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Abstract
Let � be a primitive Dirichlet character to the modulus q. Let S�(M,N) =P

M<nN �(n). The Pólya-Vinogradov inequality states that |S�(M,N)|⌧pq log q.
The smoothed Pólya–Vinogradov inequality, recently introduced by Levin, Pomer-
ance and Soundararajan, is a numerically useful version of the Pólya–Vinogradov
inequality that saves a log q factor. The smoothed Pólya–Vinogradov inequality has
been used to settle a conjecture of Brizolis, namely that for every prime p > 3, there
is a primitive root g and an integer x 2 [1, p � 1] such that gx ⌘ x mod p. It has
also been used to improve the best known numerically explicit upper bound on the
least inert prime in a real quadratic field. In this paper we will prove a smoothed
Pólya–Vinogradov inequality which takes into account the arithmetic properties of
the modulus and we extend the inequality to imprimitive characters. We also find
a lower bound for the inequality.

1. Introduction

Let � be a non-principal Dirichlet character to the modulus q. It has been the

interest of mathematicians to study the sum

�����
M+NX

n=M+1

�(n)

�����. Pólya and Vinogradov

independently proved in 1918 that the sum is bounded above by O(pq log q). As-
suming the Riemann Hypothesis for L-functions (GRH), Montgomery and Vaughan
[3] showed that the sum is bounded by O(pq log log q). This is best possible (up to a
constant), because in 1932 Paley [5] proved that there are infinitely many quadratic
characters � such that there exists a constant c > 0 that satisfy for some N the
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inequality

�����
NX

n=1

�(n)

����� > c
p

q log log q.

Recently, in [2], Levin, Pomerance and Soundararajan considered a “smoothed”
version of the Pólya–Vinogradov inequality. Instead of considering the character
sum over an interval, they consider the following weighted sum

S⇤�(M,N) :=
X

MnM+2N

�(n)
✓

1�
����n�M

N
� 1
����
◆

.

The theorem they prove is the following:

Theorem A. Let � be a primitive Dirichlet character to the modulus q > 1 and let
M,N be real numbers with 0 < N  q. Then

��S⇤�(M,N)
�� =

������
X

MnM+2N

�(n)
✓

1�
����n�M

N
� 1
����
◆������ 

p
q � N

p
q
.

Levin, Pomerance and Soundararajan used the inequality to prove that for every
prime p > 3, there is a primitive root g and an integer x 2 [1, p � 1] such that
gx ⌘ x mod p, i.e., that the discrete logarithm base g has a fixed point. The
second author (see [6]) used the smoothed Pólya–Vinogradov inequality to improve
an upper bound for the least inert prime in a real quadratic field. The inequality is
not new, as it was used by Hua in [1] to improve a bound on the least primitive root
mod p. However, while Hua presented his paper as an introduction of a method
with numerous applications, we didn’t find other papers that used this technique.
Hopefully this paper will help bring this useful method to the spotlight it deserves.

In this paper we will prove several related results. In section 2 we will prove a
theorem that takes into account arithmetic information from the modulus q to give
a better upper bound for some ranges of N :

Theorem 1. Let � be a primitive character to the modulus q > 1, let M,N be real
numbers with 0 < N  q and let m be a divisor of q such that 1  m  q

N . Then������
X

MnM+2N

�(n)
✓

1�
����n�M

N
� 1
����
◆������ 

�(m)
m

p
q.

We also prove the following theorem which expands the range of N and will be
crucial to extend the inequality to imprimitive characters.

Theorem 2. Let � be a primitive character to the modulus q > 1 and let M,N be
real numbers with N > 0. Then,������

X
MnM+2N

�(n)
✓

1�
����n�M

N
� 1
����
◆������ 

q3/2

N

⇢
N

q

�✓
1�

⇢
N

q

�◆
. (1)
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In particular, |S⇤�(M,N)| <
p

q.

Remark 1. The theorem was stated without proof as Corollary 3 in [2]. Also note

that if 0 < N < q, then
⇢

N

q

�
=

N

q
and therefore Theorem A follows from Theorem

2.

