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Abstract
In this paper, we provide a bijection between subsets of ordered trees with n edges
where no two vertices at the same level have di↵erent parents and those with height
at most three. We show that the number of these subsets of ordered trees corre-
sponds to every other Fibonacci number, and provide a combinatorial interpretation
of Chen and Shapiro’s generalization of this sequence using k-trees. We also prove
Shapiro’s identity involving the generating function of this sequence and Riordan
arrays.

1. Introduction

Herbert S. Wilf defines a fountain of coins as an arrangement of n coins in rows such
that the coins in the first row form a single contiguous block, and that in all higher
rows each coin is tangent to exactly two coins from the row beneath it [17]. There
is an obvious bijection between these objects and combinatorial objects enumerated
by the Catalan numbers [15]. If we require that every row in our fountain of coins
consists of a single contiguous block (see Figure 1), then the number f(n) of such
contiguous arrangements with exactly n coins in the first row satisfies the recurrence
relation

f(n) =
nX

j=1

(n� j)f(j) + 1 (n = 2, 3, · · · ), where f(1) = 1.

Using the above recurrence relation, one can easily show that the generating function
is

F (z) =
1X

n=1

f(n)zn =
z � z2

1� 3z + z2
.

1Corresponding author. Email: zelekem@wpunj.edu
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If we look at the first few terms of the series expansion of this generating function,
we notice that {f(n)}1n=1 is a subsequence of the Fibonacci Numbers and, in fact,

f(n) = F2n�1, n = 1, 2, 3, . . . – odd terms of the Fibonacci numbers with F1 = F2 = 1.

Figure 1: An example of a contiguous fountain of coins.

On the other hand, Emeric Deutsch and Helmut Prodinger [2] studied polyominoes
built by starting with a single cell and adding new cells on the right or on the top
of an existing cell in which every column is formed by contiguous cells.

Figure 2: A directed column-convex polyomino with 25 cells.

They exhibit a bijection between these polyominoes and ordered trees with height at
most three and show that the number of such directed column-convex polyominoes
of area n (area = number of cells) is given by every other Fibonacci number F2n�1

with F1 = F2 = 1.
It is well-known that ordered trees (often referred to as rooted plane trees or

simply plane trees) are trees with a distinguished vertex called the root where the
children of each internal vertex are linearly ordered [15]. The level number of an
ordered tree is the length of the path from the root to a given vertex. The height of
a tree is the largest level number in the tree. If we denote the number of nonempty
ordered trees with n edges where no two vertices at the same level have di↵erent
parents (we will refer to these subsets of ordered trees as Skinny Trees) by st(n),
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then from the decomposition rule [5, 6] shown in Figure 3 we see that its generating
function ST (z) =

P1
n=1 st(n)zn

+=
Nonempty 
Skinny Tree

Nonempty
Subtree

Figure 3: Decomposition of a non-empty skinny tree.

satisfies the equation

ST (z) =
z

1� z
+

1
1� z

zST (z)
1

1� z
.

Solving this equation for ST (z), we get

ST (z) =
z � z2

1� 3z + z2
.

Hence, the number of nonempty skinny trees with n edges is also enumerated by ev-
ery other Fibonacci number like the contiguous fountains of coins, directed column-
convex polyominoes, and ordered trees of height at most three.

2. Contiguous Fountain of Coins, Skinny Trees, and Ordered Trees of
Height at Most Three

In this section, we provide bijections between a collection of contiguous fountains of
coins with n coins in the first row, ordered trees with n edges where no two vertices
at the same level have di↵erent parents (skinny trees), and ordered trees of height
at most three.

2.1. From Contiguous Fountain of Coins to Skinny Trees

Given a contiguous fountain of coins with n coins at the first level, draw n diagonals
with slope m = �

p
3 through each of the n coins at the first level. These diagonals

represent the non-root vertices in the ordered tree to be constructed.
For i = 1, 2, · · · , n, if diagonal i has j coins, then non-root vertex i of the cor-

responding tree will be at level j. Whenever we have more than one vertex at
the same level (this happens if two or more diagonals contain the same number of
coins), we let the parent be the vertex with the largest label less than the labels
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of the diagonals at this level. Hence, no two vertices at the same level will have
di↵erent parents and the ordered tree constructed in this way is indeed a skinny
tree.

