#A19 INTEGERS 15 (2015)

GENERALIZED FOLDING LEMMAS IN THE FIELD OF FORMAL
SERIES AND THEIR APPLICATIONS

Jittinart Rattanamoong

Department of Mathematics, Faculty of Science, Srinakharinwirot University,
Bangkok, Thailand
jittinart@g.swu.ac.th

Vichian Laohakosol
Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok,
Thailand
fscivil@ku.ac.th

Tuangrat Chaichana
Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Bangkok, Thailand
tuangrat.c@chula.ac.th

Received: 8/18/14, Accepted: 4/27/15, Published: 5/8/15

Abstract
The classical folding lemma is extended, in the field of formal series, to two-tier and
three-tier folding lemmas covering all possible shapes of the words enclosing one
and two middle terms. The two-fold and three-fold continued fraction identities so
obtained are applied to derive a number of explicit continued fractions of certain
series expansions, including those related to exponential elements.

1. Introduction

Following [11], a continued fraction is an object of the form

1
[ao;al,ag,...] = ap + 1
ai + az+...
Its n*" convergent is defined as
C
= lag; ay, .. ., an] (n=0,1,2,...).

Dy,
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The classical Folding Lemma (first appeared in [4]; also see [11, Proposition 2])
asserts that

D_n+ yD% = [ao;wn,y_anl/Dn] = {ao;wnvya_ wn:| , (1)
where En is an abbreviation for the word aq,as,...,a,, and accordingly, — E,L
denotes the word —a,,—a,_1,...,—a1. The Folding Lemma, as mentioned for

example in [12], is useful in the determining of explicit shapes of expressions because
the Folding Lemma makes its easy, given the expansion of a partial sum of a series,
to adjust a continued fraction for an appended term if the intervening gap is wide
enough, especially in the function field case. It is also well-known [2, 12] that
the Folding Lemma provides an unusal explanation for the symmetry in certain
continued fractions. In particular, Cohn [2] terms the right-hand continued fraction
in (1) as having 2-fold symmetry and says similarly that the continued fraction
{ao; En,yl, — En, Yo, I_l;n} has 3-fold symmetry, etc. The Folding Lemma can also
be found (but in a disguised way) in the papers [3, 7]. The two main objectives
of our work here are first to extend the classical Folding Lemma one step further
by proving the two-tier and three-tier Folding Lemmas, which correspond to all
possible shapes of the 2-fold and 3-fold symmetric continued fractions in the field
of formal Laurent series, and second to illustrate their versatility by applying them
to establish old and new results about explicit continued fractions.

Throughout, we let F'((x~!)) denote the field of formal Laurent series over a field
F equipped with a degree valuation | - | defined by |z~!| = e~!. It is well-known
[6] that each element £ € F((z7!)) can be uniquely written as a (Ruban) continued
fraction of the form

g = [ao;al,ag, .. ] 5

where ag € Flz] and a, € Flz] \ F (n > 1). Such a continued fraction is finite if
and only if £ € F(z). Define two sequences (C,,), (D,,) by

Ca=1 Co=a9, Cpny1 =0,11Cr+Crqr  (n>0)
D_1 = 0, DQ == 17 Dn+1 == an+1Dn + Dn—l (n > 0)

The following proposition, whose induction proof is omitted, collects basic proper-
ties needed throughout.

Proposition 1. Let n € NU{0}, g€ F((z™1))\ {0}.

(i) We have % = [ag;a1,az,...,an, [
(ii) We have Cy,,/D,, = [ag;a1,az, ..., a,)], called the n'™ convergent.

(iii) We have D,,Cy,_1—CpD,—1 = (—1)"™, so that C,, and D,, are relatively prime.
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(i) If Cp/Dy = lag; a1,a2,...,a4], then Dy /Dy—1 = [an; an-1,...,a2,a1].

(v) If C,,/Dy, = [0;a1,a9,...,a,), then Cy,/Cp_1 = [an;an_1,...,a3,a2] (n>2).

The next result is classically known as the Folding Lemma.

Lemma 1. Let y € F[z]\ {0}, and let

Then

=1[0;a1,as,...,a,] = [0; )_54 (n € N).

Proof. By Proposition 1, we get

B S Cn (="
.Xn, 7_Xni| - = .
{0’ y D, " D2y
— «—
0; X, v, an} =1[0;a1,02,...,0n,Y, —Gn, —Ap_1,...,—01]

= [0;a1,a2,...,0n,y — Dp_1/Dy]

_ (Dny — Dy—1) Cp + D, Criy
(Dyny — Dy—1)Dyp+ Dy Dy

_ Cn (Dny) + (=)

B Dy, (Drny) .

2. Two-tier and Three-tier Folding Lemmas

In this section, we first extend Lemma 1 by exhibiting the four identities corre-
sponding to all possible patterns of the two words enclosing one middle term.

Lemma 2 (Two-tier Folding Lemma). Let y € F[z]\ {0}, and let

Then

o= [0;a1,a9,...,a,] = {0;?4 (n € N).

06X ] = 5+ s ety @
0 %nn ] = B o —aymy
0: X0, X0 = JC)_Z Ty +(;11>):_1/Dn)7 )
0; X, 0, _yn:| g—z + (j;;yn- (5)
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Proof. Observe first that the identity (5) is simply Lemma 1. Since the proofs of
(2)—(4) are quite similar, we give only that of (3). By Proposition 1, we have

— —
|:Oa Xnaya _Xni| = [O;a1;a2a sy ny Y, —01, —A2, .. ., _an}
(Dny - Cn) Cn + Dncnfl
(Dny - Cn) Dn + DnDn—l
Cn (Dpy —Cp+Dyq) +(=1)"  C, (=)™

= [0;a17a27°"7anay—Cn/Dn] =

O

The four identities in Lemma 2 will be referred to as two-fold continued frac-
tions of types 1 to 4, respectively. Next, we derive analogous results for three-fold
continued fractions.

Lemma 3 (Three-tier Folding Lemma). Let y1,y2 € F[z]\ {0} and C,,/D,, be
as in Lemma 2. Then

