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Abstract

Let x be a primitive Dirichlet character to the modulus q. Let Sy (M,N) =
> men<n X(n). The Pélya-Vinogradov inequality states that |.Sy (M, N)| <,/qlogq.
The smoothed Pélya—Vinogradov inequality, recently introduced by Levin, Pomer-
ance and Soundararajan, is a numerically useful version of the Pdlya—Vinogradov
inequality that saves a log g factor. The smoothed Pélya—Vinogradov inequality has
been used to settle a conjecture of Brizolis, namely that for every prime p > 3, there
is a primitive root g and an integer x € [1,p — 1] such that ¢ = x mod p. It has
also been used to improve the best known numerically explicit upper bound on the
least inert prime in a real quadratic field. In this paper we will prove a smoothed
Pélya—Vinogradov inequality which takes into account the arithmetic properties of
the modulus and we extend the inequality to imprimitive characters. We also find
a lower bound for the inequality.

1. Introduction

Let x be a non-principal Dirichlet character to the modulus ¢. It has been the
M+N

> x(n)

n=M+1
independently proved in 1918 that the sum is bounded above by O(,/qlogq). As-

suming the Riemann Hypothesis for L-functions (GRH), Montgomery and Vaughan
[3] showed that the sum is bounded by O(,/qloglogq). This is best possible (up to a
constant), because in 1932 Paley [5] proved that there are infinitely many quadratic
characters y such that there exists a constant ¢ > 0 that satisfy for some N the

interest of mathematicians to study the sum . Pélya and Vinogradov
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N

> x(n)

n=1

inequality > cy/qloglogg.

Recently, in [2], Levin, Pomerance and Soundararajan considered a “smoothed”
version of the Pdlya—Vinogradov inequality. Instead of considering the character
sum over an interval, they consider the following weighted sum

SMN) = Y X(n)(l— ”;VM—1D.

M<n<M+2N
Theorem A. Let x be a primitive Dirichlet character to the modulus ¢ > 1 and let
M, N be real numbers with 0 < N < q. Then

The theorem they prove is the following:

n—M

SN =] Y me—

M<n<M+2N

- 1D <vi- ¥
NG

Levin, Pomerance and Soundararajan used the inequality to prove that for every
prime p > 3, there is a primitive root g and an integer = € [1,p — 1] such that
g® = x mod p, i.e., that the discrete logarithm base g has a fixed point. The
second author (see [6]) used the smoothed Pélya—Vinogradov inequality to improve
an upper bound for the least inert prime in a real quadratic field. The inequality is
not new, as it was used by Hua in [1] to improve a bound on the least primitive root
mod p. However, while Hua presented his paper as an introduction of a method
with numerous applications, we didn’t find other papers that used this technique.
Hopefully this paper will help bring this useful method to the spotlight it deserves.

In this paper we will prove several related results. In section 2 we will prove a
theorem that takes into account arithmetic information from the modulus g to give
a better upper bound for some ranges of N:

Theorem 1. Let x be a primitive character to the modulus ¢ > 1, let M, N be real
numbers with 0 < N < q and let m be a divisor of q such that 1 <m < F. Then

> i-

M<n<M+2N

NG

e/

m
We also prove the following theorem which expands the range of N and will be
crucial to extend the inequality to imprimitive characters.

Theorem 2. Let x be a primitive character to the modulus ¢ > 1 and let M, N be

real numbers with N > 0. Then,
_ M 3/2 N N
ec | | P A O D D)
N N ¢ q

> ami-

M<n<M+2N
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In particular, |Sy (M, N)| < \/q.
Remark 1. The theorem was stated without proof as Corollary 3 in [2]. Also note

N N

that if 0 < N < ¢, then {—} = — and therefore Theorem A follows from Theorem
q q

2.

