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Abstract
We show that for every 2-coloring of N and every k£ € N, there are infinitely many
monochromatic solutions of the system of k? equations 25 = xi” ,1<14,7 <k, where
T1,..-,Tk,Y1,---,Yr are distinct positive integers greater than 1. We give similar,
but somewhat weaker, results for more than two colors.

— Dedicated to the memory of Paul Erdds.

1. Introduction

Using ultrafilters and results from [3, 4], Alessandro Sisto [5] showed that every 2-
coloring of N gives infinitely many monochromatic sets of the form {a, b, a’}, where
a,b > 1,a # b, and he raised the question of whether there is an elementary proof
of this fact.

We use van der Waerden’s Theorem on arithmetic progressions to give an ele-
mentary proof of a generalization of Sisto’s result. We show that for any 2-coloring
of N and any k € N, there are infinitely many monochromatic sets of the form

{ai,az2, -+ ,ap,e1,ea- - ,epyU{ay 11 <i,j <k},

where aq,...,a,e1,...,¢ex are distinct positive integers greater than 1.
We also show that for any 3-coloring of N and any k € N, either there are
monochromatic sets as just mentioned, or there are monochromatic sets of the form

e
J ..
{ca17ca2,._. ’cak’ce1,c€27.,. 7Cek}U{cai 1 Sl,j Sk }7

where ¢ is a power of 3.

Analogous results hold for more than 3 colors. For example, for any 4-coloring
of N and any k € N, either there are monochromatic sets of one of the previous two
types, or there are monochromatic sets of the form

{bca17bcaza"' 7bc"’k’bc€17bc"‘2’”. 71)6%}U{(bC%z 1 S Zh? S k }a
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where b, ¢ are powers of 3.
In each case, ay,...,ax,e1,..., e, are distinct positive integers greater than 1.
A somewhat different result was proved (using non-elementary methods) by Bei-
glbock et al [1, 2]: For every finite coloring of N and & € N, there are a,b,d € N
such that {b(a +id)? : 0 <i,j < k}U{bd’ : 0 <j<k}U{a+id:0<i<k}is
monochromatic.

2. Two Colors

Definition 1. For k € N, an ezponential k-set is a set of the form
{a1,a2,- -+ ,ap,er ez epyUfay’ 1 1<i,j <k},

where aq,...,a,e1,...,¢ex are distinct positive integers greater than 1.

Thus, an exponential k-set can be viewed as a non-trivial solution in N, with
distinct 1, ..., 2k, 1, - -, Yk, of the system of equations

zij:xi“, 1§Z,]§k

Theorem 1. For every 2-coloring of N and k € N there exists a monochromatic ex-
ponential k-set, that is, there exist distinct positive integers aq,as,
-, ak,e1,ea, - ek, all greater than 1, such that

e ..
{a1,a9,- - ,ak,e1,e2,-- et U{a;” :1<4,j <k}
is monochromatic.

Proof. Let us first carry out the proof for £ = 1, which illustrates, without the
complications which will come later, the basic scheme of the proof.

Let f be a 2-coloring of N, using the colors 0 and 1. We seek a monochromatic
set {a1,e1,a$*} where aj,e; > 1, a1 # e;. We define

glz) = f2¥),z > 1.

By van der Waerden’s Theorem on arithmetic progressions, there are p,d’ € N
with g constant on {p,p+d',p+2d’,...,p+ 16d'}.
In particular, with d = 2d’, g is constant on {p,p+d,p + 2d,...,p + 8d}, and
d > 2 Thus, ‘
(27 0<j<8)

is monochromatic with respect to f, say with colour 0, and d > 2. There are now
two cases to consider.
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Case 1. There exists 2,1 < x < 8, with f(37¢) = 0. Set a; = 2%",¢; = 3%%. Then
{a1,e1,a7'} is monochromatic, and a; # e;.
Case 2. f(3%?) =1,1 < z < 8. If there exists 2,2 < x < 8, with f(x) = 1, then
{3d,:1:, 3””d} is monochromatic and 3¢ # z, since < 8 < 3%, If no such z exists,
then f(z) =0,2 < x <8, and {2,3,8} is monochromatic.