With Theorem 2, we are able to extend the smoothed Pólya–Vinogradov inequal-
ity for imprimitive characters, namely we prove

Theorem 3. Let � be a non-principal Dirichlet character to the modulus q > 1 and
let M,N be real numbers with N > 0. Then,������

X
MnM+2N

�(n)
✓

1�
����n�M

N
� 1
����
◆������ <

4p
6
p

q.

One of the remarkable things involving the smoothed Pólya–Vinogradov inequal-
ity is that it is not very hard to prove and it is a tight inequality, since one can
show that there exist M and N such that

��S⇤�(M,N)
�� > c

p
q for some positive

constant c and some character � mod q. Indeed, in section 3 we will prove that��S⇤�(M,N)
�� > 2

⇡2
p

q. The proof was motivated by the proof of Theorem 9.23 in [4].
Finally, in the last section, we show a table computing S⇤�(M,N) for many moduli.

2. Upper Bound and Corollaries

We begin by recreating the proof of Theorem A. We do so because the proofs of
Theorem 1 and Theorem 2 branch out from this proof.

Proof of Theorem A. We follow the proof in [2]. Let

H(t) = max{0, 1� |t|}.

We wish to estimate |S⇤�(M,N)|.
Using the identity (see Corollary 9.8 in [4])

�(n) =
1

⌧(�̄)

qX
j=1

�̄(j)e(nj/q),

where e(x) := e2⇡ix and ⌧(�) is the Gauss sum
qX

a=1

�(a)e(a/q) , we can deduce

S⇤�(M,N) =
1

⌧(�̄)

qX
j=1

�̄(j)
X
n2Z

e(nj/q)H
✓

n�M

N
� 1
◆

.
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The Fourier transform (see Appendix D in [4]) of H is

bH(s) =
Z 1

�1
H(t)e(�st)dt =

1� cos 2⇡s

2⇡2s2
when s 6= 0, bH(0) = 1.

Therefore bH(s) is nonnegative for s real. In general, if

f(t) = e(↵t)H(�t + �), (2)

with � > 0, then
bf(s) =

1
�

e

✓
s� ↵

�
�

◆ bH
✓

s� ↵

�

◆
. (3)

Using ↵ = j/q, � = 1/N and � = �M/N � 1, then by Poisson summation (see
Appendix D in [4]) we get

S⇤�(M,N) =
N

⌧(�̄)

qX
j=1

�̄(j)
X
n2Z

e

✓
�(M + N)

✓
n� j

q

◆◆ bH
✓✓

s� j

q

◆
N

◆
. (4)

Using that �(q) = 0, that bH is nonnegative and that |⌧(�̄)| = pq for primitive
characters, we have

��S⇤�(M,N)
��  N

p
q

q�1X
j=1

X
n2Z

bH
✓✓

n� j

q

◆
N

◆
=

N
p

q

X
k2Z/qZ

bH
✓

kN

q

◆
.

Therefore

��S⇤�(M,N)
��  N

p
q

 X
k2Z

bH
✓

kN

q

◆
�
X
k2Z

bH(kN)

!

=
p

q

 X
k2Z

N

q
bH
✓

kN

q

◆
� N

q

X
k2Z

bH(kN)

!

 pq

 X
k2Z

N

q
bH
✓

kN

q

◆
� N

q
bH(0)

!
.

Using ↵ = � = 0 and � = q
N in (2) and (3) yields that the Fourier transform of

H
� qt

N

�
is

1
�

e

✓
s� 0

�
· (0)

◆ bH
✓

s� 0
�

◆
=

N

q
bH
✓

sN

q

◆
.