(1) _0.)_() )_() )_() =Cn 4 ="
) ny Y1, ny Y2, n| — D, D2 Cn+D,_1 (—nn )
L n(y1+ D )+y2+Cn+Dn71
Dy
r—= — — 1)
() [0: X, y1 Xy y2s =X | = G + =t
B 7 v 7 " 7 ! bn Di(’yl-‘r = Dnn71)+ g:11_)1*Cn ’
ot~
r—= — “— n
C, (=1)
(3) O;XnaylaXn7y27Xn:| =5+ Cn1D BRI y
i Dn " p2 (yr+ pn=t ) +—5p—
v2t—p —
— — — —1n
(4) O;XnaylaXnvy%_Xn] = Cn + (
D, Cn+D,— —_1)n >
D%(?Jl"rTl)Jr%
— — — —1)"
(5) O§me17_me2aXn] = ¢
D, D,,_1-Cn —On ’
D,%(y1+ Sop )+y2+CH’Dn—1
— — — —1)" "
6) [0: X0y~ Xvo—X| = G2+ -
KXo =Ko = B4 e
v2-—p,
(7) O;J_()n,ylafinvy%yn] = e + D2< D (71122‘") (=nHn >
" aln+—p— )+
— — «— _1n
8) |0 Xp Y1, —Xn,y2 _X}:%+ o 0
’ ns ’ ny ’ n D, D%(yl-i- n,Dln 'n,)+ (;Bn,l ’
y2—
r— «— — n
. — Cn (=1
(9) O7XnaylaXnay23Xn = D. +D2 2D, 1 —nn_
I 2+t )+ﬁ—y2+%
- Rt - _1)71
(10) |:O;X7L7y17Xn7y27_Xn:| = &o (
D, 2Dp—1 =nno
Di(yl-‘r )+ 7
- < < 71)77,
(1) [0:X 90, Xy, X | = 52 <
Da, 2D,,_ 1 s
D3 (ni+=3 ) +—5
Dn
(12) [0 Xy, X X.|=¢ ~1)"
; ny Y1 ny Y2, — n:|—_n+ o Y
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13)  [0: Xy, — Xy oy Xo| = o 4 — U7
( 3 ny Y1, ns Y2, n D + D2 (DR
L " nY1IT
r = — — _1n
(14) O§me17—me27—Xn = % D2y1(+ (712)2 5
o n 7/2_ﬁ5‘
r— — — _1yn
(15) O§mel7—me2,Xn] = g_:+ D2y1+( )(_1)71 s
L - 4y2+DW,Dl;c”
16) [0:X, 01 —-X0 v, — X, | = Cu ="
( ) ) ns Y1, ny Y2, n| = D, + D2yt é,l)n
- n n+Dp_1
Y27 7D,

Proof. (1) From the two-fold continued fraction of type 1 (i.e., (2)), using Proposi-
tion 1, we get

0% 1, oo K| = [0: K + S 4 o
At A A E AT D T D, (Days + Cn + Da1)

Cp (=™

Dn  p2 <y1 N cngDn_l) I CS )L
" y2+T

To prove (2)—(4), we start from the two-fold continued fractions of types 2-4 (i.e.,
(3)—(5)) and proceed analogously as above.
Using the fact that
— —
[0:-W] == [0: W], (6)
the identities (5), (6), (7) and (8) follow from the proofs of (2), (1), (4) and (3),
respectively. We give only a detailed proof of (5). From (6), we have

— — — —
[0 =X 02, K| = = [0: X, 1, X
Applying the two-fold continued fraction of type 2, we get
— — C,, (—1)"
0: = X2, X } - _on .
|: n Y2 " Dn + Dn (DnQQ - anl + Cn)

The same proof as for (2) leads to

0:% .~ K] = 0% = S —
y A, Y1, ns Y2, An| = yAn, Y1 Dn Dn (DnyZ*Dn—l“FCn)
Do D2 (4 P27 )+
" Y2+,

which is (5).
If the n*® convergent of [0;)_(),1] is C,/D,, then from Proposition 1 the two
consecutive (n — 1) and n** convergents of [O; ?n] are Cy,_1/C,, and D,,_1/D,,

respectively. Substituting these into Lemma 2, we obtain reverse forms of the two-
fold continued fractions of types 1 to 4 as
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0% e 5] — Dama (1"

(1) _OvXnvy%Xn] Dn + D2(U2+ n_ 1+Cn)7
;[ = <— n

2 Oinu 7_Xn] = Dos (_1)— 5

@ [0 2t T )
- .<_ ¥ — an (71)71

(3) _07X7L5y27Xn:| - Dnl + Dz(y2+20n/Dn)’

(4), O Xnay27 n] n L + DQ;Z-
)

The identities (9), (10
)

proofs of (3), (4), (1
Using (3)', we have

(1 ) and (12) are thus obtained in a manner similar to the
and (2), respectively. We give only a detailed proof of (9).

(0% g0 Koo, K] = 05 % 4 Doty
AN YL, Any Y2, An| = ;A n, Y1 Dn Dn(Dny2+20n)

="
2D, -nn
Dy (yl T D, 1) T y2+(2Ci/Dn
Similarly, using (6) and (4)’, we get (13) by the same proof as (4); using (6) and

(3)', we get (14) by the same proof as (3); using (6) and (2)’, we get (15) by the
same proof as (2); using (6) and (1), we get (16) by the same proof as (1). O

G,
D

3. Folding Lemmas and Series Expansions

If a continued fraction of a finite sum of n terms is known, the two-tier Folding
Lemma enables us to determine a continued fraction of the sum with n + 1 terms
explicitly as seen in the next theorem.

Theorem 1. Let Y € Flz] \ {0}. If Cy,/Di, = [0;)_();6[} (¢ € N) is the k™

convergent of the continued fraction representing Zle 1/a; (o € Flz]\ F), then

N _ £+1
(1) 0; X,,Y, sz} = Z 1/0@, Qo1 = (71)]66 ((Oksztz + Dke—lee) + DIQWY)

i=1
(7)
£+1

r — —
(2) 0; Xkea Y, *Xke} - Z 1/0‘1" Qry1 = (71)]6[ ((Dke—lee - CkaDkz) + Dl%eY)
) i=1
- - 041
3) [0;X},.Y, X,w} =" 1/ai, agpr = (~1)™ 2Dy, 1 Dy, + D3,Y)
) i=1
- - 041
@) [0 X4, —X,w} =" 1/ai, agy = (~1)"D}Y.
B =1
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Proof. Since the proofs of these identities are similar, here we prove only the identity
(1). By (2) , we get

Dy, D3, (y + %Eifkrl) Dy,  apyq
g £

— —
O;ka}/ane

Now, we state a three-fold analogue of Theorem 1.
Theorem 2. Let Y1,Ys € Flz|\ {0}. If Ck, /Dy, = {0;)_();%} (¢ € N) is the k™

convergent of the continued fraction representing Zle 1/a;, a; € Flz]\ F, then

(-Z) I:O;)—()kmyvla)_()kga}/éafkg] :Ze+1 ]-/ Qi

— (—_1\ke D2 Ckg"erZ 1) 1
app1 = (—=1)" Dy (Y + + Yar(Cr, 70, 1)/ Dn,

— — —
(2) [0:X 4, Y1, X, Yo, X | = S 1/,

_ ke 12 Ck +Dk 1 1
Oé(+1 — (_1> EDn (Y + L L ) + Y2+(Dkl—1fck2)/Dk5

(3) I:O;)—()k[7}/iﬂfkg)y-27(yk[:| = Z£+1 ]_/Oé“

. ks M2 C +Dk 1 1
a1 = (=1)" Dy (Y t =5, ) T Ya72Dr, 105,

— — —
(4) [0:X 4 Y2, X, Yo, =X, | = S 1/,

a1 = (1) D2 (Y + LﬁDk‘ 1) + Y%

— — —
(5) [0; Xy, Y1, =Xy, Yo, Xk[} = ng 1/a;,

_ k Dyy—1-C 1
Oé(+1 — (_1> ZD,,2L (Y + kz kz) + Y2+(Ck[*Dke—1)/Dke

— — —
(6) [0, Y2, = X, Vo, = X, | = 2 1/,

_ ke 12 Diy—1—Cy 1
a1 = (=1)7 Dy (Y + =7 Dy, L]) + Y>—(Cky+Dr,—1)/Dk,
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— — —
(7) [0§Xk57}/1;_Xk@7Y2ang} =it 1/,
g1 = (—1)k D2 (yl n %371;%) + i
— — —
(8) [0 Vi, = X, Vo, = X, | = D 1/,