With Theorem 2, we are able to extend the smoothed Pélya—Vinogradov inequal-
ity for imprimitive characters, namely we prove

Theorem 3. Let x be a non-principal Dirichlet character to the modulus ¢ > 1 and
let M, N be real numbers with N > 0. Then,

> i-

M<n<M+2N

n—M

N ‘ID v

One of the remarkable things involving the smoothed Pélya—Vinogradov inequal-
ity is that it is not very hard to prove and it is a tight inequality, since one can
show that there exist M and N such that ‘S;(M N )’ > ¢,/q for some positive
constant ¢ and some character y mod ¢. Indeed, in section 3 we will prove that
|S;2(M7 N)| > Z./g. The proof was motivated by the proof of Theorem 9.23 in [4].
Finally, in the last section, we show a table computing S;(M , N) for many moduli.

2. Upper Bound and Corollaries

We begin by recreating the proof of Theorem A. We do so because the proofs of
Theorem 1 and Theorem 2 branch out from this proof.

Proof of Theorem A. We follow the proof in [2]. Let
H(t) = max{0,1 — [t|}.

We wish to estimate |Sy (M, N)|.
Using the identity (see Corollary 9.8 in [4])

= LZ Je(nj/q),

0 &

where e(z) 1= *™® and 7(x) is the Gauss sum Z x(a)e(a/q) , we can deduce

a=1

S N) = = > x() S elmnifa)H (S 1))

00 ="
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The Fourier transform (see Appendix D in [4]) of H is

N o 1 — cos?2 N
H(s) = /700 H(t)e(—st)dt = # when s # 0, H(0) = 1.

Therefore H (s) is nonnegative for s real. In general, if

f(t) = e(at) H(Bt + ), (2)

- (57 8(557)

Using a = j/q, § = 1/N and v = —M /N — 1, then by Poisson summation (see
Appendix D in [4]) we get

SE(M,N) = %ix(j)Ze (-(M+N) (n— Z)) i <<3_ Z) N) L@

j=1 nez q q

with # > 0, then

Using that x(¢q) = 0, that H is nonnegative and that |r()| = /¢ for primitive
characters, we have

st <SS )0) -5 $a(%)

kEZ/qZ
Therefore

k€EZ
N ~ (kN N ~
=V <2 S ZEZHW))
N ~ (kN N ~
< —H|— ) - —H(0)
a(xia(t)-Yao)

Using o« =y =0 and 3 = & in (2) and (3) yields that the Fourier transform of

H (£) is
(5 w)a(5) =5 ()

Therefore, by Poisson summation, we have

oL <vay H(§) - S =vano - S =vi- 2 6

IEZ

We used that ¢ > N which implies that for [ # 0 and [ € Z, ‘qﬁl
implies H (%) =0.

Y2
=
(Y4
v
=
=N
o
=
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Proof of Theorem 1. Following the proof of the previous theorem, we arrive at (4).
From there, using that if (n,m) > 1 then x(n) = 0, that H is nonnegative, and that
|7(X)| = \/q for primitive characters, we have

sonml< S Sa((n-2)n) -2 a(R). o
n—= = —
j=1 nez q Vi kez q
(j m)=1 (kym)=1
Using inclusion-exclusion we get

S0 < 22 STty Y0 () - Ay M S ()

dlm kEZ d|m keZ

Since the Fourier transform of H (ﬁ) is dN H (SdN ) by Poisson summation

Si(M,N)| < \/ZJZ@ZH (]‘V{_ld> = \/512@}[(0) _ @\@
dlm d|m

lez

l
= ¥l = 1,
and hence H (ﬁ,—ld> =0. O

Proof of Theorem 2. In the proof of Theorem A, we only used that N < ¢ in the
last inequality of (5). Therefore, from (5), we have

: ay_N
SE(M.N)| < Ve <le (%)-3 ) .

