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Abstract
An element of a Coxeter group W is fully commutative if any two of its reduced
decompositions are related by a series of transpositions of adjacent commuting gen-
erators. In the preprint Fully commutative elements in finite and a�ne Coxeter
groups, Biagioli, Jouhet and Nadeau proved among other things that, for each ir-
reducible a�ne Coxeter group, the sequence counting fully commutative elements
with respect to length is ultimately periodic. In the present work, we study this
sequence in its periodic range for each of these groups, and in particular we deter-
mine the minimal period. We also observe that in type eA we get an instance of the
cyclic sieving phenomenon.

1. Introduction

Let W be a Coxeter group. An element w 2 W is said to be fully commutative if
any reduced expression for w can be obtained from any other one by transposing
adjacent pairs of commuting generators. Fully commutative elements were exten-
sively studied by Stembridge in a series of papers [17, 18, 19] where, among others,
he classified the Coxeter groups having a finite number of fully commutative el-
ements and enumerated them in each case. It is known that fully commutative
elements in Coxeter groups index a basis for a quotient of the associated (general-
ized) Temperley–Lieb algebra ([4, 6]).

If WFC denotes the subset of fully commutative (FC) elements of W , let WFC
` be

the number of FC elements of Coxeter length `. In the case of the a�ne symmetric
group, Hanusa and Jones [9] proved that the corresponding counting sequence (or
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growth function) (WFC
` )`�0 is ultimately periodic. In [3], Biagioli and the two

authors generalized these results to all finite or a�ne Coxeter groups, by using
the theory of heaps and encoding fully commutative elements by various classes of
lattice walks. One of the results is the following.

Theorem ([3]). For each irreducible, classical a�ne Coxeter group W , the growth
function (WFC

` )`�0 is ultimately periodic with following period:

Affine Type eAn�1
eCn

eBn+1
eDn+2

Periodicity n n + 1 (n + 1)(2n + 1) n + 1

In fact the full generating functions WFC(q) :=
P

w2W F C q`(w), for W a�ne
or finite, were computed in [3], as was the precise start of periodicity. Similar
results are proved in [2] for the subset of WFC of involutions. In particular, the
corresponding growth functions turn out to be also ultimately periodic with the
following periods:

Affine Type eA2n�1
eCn

eBn+1
eDn+2

Periodicity 2n 2(n + 1) 2(n + 1)(2n + 1) 2(n + 1)

In view of these results, a natural question arises regarding the minimal periods
of all these growth functions. In the present paper, we will determine them for
all the classical a�ne types; the exceptional cases are dealt with in [3]. To this
aim, we will use the representation of fully commutative elements by heaps, and
derive from their classifications proved in [3] new expressions for WFC(q) (up to
a polynomial). The latter involve generating functions for integer partitions and
yield, through arithmetical investigations, the desired minimal periods.

More precisely, we will show how heaps associated with FC elements correspond-
ing to the periodic part of WFC(q), which we call long fully commutative elements,
can be enumerated, according to the length, through families of integer partitions.
In type eA, these considerations exhibit a cyclic sieving phenomenon ([12, 14]). In
all classical a�ne types, our periodicity results can be summarized as follows.

Theorem (Minimal Periods). Let n � 2. In type eAn�1, the minimal ultimate
period of the growth function (WFC

` )`�0 is equal to p↵�1 if n = p↵ for a prime p and
a positive integer ↵, and to n otherwise. In type eCn ( respectively eBn+1, respectivelyeDn+2), the minimal period is given by 2m + 1 ( respectively (2m + 1)(2n + 1),
respectively n + 1) where 2m + 1 is the largest odd divisor of n + 1.