For example, in the contiguous fountain of coins shown in Figure 1, n = 12 and
the corresponding tree will have twelve non-root vertices. Vertices 1, 11, and 12
will be at level 1 connected to the root. Vertices 2, 3, 4, 9 and 10 are at level 2,
and they are all children of vertex 1. Vertex 5 is the only vertex at level 3 and is
the child of vertex 4. Finally, we see that vertices 6, 7, and 8 are all at level 4, and
are connected to vertex 5. The skinny tree which corresponds to the contiguous
fountain of coins in Figure 1 is shown below.

1 11 12

2 3 4 9 10

5

6 7 8

Root

Figure 4: A skinny tree corresponding to the contiguous fountain in Figure 1.

2.2. From Skinny Trees to Contiguous Fountain of Coins

Given a skinny tree on n edges, label the non-root vertices using a pre-order-traversal
from left to right with labels {1, 2, · · · , n}. Since the tree has n edges or non-root
vertices, we start with a contiguous fountain consisting of n coins in the first row.
Draw n diagonals labeled {1, 2, · · · , n} through each of these n coins. Next, look at
the vertices at levels greater or equal to 2 in the given tree and identify the smallest
and largest vertices. Add a contiguous block of coins between the smallest and the
largest labels on the second level. Repeat the above until you reach the largest level
in the given tree. Hence, the number of contiguous fountains of coins with n coins
in the first row is equal to the number of ordered trees with n edges in which no
two vertices at the same level have di↵erent parents.

2.3. Remark on the Bijection

Wilf and Odlyzko [10] gave a similar bijection between fountains of coins and par-
titions of integers studied by Szekeres [12] in connection with a combinatorial in-
terpretation of Ramanujan’s continued fraction. The bijection we have introduced
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in the previous section extends to non-contiguous fountains of coins as well, and
provides a direct bijection between fountains of coins consisting of a contiguous
block of n coins in the bottom row and ordered trees with n edges. Figure 5 is
a demonstration of this bijection (the diagonal and vertex labels are included to
simply show how the mapping works).

2

1
4 9

3 5

6 7

8

10

1 2 3 4 5 6 7 8 9 10

Figure 5: An example of a mapping from fountains of coins to ordered trees.

2.4. Ordered Trees of Height at Most Three and Skinny Trees

Emeric Deutsch and Helmut Prodinger provide two di↵erent bijections between
ordered trees of height at most three and directed column-convex polyominoes [2].
Using the symbolic method, one can easily show that the generating function of the
number of nonempty ordered trees of height at most three is the same as that of
nonempty skinny trees [2, 8].

We now give a bijection between ordered trees in which no two vertices at the
same level have di↵erent parents (skinny trees) and ordered trees of height at most
three. Start with any ordered tree of height at most three on n edges, and convert it
to a Dyck path of length 2n. This is done very easily using a pre-order-traversal of
the tree from left to right, and by associating each move away from the root vertex
in the traversal to an up step (U) and each move towards the root in the traversal
to a down step (D). Represent the Dyck path by a {U,D}-word of length 2n.

In this word, scan from left to right and look for the first UU occurring after DD.
Then form a subword of the form DD · · ·UU (which represents a valley of depth 2
in the Dyck path) taking the first DD to the left of the UU located in the previous
step. Now, interchange U and D throughout the subword, and repeat this process
until the {U,D}-word is free of a subword of the form DD · · ·UU . Then draw an
ordered tree with n edges corresponding to this final word. This tree is clearly a
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skinny tree for we have eliminated all possibilities for two vertices at the same level
to have di↵erent parents.

UUDDUUUDDUUDDD

UUUUDDUDDUUDDD

UUUUDDUUUDDDDD
UUUUUUDDUDDDDD

Figure 6: A mapping of an ordered tree of height at most three to a skinny tree.

To go from skinny trees to ordered trees of height at most three, start with a skinny
tree on n edges and convert it to a Dyck path of length 2n using the simple process
described above. Scan the corresponding {U,D}-word from right to left and look
for the first DD occurring after UU. Check if the di↵erence between the number
of up steps and down steps is greater than two, and if so, interchange U and D
throughout the UU · · ·DD subword. If the di↵erence between the number of up
steps and down steps is less than or equal to two, interchanging U and D will force
the Dyck path to cross the x-axis (results in more down steps than up steps in the
Dyck path), and in this case we look for the next DD occuring after UU which gives
a permissible UU · · ·DD subword. Repeat this process until the resulting {U,D}-
word is free of a subword of the form UU · · ·DD, and then draw the ordered tree
corresponding to this final {U,D}-word. This ordered tree is clearly of height at
most three for we have eliminated all possibilities for the tree to have height more
than three.

UUUUUUDDUDDDDD

UUDDUUUDDUUDDD

UUUUDDUDDUUDDD
UUUUDDUUUDDDDD

Figure 7: A mapping of a skinny tree to an ordered tree of height at most three.