To get the desired result we need only prove

sa() < T -0

Note that H (qﬁl) =0 for |I| > %. Also H (qﬁ) =H (Tq) Using these two
facts together with H(0) = 1, we get

Su(8)-rga(f) - en (-3)

lez

Therefore
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Letting 0 = % and using that % = {%J + 6, we get

ql 2N q (N> N
(L) =1+ —o9— L (2 4+ Z(1-20)—0(1 -
> <N> 2 N<q2+q( 0) — 6( 9)>
leZ
2N N q N ¢
120 — —(1-20)+ 0(1—60) = — + =6(1—9).
. . ( )+ 01— . v =9

Therefore (1) is true. Once we have (1), we can conclude that
|S5 (M, N)| < /q. Indeed, if N < g, then

o= 5 20 (2)) - -y
< Vi

and if N > ¢, we have

<
q
3/2 (N N 3/2
. q q q
<z ! - — < — .
SX(M,N)N{q}(l {q}>4N4<¢a

We finish the section with the proof of Theorem 3 :

Proof of Theorem 3. In this proof, we follow the ideas used in [4] (page 307) to
extend the Pdlya—Vinogradov inequality from primitive characters to general char-
acters.

Let x be induced by a primitive character x* of modulus d > 1. This is possible
since x is non-principal. In the case that y is primitive, then x* = x. Letting xq
be the principal character mod ¢, we have that x = x*xo. Therefore x(n) = x*(n)
for n an integer coprime to ¢, and x(n) = 0 otherwise.

Let r be the product of primes that divide ¢ but not d. Then when (n,r) > 1,
we have x(n) =0. If (n,r) =1, then x(n) = x*(n). Therefore

M+2N
n—M . n—M
(), 5 v )
n=M M<n<M+2N
(n,r)=1
" n—M
- o= —1\)2;@)
M<n<M+2N k|(n,r)
. n—M
WIS SEROI =)}
k|r MSnS\M—i—?N
kin

Now, writing n = km and using that x* is totally multiplicative, we get

m— M
Sukpc) Y X m) (1—| — —1>:Zu(/€)x*(k)5x* (57)
k

k|r %Smgw k|r
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By Theorem 2, |Sy-(M/k, N/k)| < V/d. Hence, taking absolute value, we have

S0 < 3 VA= 20V < 20, 1 @

k|r
Since 2¢(") is a multiplicative function, and for p > 5, 2 < /D, we have

w(r) 2 2 2 4
UG5 E"% )

Combining (7) with (8) yields the desired result. O

3. Lower Bound

Theorem 4. Let x be a primitive character to the modulus ¢ > 1 and let M, N be
positive integers. Then

2
M+2N TN
n M 1 (Sln q )
Sa(N) = max ;JX(”) (1— N D‘_N—\/(_l ( ﬂ>2 9)
- sin
Proof. Let
q M+42N
M n—M
S3(N) = Ze(—) > x(m) (1— —1D,
M=1 q n=M
and note that
q M+2N n M
sl 3| 3 o (1-]% 4M
M=1| n=M
M+2N
n—M
<gq max x(n) <1— —1D‘ = ¢S (N)
n=M
Therefore we can focus on S3(N):
q M+2N
M n—M
- (2 E o152
M=1 n=M
2N q
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Now we can do a change of variable, to go from M to L —n:

$00 =33 (57w (1[5 1)

=i
L) D (e
Therefore,
Ss(N) T(X)nf%e (Z) (1= % = 1) = r0ss).

Now it’s time to work on Sy(N):

<l n n o n\ n 2 n n
S4() :;‘f(‘g) (-7 =2 (‘g) Nt 2 e(‘g) (2- %)
By making the change of variable m = 2N — n, we get
1N e —2N) N-1
5= 23 e (1) + %;e(g)m.

Using the identity

inm" B xNzN“ —(N+1zV+1 N2V — (N + 1)V +1
~ - (m _ 1)2 - (a:l/Q _ x—1/2)2 ’

with z = e(a) and o = f%, we get

1 Ne((N+1a)—(N+1e(Na)+1
N (e(5)—e(=%)
e(2Na) (N —1)e(—Na) — Ne(—(N — D) +1
5 .
N (e(=%)—e(%))
Therefore, by taking common denominator and multiplying out, we get that
S4(N) equals

Ne((N+1)a) — (N+1)e(Na)+ 1+ (N —1)e(Na) — Ne((N +1)a) + e(2Na)

Si(N) =

)

which equals

e(2Na) —2¢(Na) +1  e(Na) (e(H2) —e (—%))2 _e(Na) (siana)Q.
N e

(5)-e(-5)" N (nm)’
(10)
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From earlier we know, gS2(N) > |S5(N)| = [r(0lISt(V)]. Using r(0)] = va
that |e(x)| = 1 and (10) yields the theorem. O

Now we are ready to prove our main lower bound result.