Therefore, by Poisson summation, we have
��S⇤�(M,N)

��  pq
X
l2Z

H

✓
ql

N

◆
� N
p

q
=
p

qH(0)� N
p

q
=
p

q � N
p

q
. (5)

We used that q � N which implies that for l 6= 0 and l 2 Z,
��� ql
N

��� � �� q
N

�� � 1 which

implies H
⇣

ql
N

⌘
= 0.
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Proof of Theorem 1. Following the proof of the previous theorem, we arrive at (4).
From there, using that if (n,m) > 1 then �(n) = 0, that bH is nonnegative, and that
|⌧(�̄)| = pq for primitive characters, we have

��S⇤�(M,N)
��  N

p
q

qX
j=1

(j,m)=1

X
n2Z

bH
✓✓

n� j

q

◆
N

◆
=

N
p

q

X
k2Z

(k,m)=1

bH
✓

kN

q

◆
. (6)

Using inclusion-exclusion we get

��S⇤�(M,N)
��  N

p
q

X
d|m

µ(d)
X
k2Z

bH
✓

kdN

q

◆
=
p

q
X
d|m

µ(d)
d

X
k2Z

dN

q
bH
✓

kdN

q

◆
.

Since the Fourier transform of H
� qt

Nd

�
is dN

q
bH ⇣

sdN
q

⌘
, by Poisson summation

��S⇤�(M,N)
��  pq

X
d|m

µ(d)
d

X
l2Z

H

✓
ql

Nd

◆
=
p

q
X
d|m

µ(d)
d

H(0) =
�(m)

m

p
q.

We used that q � mN which implies that for l 6= 0 and l 2 Z,
��� ql
Nd

��� � �� q
Nm

�� � 1,

and hence H
⇣

ql
Nd

⌘
= 0.

Proof of Theorem 2. In the proof of Theorem A, we only used that N  q in the
last inequality of (5). Therefore, from (5), we have

|S⇤�(M,N)|  pq

 X
l2Z

H

✓
ql

N

◆
� N

q

!
.

To get the desired result we need only prove

X
l2Z

H

✓
ql

N

◆
 N

q
+

q

N

⇢
N

q

�✓
1�

⇢
N

q

�◆
.

Note that H
⇣

ql
N

⌘
= 0 for |l| > N

q . Also H
⇣

ql
N

⌘
= H

⇣
�ql
N

⌘
. Using these two

facts together with H(0) = 1, we get

X
l2Z

H

✓
ql

N

◆
= 1 + 2

X
lN

q

H

✓
ql

N

◆
= 1 + 2

X
lN

q

✓
1� ql

N

◆
.

Therefore
X
l2Z

H

✓
ql

N

◆
= 1 + 2

�
N

q

⌫
� 2q

N

X
lN

q

l = 1 + 2
�

N

q

⌫
� q

N

✓�
N

q

⌫◆✓�
N

q

⌫
+ 1
◆

.
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Letting ✓ = N
q and using that N

q =
j

N
q

k
+ ✓, we get

X
l2Z

H

✓
ql

N

◆
= 1 +

2N
q
� 2✓ � q

N

✓
N2

q2
+

N

q
(1� 2✓)� ✓(1� ✓)

◆

=
2N
q

+ 1� 2✓ � N

q
� (1� 2✓) +

q

N
✓(1� ✓) =

N

q
+

q

N
✓(1� ✓).

Therefore (1) is true. Once we have (1), we can conclude that
|S⇤�(M,N)| <

p
q. Indeed, if N < q, then

S⇤�(M,N)  q3/2

N

⇢
N

q

�✓
1�

⇢
N

q

�◆
=
p

q � N
p

q
<
p

q;

and if N � q, we have

S⇤�(M,N)  q3/2

N

⇢
N

q

�✓
1�

⇢
N

q

�◆
 q3/2

4N

p

q

4
<
p

q.

We finish the section with the proof of Theorem 3 :

Proof of Theorem 3. In this proof, we follow the ideas used in [4] (page 307) to
extend the Pólya–Vinogradov inequality from primitive characters to general char-
acters.

Let � be induced by a primitive character �⇤ of modulus d > 1. This is possible
since � is non-principal. In the case that � is primitive, then �⇤ = �. Letting �0

be the principal character mod q, we have that � = �⇤�0. Therefore �(n) = �⇤(n)
for n an integer coprime to q, and �(n) = 0 otherwise.