Dy,—1—C
<w+1=(—1V”D3(Y'+ “D,, w)_+YTQDé—MDw

— «— —
(9) [0:X 4, Y2, Xk, Yo, X | = S0 1/,

agpr = (~1)% D} (Y + p ) + o720, /08,

— «— —
(10) [0:X 4, Y1, X, Yo, X, | = S 1/,

2Dk[ 1

a1 = (=1)*D; (Y + ) + v

— «— —
(11) [0: Xk, Y1, X Y, X, | = X5 1/,

2D 1 1
al+1 = (_1)k£D,,2L (Yl + k[ ) + YQ“I’(CIC@“FDke—l)/Dke

— — —
(12) [0: Xk, V1, X Yo, ~ X | = S 1/,

aepr = (—1)keD? (Y1 + e ) | e
(13) [O;J_()ke,}ﬁ,—yke,Y%)_()kJ =% 0,

acpr = (1) DIY: + 5
(14) [0§)_(>k[,7}/17 _()—(keayb_fkg} =Y,

arpr = (=1)*D2Y; + m

— — —
(15) [O;Xke,Yl,—Xke,Y%XkJ _ S g

Qi1 = (—1)k‘3D72LY1

+ 1
Y2+(Dk,—1—Clk,)/ Dk,
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(16) [0, Y2, = X, Vo, - X, | = D 1/,

_ (_1)ke 2 ;
app1 = (1) D2Y; + Y2—(Cr,+Dk,—1)/Dxy *

Proof. The identities are proved by the same method as that of Theorem 1, but
appealing instead to the identities in Lemma 3. U

4. Applications

In this section, we derive some known and some new explicit continued fractions of
series expansions as applications.

4.1. Two-fold Continued Fraction of Type 1

In this subsection, we work in the field Fy((z~!)) of formal Laurent series over the
finite field F,, where ¢ is a prime power. The notation and basic results follow
closely those in Carlitz [1]. For i € N, let

i

[i] :=2% —x, do:=1, d; := [i]d]_;. (8)

It is known that [¢] is the product of monic irreducible polynomials in F,[z] of degree
dividing 4, and d; is the product of all monic polynomials in Fy[x] of degree 7.

Remark 1. From (8), for all ¢ > 1, we have:

(1) d;=[1][2] - [i]d(f_ldg_l o dqul,

K2
1—2

(2) di = [i]i = 1)90i = 2)0" - 217

The exponential element for Fy[z] is defined by

i

e(z) = Z %, e:=e(1).

Taking cy = ™dy_; in (4) of Theorem 1, we obtain the following proposition which
is [9, Theorem 1].

Proposition 2. Let (x,) be a sequence defined recursively by x1 = [0;27[1]], and

when x, = [ag;ay,...,am_1], set
. —q"(q—2 2
Tp+1 = |:(10, Aly.e..,Qon_1,—2Z2 a"(a )dn+l/dn, —A2n 1y ..y 7(11:| .

We have .
no i

24
T, = —.

d;

i=1
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In particular, e(z) = z + limy, .o x,, and for q =2,

e= |1 [1],[2], [1,(3],[1], 2], (1], (4], [1], (2], [1], 3], [1], 2], [1], [5); - ..
~—~ ~—~ N———
—_———

(More explicitly, for n > 0 the n** partial quotient is 22" — 2 with u, being the
exponent of the highest power of 2 dividing 2n. The sequence of partial quotients is
the well-known “ruler sequence”.)

Specializing F' = Fy in the last proposition yields the next proposition which is
[10, Theorem 4].

Proposition 3. Over Fo((z71)), form > 2, with )_(>(m) defined by 2262 1/diz™ =
{O,)_()(m)} , we have

e - m—1 - m - m—1 — m+1
— = 0: X, 22 T X s 22 T X s 22 T X G, 22 T
Zm [ (m)> T 2 4 (m)y T 2 4 (m)y T 2 (m)y T J
With X denoting the word x? + 1,x,x + 1, we have
% = [O; )_5,:52, ?,xﬁ, ?,x27)_(),x14, .. } .
x
The identities so obtained above allow us to deduce a good deal of new explicit
continued fractions. Here we give those of e/(z + 1)™ and e/ (z(z + 1))™ for ¢ = 2

and m > 2, using the two-fold continued fraction of type 1. For the proofs, we need:

Lemma 4. Let m,t € N; ¢ a prime power. If a monic f(x) € Fy[z] \ F, is such
that f(x) | [1], then
dy  d; dy
ald+ %+ % Y fymd, ) = 1.
ge ( gt Tt g TL@ t)
Proof. Suppose that the assertion is false. Then there exists a prime p € F,[z] such

that J J J
pl(dt+t+t+-~+ t +1> and p | f(z)"dy.
dy  dp di—1

Using the expression for d; in Remark 1 (1), since p | f(x)™d;, we get

p| f(x), or p|[r] for some 1 <r <t orp|ds for some 1 <s<t—1.

Again, Remark 1 (1) leads to
dy  dy dy

d,+ 2t 2t

t+d1+d2—|— +dt71

= (1021 (et gt g ) + ([)02) - (et g g i)

+1

+ (102 [ a2y i) e ([0 g g iyl ) 1.
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Ifp| f()orp| [r] (1 <r <t),then p| 1 which is a contradiction, and so
plds (1 <s<t—1). We treat two separate cases. If ¢ > 3, then p | 1, a
contradiction. If ¢ = 2, from the above expressions, for 1 < s < t — 2, since
d; | diy1 (i >0), then p | 1, a contradiction, and so s =t — 1. We apply Remark 1
(1) again to deduce that p | [r] for some 1 < r <t—1,0rp | d, for some 1 < s < t—2,

both of which have already been ruled out. O]
For N > 2, let
L,=2 R; =2
Ly=2+1 R, =2°
Ly=2""1+1 Ry =2V,

Then, provided M # N, we have

{neNyn>2}= U [Ly,Ry] | NZ, Ly, RN [Lar, Rar] = 0.
N>1

For a fixed integer m > 1, there clearly exists a unique N € N such that m €

Theorem 3. Over Fa((z71)), if

(N—=1)+¢ )
= X (>1
then v
(N=1)+£+1 1 o N+ 1 _
=GRV S CES VRN CES
In particular,
e [N + 1] 1 - [N + 2] 1

-
— - |0 X X
(z + 1) @D T @) Y @) (m+ )l

Proof. For £ > 1, let Cy,/Dy, := {0; ?ke} be the kP convergent of the continued
fraction of ZEZ&”M 1/(x 4+ 1)™d;. From

(N-1)+¢ dovonee | daenge oy dovenee 4y

dN—1)+¢ + =

Z 1 _ 2 (N—1)4£—1
i=0 (Jf + 1)mdl (Jf + 1)md(N,1)+g ’
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since d d d
(N71)+l+ (N—1)+¢ - (N—1)+¢ 11
d(N_1)40-1

din_
(N—1)+¢ + 4 A
and (x+1)"d(ny_1)+¢ are monic polynomials over Fy, using Lemma 4 and Cy,, Dy,

being relatively prime, we get
1 1 1 1
Cr, =d(n_ 14+ —4+—+---+ + )
ke = B(V-LHE ( di  ds dN=1)+0-1  d(N—-1)+¢
Dy, = (CL‘ + 1)md(N,1)+g.
Claim. We have
(£>1).