We also determine in the same way the minimal periods for the corresponding
a�ne involutions, by giving new expressions for their generating functions WFCI(q)
(up to a polynomial). Moreover, we compute formulas for the number of FC ele-
ments of a given large enough length `, for each of these types.
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This paper is organized as follows. In Section 2, we recall definitions and prop-
erties concerning heaps and fully commutative elements. In Section 3, we prove
useful elementary results on ultimately periodic sequences, specializations of the
q-binomial coe�cients, and recall some classical identities on integer partitions. Pe-
riodicity results regarding growth functions for long FC elements and involutions of
type eAn�1 are given in Section 4, while the other classical a�ne types are treated in
Section 5. From these results, we compute some exact and asymptotic evaluations
in Section 6. Finally, a manifestation of the cyclic sieving phenomenon occurring
in type eAn�1 is explained in Section 7.

2. Heaps and Fully Commutative Elements

In this section, we recall the definition of heaps and its relation with fully commu-
tative elements in Coxeter groups. We finish by recalling relevant results from [3]
regarding fully commutative elements in (classical) a�ne types.

Heaps. Let � be a finite, simple graph with vertex set S. A heap on � (or �-heap)
is a finite poset (H,), together with a labeling map ✏ : H ! �, which satisfies the
following conditions:

(i) For any vertex s (respectively any edge {s, t}), the subposet Hs := ✏�1({s})
(respectively H{s,t} := ✏�1({s, t})) is totally ordered;

(ii) The partial ordering is the smallest one containing all chains Hs and H{s,t}.
We write Hs = {s(1) < s(2) < · · · < s(k)} and its elements are called s-elements.

Two heaps on � are isomorphic if there exists a poset isomorphism between them
that preserves the labels. The size |H| of a heap H is its cardinality. Heaps were
originally defined by Viennot [21]; the definition we use can be found as [8, p.20] or
[11, Definition 2.2]. As introduced in [3], a �-heap H is alternating if for each edge
{s, t} of �, the chain H{s,t} has alternating labels s and t.

Words and Heaps. Consider now words on S, i.e., elements of the free monoid
S⇤ generated by S. Let ⇠ be the equivalence relation on S⇤ generated by pairs
ustv ⇠ utsv with letters {s, t} 2 S that are not adjacent in �. A �-commutation
class is an equivalence class for this relation.

Now given a word w = s1 · · · sl in S⇤, set i � j if i < j and {si, sj} is an edge
of �, and extend by transitivity to a partial ordering � of the index set {1, . . . , l}.
This poset together with ✏ : i 7! sai forms a heap whose isomorphism class we
denote by Heap(w). We have then the following fundamental result.

Proposition 2.1 (Viennot [21]). The map w 7! Heap(w) induces a bijection
between �-commutation classes of words and finite �-heaps.

Full commutativity. We refer the reader to [10] for a standard introduction to
Coxeter systems. Consider integers mst indexed by S2 satisfying mss = 1 and, for
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s 6= t, mst = mts 2 {2, 3, . . .} [ {1}. The Coxeter group W associated with M is
defined by generators set S and relations (st)mst = 1 if mst < 1. These relations
can be rewritten as s2 = 1 for all s, and sts · · ·| {z }

mst

= tst · · ·| {z }
mst

, when mst < 1.

The Coxeter graph � is the graph with vertex set S and, for each pair {s, t} with
mst � 3, an edge between s and t labeled by mst; when mst = 3, the edge is usually
left unlabeled since this case occurs frequently. Notice that non adjacent vertices
correspond to commutation relations st = ts. For w 2 W , the length of w, denoted
by `(w), is the minimum l of any expression w = s1 · · · sl with si 2 S. Expressions
of length `(w) are called reduced and form the set R(w).

Fix a Coxeter system (W,S) and let � be its associated Coxeter graph.

Definition 2.2. An element w 2 W is fully commutative (FC) if the set R(w)
forms a �-commutation class.

Therefore if w is a FC element and w 2 R(w), one can define Heap(w) :=
Heap(w) and heaps of this form are called FC heaps. We have thus a bijection
between FC elements and FC heaps, but one needs an intrinsic characterization
of FC heaps for this to be useful: this was done by Stembridge in [17], and used
in [3] to classify FC heaps for all a�ne types. Among these FC heaps, some belong
to finite families, and others to infinite families. As we are interested in ultimate
periodicity in the present article, we will focus on the latter.