Now we turn to the general proof for k > 1. Let k be fixed, with k > 1.

Let f be a 2-coloring of N, using the colors 0 and 1, and define
g(x) = f(2%), z 2 1.

We require g to be constant on an arithmetic progression with w+1 terms, where
w is defined as follows.

Definition 2. The numbers tg,t1,...,to,—1 are defined inductively by setting
to =1, tgp1 = (ty + k)2 Eat20) 0 < g <2k —2.

Then we set
w = 2152]@,1.

By van der Waerden’s Theorem there are p,d’ € N so that g is constant on
{p,p+d,p+2d,....,p+ ewd?}, where e is large enough that 3° > w. Then in
particular, with d = ed’, g is constant on {p,p + d,p + 2d,...,p + wd}, where
39 > 3° > w. (The inequality 3¢ > w will be used below only in “Subcase 2a.”)

Hence,

3P 3p+d 3p+2d 3p+wd
{237,237 2372 }

is monochromatic with respect to f, say with color 0, and 3¢ > w.
Let
T ={jc[t,w/2]: f(3%) =0}.

There are now two cases to consider.

Case 1. |T| > k. Let 1,...,2; € T. Then z; < w/2,1 <j <k, and
f(3) =0, 1<j <k

In this case, we take
ptw;d .
a;=2"1<i<k

ej=3%11<j<k

Then
e 23p+<mi+mj>d
o=

a , and z; +z; < 2(w/2) = w,
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hence

{0/170/2,"' y Ay €1,€2, aek}U{afj 01 S’L,j Sk}

is monochromatic, with color 0, and clearly ay, aq,--- ,ax,e1, €2, - - , e are distinct
and greater than 1.
Case 2. |T| < k. Thus,

f3* =1, z € l,w/2] - T, and |T| <k —1.

Subcase 2a. There exist y1,¥y2,..., Yk, with the following two properties:

{yi,92, ..yt U{yiy; 11 <i,j <k} C[L,bw/2]-T

and

Then we have f(3%4) = 1 whenever x = y; or z = y;y;, 1 < 4,5 < k, and
fly;) =1,1 <i < k. Hence f is constant, with color 1, on the set

{3y1d’ 3y2d’ s 73ykda Y1, Y2, - .- 7yk} U {(3yld)yl i1 S Z,J S k}

We may assume 4, < o < --- < yx, so that 3¥1¢ < 3¥2¢ < ... < 3vr?_ To show that
guid gv2d  3ukd g wo ...y, are distinct, we simply note that y, < w < 3% <
3v1¢ and hence

yl<y2<--~<yk<3y1d<3y2d<...<3ykd.

Subcase 2b. There do not exist numbers y1,¥2,...,yr as in Subcase 2a. This
means that for any

{ylayZ,"'7yk}U{yiyj 1 S 7';,7 S k} C [1,’(1)/2] =T
there is at least one i,1 <1 < k, such that f(y;) =0.

Now we make explicit use of the numbers tg, ..., tsr_1 defined above.

Definition 3. The sets A; C By, 1 < ¢ < 2k —1, are defined inductively by setting
Ay = [to + 1, (fo + B) 2], By = [to + 1, (fo + k)*+] = [to + 1, 1],

Aq+1 = [tq + 17 (tq + k)tQ+2k]v Bq+1 = [tq + 17 (tq + k)Q(tQ+2k)] = [tq + 1vtq+1]-
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Note that for each ¢, 0 < ¢ < 2k — 2, we can write
Agyr = [ty + 1,ty + 2K U [t, + 2k + 1, (t, + k)la 2],
so that if we take
[tg+1,t, +2k] = [a1,a2,...,ak,€1,€2,...,€5],
then A441 contains the exponential k-set
{ai,...,ap,e1,...,ex}U{a;’ : 1 <4d,5 <k}
Also, recall that max Bag_1 = tor—1 = w/2, hence
By U---UBg,_1 C[1,w/2].