3. Shapiro’s Identity and Its Generalization

Let g(z) = 1 +
P1

k=1 gkzk and f(z) =
P1

k=1 fkzk, where f1 6= 0. A Riordan Array
D = (g(z), f(z)) is an infinite lower triangular matrix whose column generating
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functions are
g(z)(f(z))k, where k = 0, 1, 2, 3, · · · .

A typical element dn,k of the Riordan Array D = (g(z), f(z)) is given by

dn,k = [zn]g(z)(f(z))k, where n, k � 0.

The Fundamental Theorem of Riordan Arrays [13] states that if A(z) and B(z)
are the generating functions of the column vectors A = (a0, a1, a2, · · · )T and B =
(b0, b1, b2, · · · )T , then

(g, f) · A = B if and only if B(z) = g(z)A(f(z)).

Multiplying the Riordan Array D = (1, zC(z)2) with a periodic column vector
A = (0, 1, 0, 0,�1, 0, 1, 0, 0,�1, · · · )T ,

2
66666664

1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 2 1 0 0 · · ·
0 5 4 1 0 · · ·
0 14 14 6 1 · · ·
...

...
...

...
...

...

3
77777775

·

2
66666664

0
1
0
0
�1
...

3
77777775

=

2
66666664

0
1
2
5
13
...

3
77777775

,

Lou Shapiro noticed that the first few terms of the column vector on the right-hand
side of the above equation are the same as the numbers of contiguous fountains of
coins or skinny trees. Since the generating function of the periodic column vector is
clearly A(z) = z�z4

1�z5 , we obtain, by applying the Fundamental Theorem of Riordan
Arrays, that

z � z2

1� 3z + z2
=

zC(z)2 �
⇣
zC(z)2

⌘4

1�
⇣
zC(z)2

⌘5 .

We can actually obtain the above identity directly from the generating function
F (z) = z�z2

1�3z+z2 of skinny trees, by replacing z with C(z)�1
C(z)2

(It is well known [9,
11, 18] that the Catalan generating function satisfies a functional equation C(z) =
1 + zC(z)2).

z � z2

1� 3z + z2
=

�
C�1
C2

�
�

�
C�1
C2

�2

1� 3
�

C�1
C2

�
+

�
C�1
C2

�2 =
C2(C � 1)� (C � 1)2

C4 � 3C2(C � 1) + (C � 1)2

=
(C � 1)

�
(C � 1)2 + (C � 1) + 1

�
(C � 1)4 + (C � 1)3 + (C � 1)2 + (C � 1) + 1

=
(C � 1)

�
1� (C � 1)3

�
1� (C � 1)5
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Replacing C � 1 in the above equation with zC2, we obtain Shapiro’s identity

z � z2

1� 3z + z2
=

zC(z)2 �
⇣
zC(z)2

⌘4

1�
⇣
zC(z)2

⌘5 .

Since the left-hand side of the above equation is the generating function of non-
empty ordered trees of height at most three, it is natural to ask how the exponents
of zC(z)2 in the right-hand side of the equation are going to change if we have
considered non-empty ordered trees of height at most m in general.

Theorem 1. The generating function of non-empty ordered trees of height at most
m is

fm(z) =
zC(z)2 �

⇣
zC(z)2

⌘m+1

1�
⇣
zC(z)2

⌘m+2 .

Proof. Let Tm(z) be the generating function of ordered trees of height at most m.
Then from the decomposition rule shown in Figure 8, we see that Tm(z) satisfies
the recurrence relation Tm(z) = 1 + zTm�1(z)Tm(z).

Ordered tree of
height at most m

= +

Subtree
of height at
most m 

Subtree
of height at
most m -1

Figure 8: Decomposition of Ordered Trees of Height at most m.

Using the fact that the theorem is true for m = 3 (Shapiro’s observation) with the
recurrence relation Tm(z) = 1 + zTm�1(z)Tm(z), one can easily show by induction
that

Tm(z) = C(z)

0
B@zC(z)2 �

⇣
zC(z)2

⌘m+1

1�
⇣
zC(z)2

⌘m+2

1
CA .
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Thus,

fm(z) = Tm(z)� 1 = C(z)

0
B@zC(z)2 �

⇣
zC(z)2

⌘m+1

1�
⇣
zC(z)2

⌘m+2

1
CA� 1

=
C(z)� C(z)

⇣
zC(z)2

⌘m+1
� 1 +

⇣
zC(z)2

⌘m+2

1�
⇣
zC(z)2

⌘m+2

=
zC(z)2

⇣
1�

⇣
zC(z)2

⌘m h
C(z)� zC(z)2

i⌘

1�
⇣
zC(z)2

⌘m+2

=
zC(z)2

⇣
1�

⇣
zC(z)2

⌘m⌘

1�
⇣
zC(z)2

⌘m+2 .