In the rest of this section, we therefore recall the relevant results from [3] con-
cerning long FC elements in a�ne types eAn�1 and eCn. This is enough since long
FC elements in the other classical a�ne types eBn+1 and eDn+2 are deduced from
the ones in eCn.

Type eA: The Coxeter graph of type eAn�1 is

s1 sn�1

s0

FC heaps in type eAn�1 coincide with alternating heaps, as was proved in [3, 7].
To represent them graphically, we duplicate the set of s0-elements and use one copy
for the depiction of the chain H{s0,s1} and one copy for H{sn�1,s0}. This can be
seen in Figure 1, left. The representation on the right is a linear deformation of the
first one which makes clear that such heaps can be embedded in a cylinder.

Let Ǒn be the set of lattice paths from (0, i) to (n, i) for a certain i, using
steps D = (1,�1),H1 = H2 = (1, 0), U = (1, 1), that stay above the x-axis but
must touch it at some point; here H1,H2 correspond to two possible labelings for
horizontal steps. The generating function Ǒn(q) counts such paths according to the
algebraic area below them. Thanks to the work in [3], the generating function for
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s0 s1 s2 s3 s4 s5 s6 s7 s0

Figure 1: Representation of a FC heap of type eA7.

long FC elements of type eAn�1 can be expressed in terms of these walks:

eAFC
n�1(q) =

Ǒn(q)� 2
1� qn

+ a polynomial. (1)

Type eC: the Coxeter graph of type eCn is: 4 4
t s1 usn�1

It was shown in [3] that, apart from three finite families, FC heaps of type eCn

form two infinite families: alternating heaps and “zig-zag” heaps which correspond
to subwords of (ts1 · · · sn�1usn�1 · · · s1)1 and whose generating function is easy to
express. Consider paths from (0, i) to (n, j) for some nonnegative integers i, j, using
steps D,H1,H2, U , that stay above the x-axis but must touch it at some point; and
denote by Ǧn(q) their generating function according to the sums of the heights of
their points. Then, as shown in [3], the generating function for long FC elements
of type eCn can be expressed in terms of these walks:

eCFC
n (q) =

Ǧn(q)
1� qn+1

+
2n

1� q
+ a polynomial. (2)

FC heaps of types eB and eD can be described based on those of types eC, cf. [3].
On the level of generating functions (for long heaps), the relation is simple and will
be recalled in Section 5.

3. Preliminary Results

In this section, we first give a general proposition on ultimately periodic sequences,
and then state certain specialization results about the q-binomial coe�cients, which
will both be useful later. Finally, we recall some classical identities on integer
partitions.
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3.1. Ultimately Periodic Sequences

Let f(q) =
P

i�0 aiqi and g(q) =
P

i�0 biqi be two power series in C[[q]]; we say
that they are equivalent, and write f ⌘ g, if f � g is a polynomial. Equivalently,
f ⌘ g if and only if the two coe�cient sequences (ai)i�0 and (bi)i�0 coincide for i
large enough, i.e., if the set {i � 0|ai 6= bi} is finite. This is clearly an equivalence
relation on power series.

Let U ✓ C be the group of complex roots of unity. We denote by order(⇠) the
multiplicative order of ⇠ 2 U, i.e., the smallest m > 0 such that ⇠m = 1.

Proposition 3.1. Let f(q) =
X
i�0

aiq
i 2 C[[q]]. Then the following conditions are

equivalent:

1. The sequence (ai)i�0 is ultimately periodic.

2. f(q) ⌘ P (q)
1�qN for some polynomial P (q) and positive integer N .

3. f(q) ⌘
X
⇠2U

↵⇠

1� q⇠
, where the ↵⇠ are complex coe�cients such that Uf := {⇠ 2

U;↵⇠ 6= 0} is a finite set.

Proof. (1))(2): By hypothesis there exist d,N > 0 such that ai+N = ai for i � d,

hence f(q) =
d�1X
i=0

aiq
i +
X
k�0

d+N�1X
i=d

aiq
kN+i =

d�1X
i=0

aiq
i +

1
1� qN

 
d+N�1X

i=d

aiq
i

!
,

so that f(q) satisfies Condition (2).
(2))(1): write the euclidean division P (q) = (1�qN )Q(q)+R(q) where deg R <

N ; one has then f(q) = Q(q) + R(q)/(1 � qN ) ⌘ R(q)/(1 � qN ) which shows that
(ai)i�0 is ultimately periodic.