Let r be the product of primes that divide q but not d. Then when (n, r) > 1,
we have �(n) = 0. If (n, r) = 1, then �(n) = �⇤(n). Therefore
M+2NX
n=M

�(n)
✓

1�
����n�M

N
� 1
����
◆

=
X

MnM+2N
(n,r)=1

�⇤(n)
✓

1�
����n�M

N
� 1
����
◆

=
X

MnM+2N

�⇤(n)
✓

1�
����n�M

N
� 1
����
◆ X

k|(n,r)

µ(k)

=
X
k|r

µ(k)
X

MnM+2N
k|n

�⇤(n)
✓

1�
����n�M

N
� 1
����
◆

.

Now, writing n = km and using that �⇤ is totally multiplicative, we get

X
k|r

µ(k)�⇤(k)
X

M
k mM+2N

k

�⇤(m)

 
1�

�����
m� M

k
N
k

� 1

�����
!

=
X
k|r

µ(k)�⇤(k)S�⇤

✓
M

k
,
N

k

◆
.
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By Theorem 2, |S�⇤(M/k,N/k)| <
p

d. Hence, taking absolute value, we have

|S⇤�(M,N)| <
X
k|r

p
d = 2!(r)

p
d  2!(r)

r
q

r
. (7)

Since 2!(r) is a multiplicative function, and for p � 5, 2 <
p

p, we have

2!(r)

p
r

=
Y
p|r

2
p

p
 2p

2
⇥ 2p

3
=

4p
6
. (8)

Combining (7) with (8) yields the desired result.

3. Lower Bound

Theorem 4. Let � be a primitive character to the modulus q > 1 and let M,N be
positive integers. Then

S2(N) := max
1Mq

�����
M+2NX
n=M

�(n)
✓

1�
����n�M

N
� 1
����
◆����� �

1
N
p

q

⇣
sin ⇡N

q

⌘2

⇣
sin ⇡

q

⌘2 . (9)

Proof. Let

S3(N) :=
qX

M=1

e

✓
M

q

◆M+2NX
n=M

�(n)
✓

1�
����n�M

N
� 1
����
◆

,

and note that

|S3(N)| 
qX

M=1

�����
M+2NX
n=M

�(n)
✓

1�
����n�M

N
� 1
����
◆�����

 q max
1Mq

�����
M+2NX
n=M

�(n)
✓

1�
����n�M

N
� 1
����
◆����� = qS2(N).

Therefore we can focus on S3(N):

S3(N) =
qX

M=1

e

✓
M

q

◆M+2NX
n=M

�(n)
✓

1�
����n�M

N
� 1
����
◆

=
2NX
n=0

qX
M=1

e

✓
M

q

◆
�(n + M)

⇣
1�

��� n
N
� 1
���⌘ .
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Now we can do a change of variable, to go from M to L� n:

S3(N) =
2NX
n=0

qX
L=1

e

✓
L� n

q

◆
�(L)

⇣
1�

��� n
N
� 1
���⌘

=
2NX
n=0

e

✓
�n

q

◆⇣
1�

��� n
N
� 1
���⌘

qX
L=1

e

✓
L

q

◆
�(L).

Therefore,

S3(N) = ⌧(�)
2NX
n=0

e

✓
�n

q

◆⇣
1�

��� n
N
� 1
���⌘ = ⌧(�)S4(N).

Now it’s time to work on S4(N):

S4(N) =
2NX
n=0

e

✓
�n

q

◆⇣
1�

��� n
N
� 1
���⌘ =

NX
n=0

e

✓
�n

q

◆
n

N
+

2nX
n=N+1

e

✓
�n

q

◆⇣
2� n

N

⌘
.

By making the change of variable m = 2N � n, we get

S4(N) =
1
N

NX
n=0

e

✓
�n

q

◆
n +

e
⇣
�2N

q

⌘
N

N�1X
m=0

e

✓
m

q

◆
m.