Dy,—1 = (x+1)d(n_1)+¢ + Ck,
Proof of Claim. Let Q = (z + 1)d(n_1)4¢ + C, and P = (1 + Cy,Q) /Dg,. Then
1
<+Cke¢2> Dy, — QCy, = 1.

PDy, — QCy, = D,
We first show that P € Fa[x]. From Remark 1 (2), we get
@+ D[ @+ ¥ [di (i€ N), (9)
and
p_1+CkQ _ 14 Ch ((z+ Vdinnse + Ch)
Dke Dke
1 1 1 1
e +
dN-1)+e-1  dN-1)1¢

= {(93 + 1)d(n—-1)+¢ ( &
dN_1)4+¢  d(N—1)4¢ d(N=1)+¢ m
+<d(1\/—1)+€+ (dz) + (dz) +"'+d2(4) [(z+1)™.
1 2 (N=1)+—1

From (9), it follows that (z + 1)d(n_1)4¢ =0 (mod (z+ 1)2(N71)+/z> d

din— din— j
(N=1)+¢ _ UN-1)+¢ ((x+1)+(x2 +x)>

(x4 1)d(n-1)1¢ .
d; i1 4
din- i -
= SO (1) =0 (mod (o4 1)) e {12 (NS 1)+ 0.
J

Since m < 2N < 2D+ (¢ € N), we get P € Fy[z].
From PDy, — QCy, =1 and Cy,—1Dy, — Di,—1C, =1, we get

PDkg - QO]C@ = Ckz—lez - Dk[—lckea Ckz (Dk‘,g—l - Q) = Dke (Ckg—l - P) .
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Since Cf, and Dy, are relatively prime, by (10) we see that
deg P =degd(n_1)4¢ +1—m < degd(n_1)4¢ — 1 < degdn_1)4¢ = deg C,.
By definition, deg(Cy,—1 — P) < deg Cf,. Thus Cj,—1 = P, and so
Dy,—1=Q = (x4 1)dn—-1)+¢ + Ck,,

and the claim is proved.
Next, we show that
[N + 4] 1
@ D" @)

o €Fafx]\ {0} (£>1).

N+0 1 a2 y
([x+1)ln + +1)m-1T — ( (1’+)1)"" and 2N+ >m.

Applying Lemma 2 (1), we get

This is immediate from

— [N + ¢ 1 —
0; X
{ SR N R T k]
~ Cy, 1
B Df 2 [N+£] 1 Ck,+Dk, -1
ko D, (&5 + wrder) + (o))
ey ) 1 B (N1Z)J:rfz+1 1
Dy,  (z+1)™d(N-1)+(+1) —  (z+1)md
Thus,
(N=1)+1
e, = [0
; (z + 1)™d; ke
VR 1 [ = [N+ 1 o
— (@rird T @) @y

Continuing, we finally get

Theorem 4. Over Fo((z71)), if

(N—1)+¢

Z m =: [0;)—51@5} (¢=1),

=0
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then
e L = [N+g+[N] =
; s g~ |5 @)
In particular,
e g%, NHUTIN 5 [N+2+[N]
Car)” |V Gt ) L Gt o)

Proof. Let C,/Dy, := [0; )—5;@4 be the ki convergent of the continued fraction of
Ego_l)ﬁ 1/ (x(x + 1)) d;. Consider

1) din_ din_ din_
OO s g gl
2 G+ d (@@ + )" dy_11e

Using Lemma 4, since Cj, and Dy, are relatively prime, we see that

din_ din— din—
" (N 1)+z+ (N 1)+€+“.+ (N—1)+£

+1
d; ds d(N-1)+0-1

d(N_1)+¢

and (z(x +1))™ d(n—1)4¢ are monic polynomials over Fy. Thus,

Cr, =d (1 AR : * i )
ke = A(N—-1)+¢ dy | dy dN—1)4e—1  d(N—1)4¢
Dy, = (x(z +1))" dn—1)+¢-

Claim. We have Dy,—1 = [N]dn_1)4¢+Cr, (£>1).
Proof of Claim. Let Q = [N]d(x_1)4¢ + Ck, and P = (1 + Cy,Q)/Dy,. Thus,

14+ C,Q

PDy, — QCy, = ( b
4

) Dy, — QC, = 1.
We first show that P € Falx]. In Fa[z], we have

z(x+1)|[{] (ieN). (11)
From Remark 1 (2), since z(x + 1) | [i] (¢ € N), we have

(xlz+1)* "' |d;, (ieN). (12)



INTEGERS: 15 (2015) 15

Now we consider

_ 1+ CIWQ _ 1+ Ckz ([N]d(Nfl)Jrf + Clce)

P
Dk( Dkl
1 1 1 1
= Ny (14 o 4 = 4+ + >
{[ Jdav-n+e ( di  dy dN-1)+e-1  d(N-1)1¢
dN-_1)4¢  d(N—-1)4¢ d(N-1)+¢ m
+ (d(N_l)_;,_g + ( d21)+ + ( d21)+ + -+ d2(71)+ /(x(x-l- 1)) .
1 2 (N=1)+6—1
(13)
For fixed ¢ > 1 and j € {1,2,...,(N — 1)+ £}, we get
2 4 2¥ =0 (mod (x(z+ 1))2min{N’j})
and
9IN=1)+£ _ oj | gmin{N.j} _ 2(N—1)+t 4 it min{N,j}=j
oIN=D+E 97 4 2N if min{N,j} =N
> 9N, (14)
. o(N—1)+¢
By (11), (12) and (14), it follows that [N]d(y_1)4¢ = 0 (mod (z(z + 1)) )

and

[N]d(N—1)+e+d(N—1)+e d(N—1)+¢

7 o = ST () 4 ()
_ d<NC;j1>+f (IQN +x2j> =) (mod (z(z + 1))2N) (e ll,2,...,(N—-1)+1},
ie.,, Pe ]FQ[.I]

From PDy, — QCy, =1, Cr,—1Dy, — Dj,—1C), = 1, we get
PDy, — QCy, = Cx,—1Dy, — Dy,—1Cy,, Ck, (Dgy—1 — Q) = Dy, (Cry—1 — P).
Since Cy, and Dy, are relatively prime, by (13) we have
deg P =degd(ny_1)4¢ + oN —9m < deg d(N—1)+¢ — 2 < degd(n_1)4¢ = deg C,.