Corollary 1. Let x be a primitive character to the modulus ¢ > 1 and let M, N be
positive integers. Then

i o (1P )2 B

max
M,N
=M
Proof. If q is even, let N = Z. Therefore (9) becomes
e
1 (Suli—) 2 1 2
So(N) > —n 12— 2~ _>Z /4

Nva (sing)2 a4 (sin 5)2 oo

The last inequality comes from —— > .
If ¢ is odd, let N = 4. Then

1 > 1

Sa(N) > = 5
Nva (sm q) (a—1)va (sin %)
From this and sin % = 2sin o= cos qu, we get

2q

2 L 2.4

2
—Va

™

SQ(N) >

z 4((1—1)\/6 (sinl>2 1\/§>

2q—

O

Remark 2. If we consider N = £ for 3| ¢, N = % for g =1 (mod 3) and N =
% for ¢ = 2 (mod 3), then we can improve the constant from % ~ 0.202642 to
— ~ 0.227973. With N around I the constant improves a bit more to 5(%;‘5) =
0 229115 The optimal value for N under this technique is around N = .371q where

the constant is approximately 0.230651.

4. Numerics
Let x be a Dirichlet character mod ¢ and let

SE(M,N
F(x) = max M
M2N€Z Va
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Note that F'(x) exists because |S, (M, N)|/\/q is a bounded continuous function,
periodic in M and going to 0 as N — oo (by Theorem 2). In the previous sections
we gave upper and lower bounds for F(x). Indeed

2 < F(x) < 1. Now, let

Gq) = max F(x),

and

H(q) = min F(x)

where the max and the min range over primitive characters mod q. By writing a
program in Java we created Table 1 (below) giving values for G(q) and H(g) which
show that there’s room for improvement in the upper and lower bounds, for example
it seems 2 < F(q) < 2. The reason a program could be written to find G(g) and
H(q) even though M and N range through all integers is that the periodicity of
x mod q allows us to restrict ourselves to 0 < M < g and M < 2N < M + q with
M,2N € N.
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q | G(a) | H(a) | 9 | G(a) | H(a) | a | G(a) | H(q)
3 [ 0.577 | 0.577 | 63 | 0.610 | 0.481 | 123 | 0.627 | 0.473
4 [0.500 | 0.500 | 64 | 0.481 | 0.449 | 124 | 0.488 | 0.448
5
7
8

