 1  k  n), we find that Cn,k = An,k

everywhere.

Corollary 1. The number of 123-avoiding permutations where n is in the kth spot
are also given by the Catalan convolutions Cn,k.

Proof. The result is obvious for k = 1 where the answer equals Cn�1 = Cn,1. Let
k = 2. We have that n is in position 2 in a 123-avoiding permutation i↵ the first
ascent is at positions (1,2), necessarily to n. Thus again there are Cn,1 = Cn�1 such
possibilities. For k � 3 let ↵n,k be the number of 123-avoiding permutations on [n]
with n in the kth spot. Since, as will be emphasized in Section 3, for the first ascent
to be at spots (k � 1, k), n must either be in position 1, or the first ascent must be
to n, we have that ↵n,k = Cn,k�1 � Cn�1,k�2 = Cn,k, by the above recursion.

To give an alternate bijective proof for k � 2, we proceed as follows. Consider
a 123-avoiding permutation ⇡ with first ascent at spots (k, k + 1), and move n,
originally in position 1 or k + 1, into position k, while keeping the relative order
of the other numbers unchanged. Regardless of whether n was in position 1 or
position (k + 1), the new permutation has first ascent at position k � 1 and is still
123-free. Since just one of these original configurations is valid for a given relative
ordering of [n � 1], we see that this map ' from the set of 123-avoiders with first
ascent at (k, k + 1) to the set of 123-avoiding permutations with n in position k is
one-to-one. Moreover the map has an inverse: If '(⇡)(k� 1) < '(⇡)(k +1), n must
have been at the beginning of ⇡, and n must have been in position k + 1 if we find
that '(⇡)(k � 1) > '(⇡)(k + 1). 2

3. Bijective Proof

We have, from Tedford [9] that Cn,k is given (adjusting for his di↵erent indexing)
by the number of lattice paths from (k � 1, 0) to (n � 1, n � 1) consisting of steps
of (0, 1) and (1, 0) and never crossing above the line x = y. Note that these paths,
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and hence, Cn,k are in bijection with these same types of paths between (k, 1) and
(n, n). We will show that these paths are in bijection with the paths corresponding,
by the Krattenthaler bijection, to 123-avoiding n-permutations with first ascent at
k.

Krattenthaler’s bijection between 123-avoiding permutations and Dyck paths can
be described as follows [7]: Given a permutation ⇡ of n integers, denote the right
to left maxima (RLM) of ⇡, reading from left to right, by {ms,ms�1, . . . ,m2,m1}
and denote the (necessarily descending) word between mi+1 and mi by wi. ⇡ will
now read left to right as wsms . . . w2m2w1m1. Read ⇡ from left to right, and draw
as follows, beginning at (0, 0): upon encountering wi add |wi| + 1 steps in the x
direction, where |wi| is the length of wi. Upon encountering mi, add mi�mi�1 steps
in the y direction (m0 is taken to be 0 by convention). This will give a lattice path
between (0, 0) and (n, n) consisting of steps of (1, 0) and (0, 1) and never crossing
above the line x = y.

Example 1. The permutation 76584213 corresponds with the path encoded by

EEEENNNNENEEENNN

where E,N represent steps to the east and north directions respectively (since, e.g.,
a positive step in the x direction takes a path to the east.) In this example, the
descending words wi are of length 3, 0, and 2; and the RLM’s are 3, 4, and 8.

Lemma 1. If ⇡ is a 123-avoiding n-permutation with first ascent at k, then µ, the
leftmost right to left maximum preceded by a non-empty word, is at position k + 1.
Also, µ is either n, or µ is one less than the nearest right to left maximum to its
left.

Proof. The first ascent of ⇡ must be to a RLM, as follows: If the first ascent is
either at positions n� 1 or n, we easily or vacuously have the next symbol being a
RLM. If the first ascent is at position k 2 [1, n � 2] then the k + 1st symbol must
be a RLM, since otherwise the next RLM to the right would enable the formation
of a 123. If the permutation does not begin with n, then n must be at the top of
the first ascent. This is because if n is not the first number, it must be the top
of an ascent, but if an ascent precedes that with the n, that ascent, along with n,
would form a 123. This is the case in which µ = n. If n is the first term in ⇡, then
⇡ begins with the integers n(n � 1)...(n � a) for some 0  a  k � 2 (we choose
the maximum such a, and from now on we will say that “⇡ begins with a regular
descent from n of length a+1”). The upper bound on a comes from the fact that if
⇡ began with regular descent from n of length k (i.e., if we had a = k � 1) then all
integers greater than the one appearing at index k have already appeared and so
the first ascent could not be at k. After the end of the regular descent from n, we
can think of the rest of the permutation as a 123-avoiding (n� a� 1)-permutation;
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so, by the same reasoning as above, along with the fact that n � a � 1 cannot be
the first term, or else it would lengthen the regular descent from n, n� a� 1 must
be at the top of the first ascent, and must be preceded by a non-empty word. 2

Theorem 1. The Dyck paths that correspond, by the Krattenthaler bijection, with
123-avoiding n-perms with first ascent at k are in bijection with the lattice paths
given by Tedford [9], as counted by Cn,k.