By definition, deg(Ck,—1 — P) < degCf,. Thus, Cy,—1 = P and so Dg,—1 = Q =
[N]d(n—1)4¢ + Ck,, which proves the claim.
Next, we show that

[N +£] + [N]

@@+ © Falz] \ {0} (£>1).
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This follows from

[N+ +[N] (mQN” +x) + (mQN +x) B 22" (z + 1)2N(2f_1)

et D) @erD) . @erl)”
26 —1>1, and 2V > m. Applying Lemma 2 (1), we get
0: X [N+ 4] +[N] < :|_Ck[ 1
sy Nkey 7 7 am oYk | T
+1 D 2 [N+£]+[N] Cr,+Dry—1
e = () - (59)
. Ck, 1 B (N—IX)-:M—&—I ;
Dy, (z(x+ 1))m A(N=1)+(e+1) P (x(x + 1))m d;’
Thus
(N-1)+1 1
-
Z 5 = |0; X,
pr (x(z+1))"d; [ ]
[ [ERGESEIES
@@+1))"d |7 @y n

i=0
Continuing analogously, we arrive at
€ . INFU+IN] - [N+2]+[N]
(@@ + )™ (e r )" ]

4.2. Two-fold Continued Fraction of Type 3

In this subsection, we work in the field of formal series over a field F' of characteristic
0. For n € N, a continued fraction [ag, ; a1, a9, .. ., a,] is said to be palindromic if the
word aq,as,...,a, is equal to its reversal. It is not hard to see that if a continued
fraction [ag, ; a1, as,...,a,] = Cp/D, is palindromic, then C,, = D,,_1. Let

F(T) =T(T +2)(T = 2)g(T) = T* + 2 € (Fl2])[T],
be monic in 7', with monic g(T') € (F[z])[T]. Let
(D) =T, fo(T) = f (fa—1(T)) (n 2 1),
i, fo=fiofi0-- o fi (n composites). Let Ao(T) =1, Bo(T) = fo(T) = T and

forn > 1, let

An(T) = (1" + Y (1™ (D) frna (T) -+ fulT) = (=1)" + fulT) A (T)

m=1

Bo(T) = fo(T)f1(T) - - fu(T). (16)
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It follows that

2T fl(T @) gg
fi >" _ AT (—t*
< fo(T fl < fa(T) Be(T)  fo(T)f1(T) -+ fesa(T)
Lemma 5. For £,i € NU{0}, if f(T) € (F[z]) [T]\ {0}, then
A(fi(T)) = £ Agyi(T) (mod fi(T)).

Proof. The case © = 0 is trivial. If ¢ > 0 and ¢ = 0, then the desired result follows
from the definition of Ag. For £, > 1, from

L
(fz l"’ Z m+1fm fz )) fé(fz(T))
041
= (D) Y )T (T S (T) - feaalD),
m=i+1
we get
Api(T) = ZJFZ + Z m+1fm o fora(T)
Z-H
+ Z D)™ fo(T) -+ fora(T)
m=i+1

= (D' A(fiT) + D (1" (D) - fera(T)

=+ A(fA(T)) (mod £,(T)).

Replacing T with a nonzero polynomial Z(z) := Z in F|x], we get:
Lemma 6. If Z € F[z]\ {0}, then Z | (A3(Z) — 1) for all £ e NU{0}.

Proof. Since f1(0) = 2, by induction we have f¢(0) = —2 (¢ > 2). To prove the
lemma, it suffices to show that A,(0) = £1 for all £ € NU {0}. Clearly, 4¢(Z) = 1.
Thus,

A1(0) = (=)' + £1(0) - Ap(0) = =1 +2-1=1.

By induction, we get Ay(0) = (—1)**! (¢ > 1), and the desired result follows. [
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Lemma 7. If Z € F[z]\F, then By(Z) # 0, Bi(Z) | (A2(Z)—1) for all ¢ € NU{0}.

Proof. We have

2<fo(D) < h(2)] <|f2(2) <+,

and (16) implies that B,(Z) # 0 (¢ € NU{0}). Now from Lemma 6, we get

fo(2) | (A3(fe(2)) 1) (€= 0).
We also have from Lemma 5 that for ¢, € NU {0}, either
A7 (fi(2)) = AL(2) + 2D fi( 2) Avyil Z) + D [2(2),

A (fi(2)) = A{(Z) = 2D fi(2) Aeyi(Z) + D*f}(Z),

for some D € F[z]. By (17), we have fi(Z) | (A7,,(Z) —1). Specifically,
F(Z) | (Afmiya(2) = 1) = A{(Z2) =1 (i=0,1,...0).
It remains to prove that
Bi(Z) = fo(2)f1(Z) ... fo(Z) | (A}(Z) - 1).

For 0 < j < k, since fr(Z) = fu—;(f;(Z)) = fr—;(0) (mod f;(Z)), and

2 fork=j+1
—;(0) =
Jie=s(0) {—2 for k > j+1,

we deduce that, for all j # k,

ged(f5(2), fe(2)) = ged(£5(2),2) € F,

ie., fj(Z), fr(Z) are relatively prime. Hence, (19) follows from (18) and (20).

(17)

(20)

O

An analogoue of Tamura’s result [8] in the field of formal Laurent series reads:

Theorem 5. If Z € Flx] \ F is monic, then 1/ fo(Z) = [0; Z], and if

-1
(1" =
> om0k =

s a palindromic continued fraction, then

14
(_l)n P —
;fo(Z)fl(Z)fn(Z) = {O,ng;UZ(Z),XkZ} ,




INTEGERS: 15 (2015) 19

where

u(Z) = (

e fl2) Aca(2)

7A_Z:CgaB—Z:D2
B2 ’Biaz)y AP =Ck BalZ)=Di

with Cy, /Dy, being the ko™ convergent of [0; ?ke} .
In particular, the continued fraction representing the corresponding infinite sum
takes the form

S fo(Zm((—Zl))_’f_f 77 = 0 Zn(2). Zu2), 2w (2), Zous(2), . ).
n=0 n

Proof. For £ € N, let ay = (=1)*"1fo(2)f1(Z2)--- fo_1(Z) and let Cy,/Dy, =:
[O; ?ke} be the kgth convergent of the continued fraction of

i+i+._,+i_ 1 -1 - (_1)6—1
R W 2RZ)  feaZ)

ap o ar  fo(Z) - fo(Z)f1(Z) A

~

—1 n
-y (-1) '

= 1o(2)11(Z) - fn(Z)
Clearly, 1/ fo(Z) = [0; Z] =: Ck, / Dk, , so ki is an odd positive integer. From Lemma

7, we know that Ay_1(Z) and By_1(Z) are relatively prime. Since A;_1(Z), By—1(Z)
are monic (in Z) and By_1(Z), Dy, are monic (in Z), we infer that

By_1(Z) = Dy, (22)

and so Ay_1(Z) = C},. Since [O; })k(:| is palindromic, we have

Cr, = Dg,—1. (23)
Next, we show that if Z € F[z] \ F, then uy(Z) € F[z]\ F. By (15), we get
A(Z)? = (“1)* +2(=1)" fo(Z2) Ae-1(2) + fo(Z)* Ae-1(2)*. (24)

By Lemma 7 and (24), we get
15 _folZ)  244(2)

u(Z) = (1) Bi1(Z) Bi-1(2)
_ Ay 1(Z2)? -1 1 A(Z)? -1
= (_1)Zfé(Z)eBg,W + (‘De ZBKT < FRINE

From (22) and (23), we get

— (2Dk,—1 Dy, + a},ue)
) L fl2) A 1(2)
= — (2Ae1(Z)BZI(Z) + Béfl(Z)2 <(_1)€ ' Bge_l(Z) a 2BE—1(Z))>

= (=1 Be1(2)fo(Z) = (1) fo(2) }1(Z) -+ fo(Z) = vps1.
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We observe that {ké}z21 obtained by this process is a sequence of odd positive
integers, and so
(=1)% (2Dg,~1 Dy, + a3, ue) = cvey1.

Using Theorem 1 (3), we get

041 ‘ (—1)

(2)11(2) - fn(2)

— —
[O§ng7UZ<Z>7Xlw

!
]
2=

|

g
Sh

O

The above proof with some minor changes is also applicable to some other forms
of f(T) such as T(T + 2)(T — 2)g(T) + T? — 2.