3.1. Remarks

1. Repeated use of the recurrence relation

Tm(z) = 1 + zTm�1(z)Tm(z), Tm(z) =
1

1� zTm�1(z)

shows that Tm(z) is clearly a rational function in z. Hence,

fm(z) = Tm(z)� 1 =
zC(z)2 �

⇣
zC(z)2

⌘m+1

1�
⇣
zC(z)2

⌘m+2

is also a rational function in z. In fact, Doron Zeilberger, with the help of his
computer Shalosh B. Ekhad, obtained that [4]

fm(z) =
zC(z)2 �

⇣
zC(z)2

⌘m+1

1�
⇣
zC(z)2

⌘m+2 =
Nm�1(z)
Dm�1(z)

where
Nm(z) = [Xm]

✓
�z � zX + z2X2

1 + (1� 2z)X2 + z2X4

◆

and
Dm(z) = [Xm]

✓
�1 + z + (2z � 1)X � z2X2 � z2X3

1 + (1� 2z)X2 + z2X4

◆
.
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2. Ira Gessel and Gouce Xin obtained a similar expression for the generating
function Gm(z) of Dyck paths of height at most m in [7] and showed that

Gm(z) =
pm(z)

pm+1(z)
, where pm(z) =

X
0km

2

(�1)k

✓
m� k

k

◆
zk.

4. A Generalization of Skinny Trees Using k-Trees

In sections one and two, we have seen that contiguous fountains of coins, directed
column-convex polyominoes, ordered trees of height at most three, and skinny trees
are all enumerated by every other Fibonacci number. Chen and Shapiro looked at
sequences satisfying the recurrence relation

Gd,n = (d + 2)Gd,n�1 �Gd,n�2 (d � 1)

and provided a combinatorial interpretation for this class of sequences in terms
of skinny ordered trees with dn edges in which the outdegree of each vertex is a
multiple of d � 1 [1]. They refer to these subsets of ordered trees as STd0s. It is
not di�cult to see, choosing suitable initial conditions, that

G1,n = F2n�1, n � 1 occur when d = 1.

In our previous works [9, 18], we have introduced k-trees as a generalization of
ordered trees. A k -tree is constructed from a single distinguished k -cycle, an el-
ementary cycle with k -sides, by repeatedly gluing other k -cycles to existing ones
along an edge. More than one cycle can be glued to a non-terminal or internal edge.
We define skinny k-trees to be subsets of k-trees where no two cycles at the same
level have di↵erent parent-edges. For example, among the twelve 3-trees consisting
of three 3-cycles shown in Figure 9, all except the third 3-tree in the second row are
skinny trees.

Figure 9: The twelve 3-trees on three cycles.

Let Sk,n be the number of skinny k-trees with n k-cycles and Sk(z) =
P

n Sk,nzn

be the generating function of {Sk,n}1n=0. From the decomposition rule shown in
Figure 10,
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Empty Tree
+ +

Nonempty
Subtree

Nonempty
Subtree

or

Figure 10: Decomposition of a skinny k-tree.

we obtain the functional equation

Sk(z) = 1 +
z

1� z
+ (k � 1)

✓
1

1� z
z(Sk(z)� 1)

1
1� z

◆
.

and solving this equation for Sk(z), we get

Sk(z) =
1� kz

1� (k + 1)z + z2
.

Applying results from the theory of rational generating functions [14] to the above
generating function, or counting the number of skinny k-trees directly, we obtain

Sk,n = (k + 1)Sk,n�1 � Sk,n�2, for n � 2 (k � 2).

The initial conditions are obviously Sk,0 = 1 and Sk,1 = 1. Hence, Gd,n =
Sd+1,n for d � 1, and this provides another combinatorial interpretation in terms
of k-trees for the generalized sequence considered by Chen and Shapiro in [1].

There is a natural correspondence between Chen and Shapiro’s STd’s and our
skinny k-trees, where k = d + 1, and all the results obtained in [1] including the
one-to-one correspondence between ST2’s with 2n edges and tilings of a 3⇥2(n�1)
board with tricolor dominoes can be obtained from skinny k-trees.

Figure 11: An example of a mapping of a 3-tree to a tricolor domino tiling.
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