We shall show that one of the sets A; is monochromatic under f, with color 0.

We have 2k — 1 pairwise disjoint subsets By, ..., Bagp_1 of [1,w/2], and, since
|T| < k, at most k — 1 of them can meet T. Hence, there are k sets By, , ..., B;, (we
assume that ¢; < --- < i) such that

B;,U---UB,;, C[lLw/2]-T.
(In Lemma 2 below, we consider the corresponding union A;, U---U A4;,.)
Lemma 1. Ifi < j and y € A;,z € Aj, then yz € B;.

Proof. From the definitions of A;, B;, we can simplify the notation to write A; =
[a,b], Bj = [a,b*]. Then y € A;,z € A; implies 2 <y < b and a < z < b, therefore
a <z <yz<b? hence yz € B,. O

Lemma 2. Let S = {y € A;,U---UA;, : f(y) = 1}, and assume that B;,U- - -UB;, C
[1,w/2] —T. Then |S| < k.

Proof. Suppose [S| > k. Let y1,...,yx € S C A;; U---UA;,. Then by Lemma 2.1,

But since we are in Subcase 2b, this immediately implies that f(y;) = 0 for some 4,
a contradiction. O

Thus, we now have |S| < k and
ifye A4;, U---UA;, — S then f(y) =0.

Since S can meet at most k — 1 of the intervals A;,,---,A;,, there is some
q,1 < g <k, such that
f(y) :Oa yeAiq-

Since A;, contains an exponential k-set, this finishes the proof of Theorem 1.  [J
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Corollary 1. Given A,k € N, there exists M (A, k) € N M (A, k) > A, such that
for every 2-coloring of [A, M (A, k)) there exists a monochromatic exponential k-set.

Proof. The exponential (A + k)-set
{ai,...,aasp, €1, earntU{ay’ 11 <45 < A+k},

where we can assume that a; < -+ < aa4 and e; < -+ < egyqk, contains the
exponential k-set

{a‘A-‘rla"'aaA-i-kyeA-‘rla"'aeA-i-k} U{a‘jj A+ 1 < ’Lv] < A+k}7

which is contained in [4, 00).

Thus, given any 2-coloring f of [A,c0), extend f arbitrarily to a 2-coloring of
N. By Theorem 1, there exists a monochromatic exponential (A + k)-set, which
contains an exponential k-set in [A, 00). By compactness, the result follows. O

Corollary 1 is the basis of the proofs for the results involving more than 2 colors.

Corollary 2. For every 2-coloring of N and k € N there exist infinitely many
monochromatic exponential k-sets.

Proof. This follows immediately from Corollary 1. O

3. Three and Four Colors

Theorem 2. For every 3-coloring of N and k € N there exist distinct

ai,ag, - ,ag,e1,e2, -, en, all greater than 1, and ¢ = 3% > 1 such that
{ay,a9, - ,ap,e1,e2,- - ,ek}U{afj :1<4,5<k}
or .
{Ca1’ca27._. ,Cak,cel,CGQ,"' 7Cek}U{Ca1J 1§’L,j§k}

is monochromatic.

Proof. Let k € N and let f be a 3-coloring of N, using the colors 0,1, 2. Using the
notation of Corollary 1, define W,,1 < g < k by setting

Wy =M@Q1,k),Wep1 =MWy, k),1<q¢g<k-—1.
We follow closely the first part of the proof of Theorem 1.
By van der Waerden’s Theorem, there are p,d € N so that

{231’ 2312+d 23P+2d 23P+2Wkd,}
s y ey

)
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is monochromatic with respect to f, say with color 0.
Let
T=1{jel,W): f(37) =0},

so that
f(3jd) € {1a2}v v] € [1aWk) =T

There are now two cases to consider.