4.3. Two-fold Continued Fraction of Type 4

In this subsection we consider F' = F,, the finite field of ¢ elements. Making use
of the two-fold continued fraction of type 4, we now extend and complement the
works of [10]. We begin with:

Theorem 6. Let {Qi}@l be a sequence of nonconstant monic polynomials over the
finite field F,, where q is a prime power. Assume that there exists N € NU{0} such
that

Q1Q2---Qjt1|Qjr2 (1= N) (25)
and that if N > 1, then

ged ((Q2- Qny1) + Q3 Qni1) + -+ QN1+ 1,01Q2 - Qni1) = 1. (26)

]f Z?:ie 1/Q1Q2 te Qz = [O;Cll,ag, e ,akz} (ﬁ > 1), then
14

N 1 _ o (=D)*Qnress

Z ~ A~ A 07a17a27"'7akg;—7_a/kga"'7

~ Q2 Qs @Q1Q2- - Qne

—az, —ay

Proof. Let Cy, /Dy, = [0; )_()k[} be the ki convergent of the continued fraction of
ZNM 1/Q1Q2 - - - Q;. We observe that both Cy, and Dy, are monic. From

i=1

N+¢

1 (Q2Q3- - QNyr) +(Q3Qu- - Qnye) + - +Qnge + 1
Z: Q:1Q ’
=1

9 Qi Q1Q2 - Qnye

we assert that

ged ((Q2Qs3 - Qnye) + (Q3Qa- - Qnge) -+ Qnye +1,1Q2 - Qnge) = 1.

For N > 1 and ¢ = 1, this is obvious from (26). Next, we treat the remaining cases.
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Suppose there exists a prime p € F,[z] such that

Pl ((Q2Q3- Qnye) +(Q3Qa--Qnye) + -+ Qnse+1), D] Q1Q2- - Qnie.

If N =0, by (25), we have Q1Q2 -+ Q; | Qi+1. Since p | (Q1Q2--- Qy), then p | Qx
for some 1 <k < /¢, andso p | Q;Qj41--- Qe for all 2 < j < k. Since Q1Q2--- Qx|

Qryt (1 <t <L —k), we have Qp | Qryr---Qr, and 50 p | Qpis-- Qe (1 <

t<{—k). Sincep| ((Q2Q3---Q¢)+ (Q3Q4---Qp)+---+Qp+1), thenp| 1, a
contradiction. Thus

ged ((Q2Qs - Q) + (Q3Qu -+ Qo) + -+ Qr+1,Q1Q2--- Q) = 1.

IN>1and £> 2 sincep| (Q1Q2- - Qn=+e¢), then p | Qy for some 1 <k < N + /4.
If p | @ne, since

P (Q2Q3- - Qnte) + (Q3Qus- - Qnys) +- -+ Qnye+ 1),

then p | 1, a contradiction.
Assume that p | Q for some 1 < k < N+¢—1. Using (25) when j = N+{—2 > N,

we get Q1Q2- - QNie—1 | @N+e, which implies that p | Qne¢, again we have a
contradiction. Thus,

ged ((Q2Q3 - Qnye) + (Q3Qu - Qnye) + -+ Qnye +1,01Q2--Qnye) = 1.

Since C%, and Dy, are relatively prime, and all (); are monic, we have Dy, =
@Q1Q2 - Qne. For £ > 1, using (25) with j =N +£—1> N, we get

(D" QNie41/Q1Q2 - Qne € Fylz] \ {0}

Applying Lemma 2 (4), we get

(—1)*Qnte41 Ch, (—1)ke
0;a1,as,...,0k, ~—F—————, —Qkyy...,—02,—A1| =
9 9 9 9 gy 9 Rl ) 9 D 9 (*l)k[QN+£+1
Q1Q2 QN—M ke Dke Q1Q2--QnNie
NA+L+1
_ C, (—1)ke _ 1
D 2 (=D eQnye B .0
@ GG — 2 Q2

O

Note that Theorem 6 is contained in the following proposition of [5] which can
also be proved by taking ap_1 = Ppy1 (¢ > I+ 1) in Theorem 1 (4).

Proposition 4. Let I be a fized positive integer, {k;},~, a sequence of positive
integers, {¢;},~; a sequence of nonzero polynomials over Fy, subject to the condition
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that if I = 1, then ¢1 and those ¢; (i > 2) for which k; = 2 are nonconstant
polynomials over Fy. Let the sequence {P;},~, be defined by

P =1, Py, Ps,..., P €F [z]\Fy; P,=cy 1P"7 P52 PPl (w>T+1),

and let
‘1
E(u) = ZF (u € N).
=1

-~

Assume that
(i) if I > 2, then Po | P3| ---| Pr;
(i) k; > 2 for alli > 1.
If E(u) = [ag; a1, a2, ...,a,] (u>1+1), then there exists B € Fy \ {0} such that
E(u+1)=ag;a1,a2,...,an, Sy, —n, ..., —a2, —a1],
where s, = cqu“_l/cu_lei}I.

Now we apply Theorem 6 to determine explicit continued fractions of e/f(x),
where f(z) is a nonconstant monic polynomial satisfying f(x) | [1].

Corollary 1. Let f(z) € Fyx] \ F, be monic, ¢ a prime power. If f(z) | [1], then

o), ),

f(z) <~ flx)

~[2)ag
7(@)

Proof. Let Q1 = f(x) and Q;+1 = d;/d;—1 (i € N). Observe that

d;  ldi,

di—1 di—y

Qit1 =

B dido  dica
Q1Q2Q3 - Q; f(fﬂ)d—od—2 B R f(z)di
and Qi1 = d;/d; 1, we get
Qit1 di/d;i—1 [i]d] [ijdi=7

Q1Q2Qs--- Qi flz)dioy  fla)d? f(x)
We treat two separate cases.
If ¢ > 3, since f(z) | [1] and [1] | d; (i € N), then f(z) | d; (i € N), which implies
that Q1Q2Q3 - Qi | Qit1-
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If ¢ = 2, since [1] | [7] (¢ € N), then f(x) | [i], and so Q1Q2Q3- - Q; | Qit1.
Applying Theorem 6 with N = 0, we get

1

=050
LSS S PPt ) R
f(x)+f(w)d1 o [O’f( )’f(x)’ f(z)
Lo b g g, 2 g, 2R o) g
f(x)+f(x)d1+f($)d2l0’f( )’f($)7 f(@), 7 () (@), (IL‘), J( )]

Continuing in the same manner, we finally arrive at

_ _ q—2
:[mf@%—ﬂL—f@% ,f@%Jﬂ——f@%—EﬂLﬂ~1-

f(z)

—[2af”*
f()

f()

We now show, using Corollary 1, how to derive explicit continued fractions of

efw, e/ (297" =1), e/(x—1), ¢/ (27> + 29+ +1), e/x(x - 1),
efw (977 + 2973 4+ 1), e/[1]

for ¢ > 2 being a prime power, and show, using Theorem 6, how to find explicit
continued fractions of

e/a™, e/(x—1)™, ef (x(@—1)", e/ (a9t =1)", e/ (29 2+ 2P+ + 1),
ef (z (27 +293 +-- + 1))m , e/[1™,

for a prime power ¢ > 3 and integer m > 2. To this end, we need to use two
appropriate partitions of positive integers.