Using the identity
NX

n=0

nxn = x
NxN+1 � (N + 1)xN + 1

(x� 1)2
=

NxN+1 � (N + 1)xN + 1
(x1/2 � x�1/2)2

,

with x = e(↵) and ↵ = �1
q , we get

S4(N) =
1
N

Ne ((N + 1)↵)� (N + 1)e (N↵) + 1�
e
�

↵
2

�
� e

�
�↵

2

��2
+

e (2N↵)
N

(N � 1)e (�N↵)�Ne (�(N � 1)↵) + 1�
e
�
�↵

2

�
� e

�
↵
2

��2 .

Therefore, by taking common denominator and multiplying out, we get that
S4(N) equals

Ne ((N + 1)↵)� (N + 1)e (N↵) + 1 + (N � 1)e(N↵)�Ne((N + 1)↵) + e(2N↵)

N
�
e
�

↵
2

�
� e

�
�↵

2

��2 ,

which equals

e(2N↵)� 2e(N↵) + 1

N
�
e
�

↵
2

�
� e

�
�↵

2

��2 =
e(N↵)

N

�
e
�

N↵
2

�
� e

�
�N↵

2

��2
�
e
�

↵
2

�
� e

�
�↵

2

��2 =
e(N↵)

N

(sinN⇡↵)2

(sin⇡↵)2
.

(10)
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From earlier we know, qS2(N) � |S3(N)| = |⌧(�)||S4(N)|. Using |⌧(�)| = p
q,

that |e(x)| = 1 and (10) yields the theorem.

Now we are ready to prove our main lower bound result.

Corollary 1. Let � be a primitive character to the modulus q > 1 and let M,N be
positive integers. Then

max
M,N

�����
M+2NX
n=M

�(n)
✓

1�
����n�M

N
� 1
����
◆����� �

2
⇡2

p
q.

Proof. If q is even, let N = q
2 . Therefore (9) becomes

S2(N) � 1
N
p

q

⇣
sin ⇡N

q

⌘2

⇣
sin ⇡

q

⌘2 =
2

q
p

q

1⇣
sin ⇡

q

⌘2 �
2
⇡2

p
q.

The last inequality comes from 1
sin x �

1
x .

If q is odd, let N = q�1
2 . Then

S2(N) � 1
N
p

q

⇣
sin ⇡N

q

⌘2

⇣
sin ⇡

q

⌘2 =
2

(q � 1)pq

⇣
cos ⇡

2q

⌘2

⇣
sin ⇡

q

⌘2 .

From this and sin ⇡
q = 2 sin ⇡

2q cos ⇡
2q , we get

S2(N) � 2
4(q � 1)pq

1⇣
sin ⇡

2q

⌘2 �
2
⇡2

q

q � 1
p

q >
2
⇡2

p
q.

Remark 2. If we consider N = q
3 for 3 | q, N = q�1

3 for q ⌘ 1 (mod 3) and N =
q�2
3 for q ⌘ 2 (mod 3), then we can improve the constant from 2

⇡2 ⇡ 0.202642 to
9

4⇡2 ⇡ 0.227973. With N around 2q
5 the constant improves a bit more to 5(5+

p
5)

16⇡2 ⇡
0.229115. The optimal value for N under this technique is around N = .371q where
the constant is approximately 0.230651.

4. Numerics

Let � be a Dirichlet character mod q and let

F (�) = max
M,2N2Z

��S⇤�(M,N)
��

p
q

.