Proof. Let ⇡ be a 123-avoiding n-permutation with first ascent at k. By Lemma
1, the following two cases are exhaustive: either (i) the first ascent is to n, and so
|ws| = k meaning that the path begins with k + 1 x steps for a word of length k,
followed by a y step for an RLM, or (ii) ⇡ begins with a regular descent from n of
length j where 1  j  k � 1 and subsequently contains a word of length k � j,
and then a RLM with value less than the last term in the regular descent from n.
In the latter case, the path will begin with j iterations of the pattern (x step, y
step) each representing an empty word followed by a RLM one greater than the
following RLM, and then will have k � j + 1 x steps, corresponding to the word of
length k � j, and then a y step corresponding to a RLM. In the first case, we have
a specific path from (0, 0) to (k + 1, 1). In the second case, we have one specific
path for each 1  j  k � 1 from (0, 0) to (k + 1, j + 1). This is to say that every
Dyck path that gets to one of these points via the path associated with it represents
a 123-avoiding permutation with first ascent at k, and vice versa. Therefore the
number of 123-avoiding n-permutations with first ascent at k is given by the number
of unique ways to finish a Dyck path from each of these endpoints, i.e., denoting by
“good” paths the ones that do not cross the line x = y,

Cn,k =
kX

i=1

|good lattice paths with E/N steps from (k + 1, i) to (n, n)|.

A bijection between these paths and the paths from (k, 1) to (n, n) is given by taking
a path from (k, 1) to (n, n), and disregarding every step up through the first x step,
so that a path from (k + 1, i); 1  i  k to (n, n) remains. 2

4. Limit Distributions

The probability that a random permutation on [n] has its first ascent at position k is
given, for 1  k  n�1, by k

(k+1)! . To see this, choose any one of the k+1 elements
in positions 1 through k +1, except for the smallest, to occupy the k +1st position,
and then arrange the other elements in a monotone decreasing fashion. The chance
that the first ascent is at position n is, of course, 1

n! . We will find it more convenient
in this section to consider infinite analogs of the finite distributions we derive. An
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infinite permutation may be realized, e.g., by considering a sequence X1,X2 . . . of
independent and identically distributed (i.i.d.) random variables with say a uniform
distribution on [0,1]. Under this scheme we get the first ascent distribution as being

f(x) =
x

(x + 1)!
, x = 1, 2, . . . ,

which is similar in form to the unit Poisson distribution with parameter � = 1 –
and mass function g(y) = e�1/y!; y = 0, 1, . . ., mean and variance equal to 1, and
generating function E(sY ) = exp{s � 1}. By contrast, it is shown in [4] that the
first ascent distribution above satisfies

E(X) = e� 1; V(X) = e(3� e); E(sX) =
(1� es + ses)

s
.

What, on the other hand, can be said about the location distribution of the
first ascent in a random 123-avoiding permutation? We see from our earlier results
that for a randomly chosen 123-avoiding permutation on [n] the distribution of the
location of first ascent is given by

f(k) =
Cn,k

Cn
= k

(2n� k � 1)!(n + 1)!
(2n)!(n� k)!

, k = 1, 2, . . . , n,

which, for small k and large n, may be approximated by f(k) = k
2k+1 . Accordingly,

in [4] the authors studied the geometric-like distribution on Z+ = 1, 2, . . . defined
by

f(w) =
w

2w+1
, w = 1, 2, . . . ,

showing that
E(W ) = 3; E(sW ) =

s

s2 � 4s + 4
.

Roughly speaking, the above facts indicate that for a random permutation on a
large [n], we expect the first ascent to be at position e � 1 ⇡ 1.718, whereas this
value increases to 3 for a random 123-avoiding permutation.

5. Open Questions

A whole series of questions would relate to enumeration of permutations, free of a
certain pattern, in which the first occurrence of another pattern occurs at a certain
spot. Another direction to pursue might be to consider a specific partial order on
[n] and answer the same question as that studied in this paper. Finally, can we
use the notion of first ascents in the context of 123-avoiding permutations to give
another combinatorial proof of Shapiro’s Catalan Convolution identity, as in [1], [6]
(both papers were written in response to a query of R. M. Stanley)?
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