4.3.1. Partition 1

For a prime power g > 3, let

L1:2 Rlzq—l

Ly=gq Ry=q*—q-1

Ls=q¢"—q Ry=¢’—¢*—q—1

Ly=¢"""'=¢" == —q Rn=¢"—¢"'——g—1 (N>3)

Observe that for M # N, we have

{neN;n>2} = | J [Ln,Ry] | NZ, [Ly, Ry] N [Las, Rag] = 0.
N>1
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For a fixed integer m > 1, there exists a unique N in N such that m € [Ly, Ry].

Corollary 2. Let ¢ > 2 be a prime power. We have

e — — — —
(1) m o O;Xklaula7Xk1au23Xk137“137Xk1au3a"' y
T ~—~—~— N—— —_——— —

(=D [N+

where [O;)?kl} = Z?;O zm;di’ Up 1= — ;
e — — — —
(2) T N 0;Ykl,Ul,—Ykl,U27Ykl,—Ul,—Ykl,U3,-.- )
(x - 1)m ~— —— N
v N 1 (=Nt
where [O, Ykl} =Y io Goiyma,» V= (m_l)'rnN+[ ;
5 * 0 o g, T ip, 7 7
T aNm ; , W1, — , W2, , —Wi, — W3, .o |
) @@ )" k1 W1 ks W2, 2y 1 k1 W3
N—_— ———
S IR ¥\ 1 _ (DMINAdLE,
'IUhET’C |:O, Zk1i| = Zi:() m, Wy = (x(x_l))'rlr\i+l !

Proof. (1) Let Q1 = 2™ and Q;+1 = d;/d;—1 (i € N). Observe that

d; [i)d}_ 0 g .
Qit1 = A d—,ll = [i]d{=) € Fyla] \F, (i > 1),

For j > N, we write j = N + h, h > 0, to get
_ [N + h+1]d%.2
Q1Q2 - QNtht1 T AN, ™

First, we show that 2™ | [N + h + 1]d‘]1\,7+2h (h > 0). By Remark 1 (2), we have

QN+ht2 _dnyn1/dnyn

—1\4—2
IN+h+1]d% 2, = [N+h+1] ([N+ R[N +h— 19N +h -2 1" ) :
Since z | [i] (i € N), we have 2@=2(@ T T T 1) 41 | [N+ h+ 1]d%7.
For h > 0, since

(q_2) (qN+h71_|_qN+h72++q_|_1) +1

>(¢=2) (" + " Tt ) 1= =T - g1 2 m,

we have 2™ | [N +h + l]d(}vfh. Thus, Q; satisfies (25). Using Lemma 4, we get
ged ((Q2Q3 -+ Qn41) + (Q3Qs - Qng1) + -+ Qny1 +1,Q1Q2 - Q1)

dy  d d
:gcd<dN+—N+—N+~--+ N —i—l,a:mdN):l.
di  da dN—1
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For ¢ > 1, since

(—D*Qupers  (CDMIN+0dGE

Up,
Q1Q2 - QnN+e xm
applying Theorem 6, we get

N+1 1 Ny _
e = O' X

; Q1Q2---Q; ;xmdi [ ' kl}

Nii" 1 Nil L _ox COPINEUAE? o

v QIQQ . Qi - v 1‘de - ) k1o m ) ky| -

Continuing the procedure, we arrive at

e — — — —
x—m = |:0;X]g17u]_,_Xk17u27Xk717_u17_X7€17u37'":| .
The proofs of (2) and (3) are similarly done by taking ;1 = (x —1)™ and @1 =
(x(z —1))™, respectively. O

4.3.2. Partition 2

For a prime power g > 3, let

£1:1 Rlzq—Q

Ly=q-1 Ry =q* —2q
£3:q2—2q+1 R3:q372q2

Ly=¢ "1 —2¢"2+1 Ry =¢" —2¢""" (N >3).

Observe that, for M # N,

N=| U [£n.RN] | NZ, [Ln, RO [Lar, Ras] = 0.
N>1

For a fixed positive integer m > 1, there exists a unique N in N such that m €

[Ln,RnN]-
Corollary 3. Let ¢ > 2 be a prime power. We have

e — — — —
(1) ("Eqil 1)m = O;Wktlyula_Wk17u27Wk‘1a_ula_Wk17u37"' 3
— —~— —— —_—

—_——
(=D [N+0dL 2

= N 1 N4e—1
where |:0, Wk1:| = Zi:O m, Uy = (@i—T—1)™ 5
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e
(xQ*2+1"1*3 + .o+ ]_)

(2)

— — — —
mo O;Xklvvh*XkMUQvXklv*/Ula7Xk17v37"'
~— —— ~—— —

¥ 1. N 1 L (CDMNA
where [O, Xkl} =>ilo e sy e el e e

e
(x (ajq_z —+ ijl—g + -+ 1))m

(3)

— — — —
= O;Ykpwlu_ykl?wQuYk17_w1u_yk17w37"' ’
~— —— —_——

— N (—1)k@[N+€]dq727
where {O’ Ykl} = Zi:O (z(-’ﬂ‘kz+-Tq’13+~~+1))mdi’ We = (z(mq*2+xq73+{\{~+—&fl)l)m;
e — «— — —
(4) im O’ Zkuylv*ZklayQ: Zku*yla*Zkl,yﬁip-. ,
[1] ~~ ~—— —_——
7 (—D)Fe[N+0d 7,
where {O; Zkl} = ZZN:O W, Yo = [1]m Nieo1

P’I“OOf. (1) Let Q1 = (qul — 1)m and Qi-}-l = dz’/di—l (Z S N) Observe that

d; [i]d o g—
Qi1 = = d;ll = [i]JdI~} e F,[z] \ F,.

For j > N, we write j = N +h, h >0, to get

QNihi2 ~ dNynt1/dNyn [N +h+ 1]d111\/7+2h

Q1Q2 QNtht1 (xa—1 — l)m dN+h (wa—1 — l)m
We claim that
(z971 =)™ | [N + h+1]d% 7% (h>0).
By Remark 1 (2), we have

[N+h+1d} 2, = [N +h+1] ([N+ RN +h— 19N +h—2)7 mqf”h*l)q‘?

o\, N+h—1

Since (247! —1 1], we have (z97!—1 (a=2)g N + h + 1]d% 2. For
N+h €

h >0, since (q —2)g" "1 > (¢ —2)¢N 7t = ¢ — 2¢V! > m, then (z77t —1)" |

[N+h+ 1]d‘}vfh. Thus, Q; satisfies (25). Using Lemma 4, we get

ged ((Q2Q3 - Qny1) +(Q3Qs- - Qny1) +- -+ QN1 +1,Q1Q2 - Qny1)

dy  d d m
:gcd<dN+—N+—N+~--+ N1, (a7t 1) dN>:1.

di  dp dn-1
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For ¢ > 1, since

(—D*Qupers  (CDMIN+ 0457,

= N =y,
QIQQ"'QN+4 (qul 71) 4
applying Theorem 6, we get
N+1 N
1 1 -
Z @Q1Q2- - Q; Z (za=1 —1)"d; [ Fa
i=1 i=0
P Q1Q2 - Qy B — (xq—l _ l)m d; = (Y Wk (.Ifq_l _ 1)m ) k1

Continuing the procedure, we finally arrive at

e

— P — P
(;;T:TW;:{&W@Uuhfﬂ%uu%m%“Auh—W%Nu&“l.