(2))(3): this follows by partial fraction decomposition of f(q).
(3))(2): since Uf is finite, there exists a positive integer N such that order(⇠)

divides N for all ⇠ 2 Uf . This implies that (1� q⇠) divides (1� qN ) in C[q] for all
such ⇠, and thus f(q) can be written as P (q)/(1� qN ).

Corollary 3.2. If one of the equivalent conditions of Proposition 3.1 holds, then
the minimal period in (1) is equal to the smallest N for which (2) holds, and is
also equal to the least common multiple of all the integers order(⇠), ⇠ 2 Uf , from
condition (3).

Proof. It is clear from the previous proof that the minimal period of (ai)i�0 is equal
to the smallest possible N in (2). It is also clear from the proof of (3))(2) that the
least common multiple M of the numbers order(⇠) for ⇠ 2 Uf is a valid N for (2).
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Now assume for the sake of contradiction that there exists N < M such that (2)
holds. Then all the poles of P (q)/(1� qN ) are roots of unity with orders dividing
N , so the least common multiple of these orders is at most N . But these poles form
precisely the set Uf , which is absurd.

We can be more explicit about the partial fraction decomposition when f(q) has
the form given in (2) above. For a positive integer N , set ⇠N := e2i⇡/N ; then one
has

P (q)
1� qN

⌘ 1
N

N�1X
j=0

P (⇠�j
N )

1� q⇠j
N

. (3)

Indeed, in the decomposition P (q)
1�qN ⌘

PN�1
j=0

↵j

1�q⇠j
N

, the coe�cient ↵j is equal to

lim
q!⇠�j

N

P (q)(1� q⇠j
N )

1� qN
= P (⇠�j

N ) lim
q!⇠�j

N

1� q⇠j
N

1� qN
= P (⇠�j

N ) lim
q!⇠�j

N

�⇠j
N

�NqN�1
=

P (⇠�j
N )

N
,

where we used L’Hôpital’s rule in the second equality.

3.2. q-binomial Coe�cients

Recall that the q-binomial coe�cients are defined as follows

n

k

�
q

:=
(q; q)n

(q; q)k(q; q)n�k
,

where for any complex number a, (a; q)n := (1� a) · · · (1� aqn�1) is the q-shifted
factorial. These deformations of the binomials are polynomials in the variable q,
with positive integral coe�cients; as we will see in Section 3.3, these polynomials
enumerate certain integer partitions. It thus makes sense to substitute any complex
number for q, and the following specialization will be used in the sequel.

Lemma 3.3. For any nonnegative integers n, k and j satisfying 0  k  n, we
have


n

k

�
⇠j

n

=

8>><
>>:

✓
(n, j)

k(n, j)/n

◆
if n divides k(n, j),

0 otherwise,

where (n, j) denotes the greatest common divisor of n and j.

This can be proved as a consequence of the so-called q-Lucas property, which
has in this case a combinatorial proof (see for instance Sagan [13]). We will give
another proof, based on Stanley’s [16, Exercise 3.45(b)].
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Proof. The q-binomial formula (see for instance [5]) can be written as:

n�1Y
i=0

(y � qi) =
nX

k=0


n

k

�
q

q(
k
2)(�1)kyn�k. (4)

Next, setting d := (n, j) and f := n/d, noticing that ⇠ij
n = ⇠ij/d

n/d and (n/d, j/d) = 1,
we have:

n�1Y
i=0

(y � ⇠ij
n ) =

d�1Y
t=0

(t+1)f�1Y
i=tf

⇣
y � ⇠ij/d

f

⌘
=

d�1Y
t=0

(yf � 1) = (yn/d � 1)d.