Case 1. |T| > k. We proceed exactly as in Case 1 of the proof of Theorem 1, to
obtain a monochromatic set of colour 0

{alaa/Qa"' y Ak, €1,€2, ,ek}U{a? : 1§l,j§k }

Case 2. |T| < k. We make use of Corollary 1. Consider the intervals
[1, W), W1, Wa), ..., [Wi_1, Wg).
The set T can meet at most k — 1 of these intervals, so for some ¢ we have
Wy, Woi1) C[1, W] —T.

Thus g(j) = f(379),j € Wy, Wy41) is a 2-coloring of [W,, M(W,, k)) and by the
definition of M (W, k) there is an exponential k-set

{a/laa/Qa"' y Ay €1,€2, ,ek}U{afj . 1§7’7]§k}

which is monochromatic with respect to g.
Hence, with ¢ = 3¢, we have g(a;) = f(c™), g(as) = f(c*),..., so that

e
J ..
{Calvca2a"' 7Cak7C€1’C€2,”. acek}u{cai i1 < [2Wi < k }

is monochromatic with respect to f. O]

Corollary 3. Given A,k € N, there exists M(A, k) € N such that for every 3-
coloring of [A, M(A,k)) there are distinct ay,as,--- ,ag,€1,€a, - ,ex, all greater
than 1, and ¢ = 3%, d € N, such that

{ai,a2, -+ ,ag,e1 ez, et U{ay’ :1<i,j<k}

or
e
J .
{ca1vca27._. 7C¢1k’c€1’6627_._ 7C€k}U{cai 01 SZ»] < k }

is monochromatic.

Proof. The proof is exactly the same as the proof of Corollary 1. O
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Theorem 3. For every 4-coloring of N and k € N there exist distinct

a1,a,+ ,ag, €1,€2, -, ex, all greater than 1, ¢ = 3%, b= 3% d,d’ € N such that
{ai, a9, ,ax,e1 ez, extU{a;’ :1<i,j<k}
or .
{c™, ¢ e ¢ T e 7C€k}U{caﬂ 1<, j<k}
or

e

el 492 c%% 1c%1 702 cCk c%i . .o
{b 7b 7"'ab 7b ab 7"'ab }U{(b 1SZ7]S]€}
is monochromatic.

Proof. The proof is virtually the same as the proof of Theorem 2, here using Corol-
lary 3 instead of Corollary 1.
O

4. The General Case

Theorem 4. Let r,k € N and let an r-coloring of N be given. If r = 2 there
exist infinitely many monochromatic exponential k-sets. If r > 2, either there are
infinitely many monochromatic exponential k-sets, or there exist 1 < s <r—2, and
infinitely many monochromatic sets of the form

a a a e e e a,;
Csl 052 Csk Csl CS2 : k i

cy ¢y cy cy cy ¢y cy . .
{2 e ,...,c et et ..o, PU{q :1<4,5 <k},

where ay,as, -+ ,ak,€1,€2, -+, e are distinct positive integers greater than 1, and
the ¢;, 1 < i < s, are (not necessarily distinct) powers of 3.

In fact, given A,r € N, there is M (A, k,r) such that, for every r-coloring of the
interval [A, M (A, k,r)), there exists a monochromatic set of one of these types.

Proof. The proof is by induction on r, following the methods of the proofs of The-
orem 2 and Corollary 1. O

We conclude this paper by proposing the following questions.

Questions. Does every r-coloring of N give a monochromatic set {a,b,a’}, with
a,b>1,a # b? Does every 2-coloring of N give a monochromatic solution of

2
w=zxY?

Let h(k) denote the smallest n such that for any 2-coloring of [1,n] there exists
a monochromatic exponential k-set. Let W (k) denote the smallest n such that for
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any 2-coloring of [1,n] there exists a monochromatic k-term arithmetic progression.

The proof of Theorem 2.1 shows that h(1) < 23" and that h(2) is bounded

23W(s«35) 320.310

above, roughly speaking, by , where s =40 -

can be decreased a bit.

. Perhaps these bounds

Acknowledgement. The author is indebted to the referee for many useful com-
ments.
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