INTEGERS: 15 (2015) 10

Note that F (�) exists because |S�(M,N)|/pq is a bounded continuous function,
periodic in M and going to 0 as N !1 (by Theorem 2). In the previous sections
we gave upper and lower bounds for F (�). Indeed
2

⇡2  F (�) < 1. Now, let
G(q) = max

�
F (�),

and
H(q) = min

�
F (�),

where the max and the min range over primitive characters mod q. By writing a
program in Java we created Table 1 (below) giving values for G(q) and H(q) which
show that there’s room for improvement in the upper and lower bounds, for example
it seems 2

5 < F (q) < 4
5 . The reason a program could be written to find G(q) and

H(q) even though M and N range through all integers is that the periodicity of
� mod q allows us to restrict ourselves to 0  M < q and M  2N < M + q with
M, 2N 2 N.
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q G(q) H(q) q G(q) H(q) q G(q) H(q)
3 0.577 0.577 63 0.610 0.481 123 0.627 0.473
4 0.500 0.500 64 0.481 0.449 124 0.488 0.448
5 0.596 0.500 65 0.624 0.478 125 0.697 0.471
7 0.567 0.500 67 0.678 0.470 127 0.709 0.464
8 0.471 0.471 68 0.480 0.448 128 0.484 0.453
9 0.533 0.509 69 0.638 0.474 129 0.647 0.485
11 0.603 0.484 71 0.681 0.472 131 0.708 0.474
12 0.462 0.462 72 0.466 0.463 132 0.470 0.455
13 0.666 0.474 73 0.720 0.475 133 0.694 0.465
15 0.516 0.506 75 0.607 0.465 135 0.615 0.471
16 0.452 0.452 76 0.487 0.450 136 0.488 0.456
17 0.610 0.493 77 0.676 0.483 137 0.711 0.471
19 0.622 0.489 79 0.683 0.475 139 0.704 0.478
20 0.461 0.447 80 0.481 0.463 140 0.480 0.458
21 0.635 0.495 81 0.634 0.470 141 0.645 0.472
23 0.615 0.480 83 0.684 0.469 143 0.706 0.472
24 0.467 0.467 84 0.470 0.461 144 0.474 0.455
25 0.628 0.493 85 0.701 0.479 145 0.747 0.472
27 0.615 0.473 87 0.611 0.480 147 0.620 0.466
28 0.481 0.460 88 0.487 0.451 148 0.488 0.451
29 0.640 0.484 89 0.689 0.470 149 0.690 0.471
31 0.654 0.485 91 0.656 0.479 151 0.717 0.474
32 0.476 0.472 92 0.483 0.448 152 0.485 0.451
33 0.604 0.476 93 0.621 0.465 153 0.629 0.469
35 0.653 0.486 95 0.669 0.482 155 0.701 0.468
36 0.470 0.459 96 0.474 0.460 156 0.483 0.454
37 0.701 0.473 97 0.718 0.468 157 0.703 0.464
39 0.604 0.490 99 0.630 0.480 159 0.636 0.466
40 0.484 0.459 100 0.484 0.452 160 0.478 0.451
41 0.652 0.479 101 0.685 0.480 161 0.715 0.476
43 0.655 0.487 103 0.688 0.466 163 0.724 0.465
44 0.482 0.455 104 0.485 0.452 164 0.483 0.448
45 0.603 0.479 105 0.619 0.478 165 0.623 0.479
47 0.669 0.474 107 0.696 0.476 167 0.698 0.475
48 0.473 0.473 108 0.473 0.458 168 0.468 0.462
49 0.675 0.474 109 0.716 0.473 169 0.715 0.466
51 0.588 0.481 111 0.630 0.472 171 0.636 0.472
52 0.479 0.457 112 0.482 0.456 172 0.487 0.449
53 0.639 0.466 113 0.697 0.474 173 0.711 0.460
55 0.644 0.487 115 0.688 0.470 175 0.691 0.466
56 0.478 0.467 116 0.486 0.449 176 0.484 0.452
57 0.626 0.482 117 0.624 0.478 177 0.636 0.466
59 0.672 0.477 119 0.692 0.471 179 0.721 0.466
60 0.471 0.463 120 0.476 0.464 180 0.472 0.455
61 0.694 0.486 121 0.690 0.475 181 0.714 0.466

Table 1: A table showing the max and min of G(q) and H(q) for all moduli q 
181 that have primitive characters. It is worth noting that the reason the moduli
divisible by 4 has such a small G(q) is Theorem 1.