0.596 | 0.500 | 65 | 0.624 | 0.478 | 125 | 0.697 | 0.471
0.567 | 0.500 | 67 | 0.678 | 0.470 | 127 | 0.709 | 0.464
0.471 | 0.471 | 68 | 0.480 | 0.448 | 128 | 0.484 | 0.453
9 | 0533|0509 | 69 | 0.638 | 0.474 | 129 | 0.647 | 0.485
11 | 0.603 | 0.484 | 71 | 0.681 | 0.472 | 131 | 0.708 | 0.474
12 | 0.462 | 0.462 | 72 | 0.466 | 0.463 | 132 | 0.470 | 0.455
13 | 0.666 | 0.474 | 73 | 0.720 | 0.475 | 133 | 0.694 | 0.465
15| 0.516 | 0.506 | 75 | 0.607 | 0.465 | 135 | 0.615 | 0.471
16 | 0.452 | 0.452 | 76 | 0.487 | 0.450 | 136 | 0.488 | 0.456
17 | 0.610 | 0.493 | 77 | 0.676 | 0.483 | 137 | 0.711 | 0.471
191 0.622 | 0.489 | 79 | 0.683 | 0.475 | 139 | 0.704 | 0.478
20 | 0.461 | 0.447 | 80 | 0.481 | 0.463 | 140 | 0.480 | 0.458
21 | 0.635 | 0.495 | 81 | 0.634 | 0.470 | 141 | 0.645 | 0.472
23 | 0.615 | 0.480 | 83 | 0.684 | 0.469 | 143 | 0.706 | 0.472
24 | 0.467 | 0.467 | 84 | 0.470 | 0.461 | 144 | 0.474 | 0.455
251 0.628 | 0.493 | 85 | 0.701 | 0.479 | 145 | 0.747 | 0.472
27 1 0.615 | 0.473 | 87 | 0.611 | 0.480 | 147 | 0.620 | 0.466
28 | 0.481 | 0.460 | 88 | 0.487 | 0.451 | 148 | 0.488 | 0.451
29 | 0.640 | 0.484 | 89 | 0.689 | 0.470 | 149 | 0.690 | 0.471
311 0.654 | 0.485 | 91 | 0.656 | 0.479 | 151 | 0.717 | 0.474
321 0476 | 0.472 | 92 | 0.483 | 0.448 | 152 | 0.485 | 0.451
33 |1 0.604 | 0.476 | 93 | 0.621 | 0.465 | 153 | 0.629 | 0.469
351 0.653 | 0.486 | 95 | 0.669 | 0.482 | 155 | 0.701 | 0.468
36 | 0.470 | 0.459 | 96 | 0.474 | 0.460 | 156 | 0.483 | 0.454
371 0.701 | 0.473 | 97 | 0.718 | 0.468 | 157 | 0.703 | 0.464
39 | 0.604 | 0.490 | 99 | 0.630 | 0.480 | 159 | 0.636 | 0.466
40 | 0.484 | 0.459 | 100 | 0.484 | 0.452 | 160 | 0.478 | 0.451
41 | 0.652 | 0.479 | 101 | 0.685 | 0.480 | 161 | 0.715 | 0.476
43 | 0.655 | 0.487 | 103 | 0.688 | 0.466 | 163 | 0.724 | 0.465
44 | 0.482 | 0.455 | 104 | 0.485 | 0.452 | 164 | 0.483 | 0.448
451 0.603 | 0.479 | 105 | 0.619 | 0.478 | 165 | 0.623 | 0.479
47 | 0.669 | 0.474 | 107 | 0.696 | 0.476 | 167 | 0.698 | 0.475
48 1 0473 | 0.473 | 108 | 0.473 | 0.458 | 168 | 0.468 | 0.462
49 | 0.675 | 0.474 | 109 | 0.716 | 0.473 | 169 | 0.715 | 0.466
51 | 0.588 | 0.481 | 111 | 0.630 | 0.472 | 171 | 0.636 | 0.472
52 | 0.479 | 0.457 | 112 | 0.482 | 0.456 | 172 | 0.487 | 0.449
53 | 0.639 | 0.466 | 113 | 0.697 | 0.474 | 173 | 0.711 | 0.460
55 | 0.644 | 0.487 | 115 | 0.688 | 0.470 | 175 | 0.691 | 0.466
56 | 0.478 | 0.467 | 116 | 0.486 | 0.449 | 176 | 0.484 | 0.452
57 1 0.626 | 0.482 | 117 | 0.624 | 0.478 | 177 | 0.636 | 0.466
59 | 0.672 | 0.477 | 119 | 0.692 | 0.471 | 179 | 0.721 | 0.466
60 | 0.471 | 0.463 | 120 | 0.476 | 0.464 | 180 | 0.472 | 0.455
61 | 0.694 | 0.486 | 121 | 0.690 | 0.475 | 181 | 0.714 | 0.466

Table 1: A table showing the max and min of G(q) and H(q) for all moduli ¢ <
181 that have primitive characters. It is worth noting that the reason the moduli
divisible by 4 has such a small G(q) is Theorem 1.