The proofs of (2), (3) and (4) follow similarly by taking

m

Q= ("2 +29% - +1)", Q= (v (a2 + 29+ + 1)), Qi =[],

respectively. O

The identities for e/ f(x)™, m € N, monic f(z) € Fq[z] \ Fy in Subsections 4.1
and 4.3 and those known earlier are summarized in the next table.

flx) (m=2) q=2 q>3

T Corollary 1 Corollary 1
™ Thakur (1996) | Corollary 2
xi 1 —1 Corollary 1 | Corollary 1
(z1—1)" Theorem 3 Corollary 3
z—1 Corollary 1 Corollary 1
(x —1)" Theorem 3 Corollary 2

42 L g3 4. 41

Thakur (1992)

Corollary 1

<$qf2 43 4. 1)m

Thakur (1992)

Corollary 3

xz(x—1)

Corollary 1

Corollary 1

(z(x—1)"

Theorem 4

Corollary 2

x(xq—2+xq—3+...+1)

Corollary 1

Corollary 1

<£L' (xq—Q Logd=3 4. 1)>m

Thakur (1996)

Corollary 3

Corollary 1

Corollary 1

1m

Theorem 4

Corollary 3

4.4. Three-fold Continued Fraction of Type 13

In (2], series expansions of real numbers of the form Y~ ( 1/f™(z), where f'(z) =
and f"(z) = f(f"'(z)) (n > 1) are shown to have explicit continued fractions
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if and only if f(z) satisfies one of the fourteen congruence conditions. Here, we
extend one of these results using Theorem 2 (13). Let

F(T) =TT ~1)g(T) + 1 € (Fla])[T]
be monic (in T), with monic ¢g(T) € (F[z])[T]. Then, for all n > 1,
FUT) = 72 (7 7HT) = 1) gu(T) + 1, ga(T) =g (f*7H(T)) € (Fla])[T].

For brevity, let
A(T) = TH(T)--- f*(T) (n = 0).

Theorem 7. If Z € Flx]\ F is monic, then

> : =[0;2,-9(Z2)(Z-1),-Z+1,-Z —1],

and for £ > 2, if Zﬁ;lo 1/f"(2) = [0; )_5;%} , then

(Z)ge1(2) (1*2(2) - 1)
Ap_3(2)?

£y =
——— = |0; X,
2 |

Proof. For ¢ > 1, let ay = f*~1(Z) and let Cy, /Dy, =: {0; )_5;“,} be the ki conver-

gent of the continued fraction of

— —
7_Xk?1{717ng .

LS SRS M PR TSNS S i
a1 o o  Z  f(2) f=12) = m(2)

We claim that
Dy, =Ai1(Z) (£>1).

From

F(2)=1= 12?2 (171(2) - 1) gu(2)
= [TUZP 2P (fH2) - 1) 91 (2)90(2) = ...
= N2 A2 f(2)2 22 (2= 1) 9(2)g2(2) - - o 2),

we see that
A1 (2] (f(2)-1), (27)

ie.,

fY(2) = A_1(Z2)?By +1 for some By € (Flz])[T). (28)
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Now
Cr, 1 1 1
D, Z J2)

@) )

(f@)-- @)+ (2£2(2) - 17U2) + -+ (2f(2) - [72(2))
Zf(Z)-- f1(Z) '

The numerator and denominator are relatively prime, for if there exists a prime

element p € Flz] dividing them, then p | f7(Z) for some 0 < r < ¢ — 1, which

implies that

plZf(2Z)- - U2 (2) - 1 H2),

and so p| Zf(2) - =1 (Z) or p | fTHH2)fH2(2) - fH(2).
Ifp| Zf(Z) - fr~YZ), using (27), we see that p | (f"(Z) — 1), contradicting
p| f7(Z). Thus,
pl D)2 T N(2).

By (28), we get
D 2(2) - fH(2)
= (4:(Z2)*Bry1 4+ 1) (A4r41(2)?Brga + 1) -+ (Ar—2(Z)*By—1 + 1) .
Since f7(Z) | Aj(Z) (r < j) and p| f"(Z), then p | 1, a contradiction. Thus,
(f2)---f7H2D) + (22 2) - U2+ + (21(2)--- [2(2))
and Zf(Z)--- f*=1(Z) are relatively prime. Since Z is monic, we get
Dy, =Zf(2)--- "1 2) = Ar(Z) (£21),

and the claim is proved.
Next, we consider

a1 = f4(2) = f1(2)? (fe_l(Z) —1) ge(2) +1
= N2 222 (fF2(2) — 1) ge-1(2)ge(Z2) + 1

F72(2) = 1) 9e1(£)9e(2) +1=A4.1(2)"1 + i’

_ (
= A1 (2)° Ap_3(2)* Y,

=20
where Y7 := (7 (quei)si;);(z)gg(z), Yo :=1. By (27), we get Y7 € Fz]\ {0}. Let

X4, be the word Z, —g(Z)(Z —1),~Z +1,—Z — 1. Then

[0;)_(3@} =00:2,-9(2)(Z2 - 1), -2 +1,-Z - 1] = % - ﬁ
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We observe that {k¢} > Obtained by this process is a sequence of even positive
integers. Thus, a1 = (=1)¥DZ Y1 +1/Y,. Using Theorem 2 (13), we get

= 92D (2)(f7H2)-1) < o S
e Ars(2)° KoL X | =3 =) gy
B i=1 " n=0

O

Acknowlefgement. The second author is supported by a grant from the Faculty
of Science, Kasetsart University.

References

[1] L. Carlitz, On certain funcions connected with polynomials in a Galois field, Duke Math. J.
1 (1935), 137-168.

[2] H. Cohn, Symmetry and specializability in continued fractions, Acta Arith. 75 (1996), 297—
320.

[3] W. Leighton and W. T. Scott, A general continued fraction expansion, Bull. Amer. Math.
Soc. 45 (1939), 596-605.

[4] M. Mendés France, Sur les fractions continues limitées, Acta Arith. 23 (1973), 207-215.

[5] P. Riyapan, V. Laohakosol and T. Chaichana, Two types of explicit continued fractions,
Period. Math. Hungar. 52 (2) (2006), 51-72.

[6] W.M. Schmidt, On continued fractions and diophantine approximation in power series fields,
Acta Arith. 95 (2000), 139-166.

[7] W. T. Scott and H. S. Wall, Continued fraction expansions for arbitrary power series, Ann.
of Math. 41 (1940), 328-349.

[8] J. Tamura, Symmetric continued fractions related to certain series, J. Number Theory 38
(1991), 251-264.

[9] D. Thakur, Continued fraction for the exponential for Fy[T], J. Number Theory 41 (1992),
150-155.

[10] D. Thakur, Exponential and continued fractions, J. Number Theory 59 (1996), 248—261.

[11] A. J. van der Poorten and J. O. Shallit, Folded continued fractions, J. Number Theory 40
(1992), 237-250.

[12] A. J. van der Poorten, Symmetry and folding of continued fractions, J. Théor. Nombres
Bordeauz 14 (2002), 603-611.