By expanding this expression and identifying the coe�cient of yn�k with the one
in (4) (where q is replaced by ⇠j

n), we see that that this coe�cient is 0 unless n
divides kd. In this case, we have the identity


n

k

�
⇠j

n

=
✓

d

kd/n

◆
(�1)k�kd/n⇠

�j(k
2)

n = (�1)k�kd/n(�1)(k�1)kj/n

✓
d

kd/n

◆
.

It remains to show that the exponents k � kd/n and (k � 1)kj/n have the same
parity. To see this, denote first for any integer t its 2-adic valuation by v2(t), and
remark that, as n divides kd, the number kj/n is an integer.

Now (k � 1)kj/n is odd if and only if both k � 1 and kj/n are odd, which is
equivalent to the conditions v2(k) > 0 and v2(k) + v2(j) = v2(n). In the same way,
the integer k � kd/n is odd if and only if exactly one of k and kd/n is, which is
equivalent to say that either v2(k) > 0 and v2(k) + v2(d) = v2(n), or v2(k) = 0
and v2(k) + v2(d) > v2(n). But, as d divides n, this second condition is impossible.
Finally, recalling that v2(d) = min(v2(n), v2(j)), the conditions v2(k) > 0 and
v2(k) + v2(d) = v2(n) are equivalent to v2(k) > 0 and v2(k) + v2(j) = v2(n).

3.3. Integer Partitions

Recall that a partition � := (�1 � �2 � · · · ) of a nonnegative integer n is a finite
nonincreasing sequence of positive integers whose sum is equal to n, and n =: |�| is
the size of �. Each of the �i’s is called a part of the partition �. A partition can be
represented as a Ferrers diagram: it is a left-aligned array of boxes, such that each
part �i corresponds to a row of �i boxes; see Figure 2, left, for the Ferrers diagram
representing the partition (14, 10, 5, 5, 3, 2, 2) of size 41.

The following is a well-known fact about q-binomial coe�cients, and can be found
for instance in [1].

Lemma 3.4. For any positive integers n and k, the generating function, according
to the size, of partitions with �1  n� k and at most k parts is given by

⇥n
k

⇤
q
.
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Such partitions correspond bijectively to Ferrers diagrams which fit in a rectangle
with dimensions k ⇥ (n� k). We now record the two well-known identities

min(a,b)X
k=0


a

k

�
q


b

k

�
q

qk2
=

a + b

a

�
q

, (5)

and
nX

k=0


n

k

�
q

qk(k+1)/2 = (�q; q)n. (6)

We give combinatorial proofs of these; graphical illustrations are provided in
Figure 2. The right-hand side of (5) counts Ferrers diagrams in a a ⇥ b rectangle.
For such a diagram, let k be the size of the Durfee square, i.e., �k � k and is
maximal with this property. Removing the square (which has size k2) leaves two
diagrams which fit respectively in rectangles (a � k) ⇥ k and k ⇥ (b � k), which
proves (5).

For (6), notice the right-hand side is (1 + q)(1 + q2) · · · (1 + qn) and thus counts
partitions with distinct parts such that �1  n (see [1]). For such a partition �,
let k be its number of parts and remove k, k� 1, . . . , 1 from the parts �1,�2, . . . ,�k

respectively. Discarding possible zero parts, this leaves a partition �0 whose Ferrers
diagram fits in a k ⇥ (n� k)-box, which proves (6).

Figure 2: A Ferrers diagrams, and graphical illustrations of identities (5) and (6).

4. Minimal Period for the Growth Function in Type eAn�1

Let a(n)
` denote the number of FC elements of length ` in type eAn�1. The generating

function eAFC
n�1(q) =

P
l�0 a(n)

l ql was first computed by Hanusa and Jones in [9]. Up
to a polynomial it can be written as:

eAFC
n�1(q) ⌘

1
1� qn

n�1X
k=1


n

k

�2
q

. (7)
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From Proposition 3.1 it follows that (a(n)
l )l�0 is ultimately periodic (using ei-

ther (1) or (7)). However, it seems not easy to deduce from (1) an expression of the
minimal period. This can be done through a third expression for eAFC

n�1(q) that we
prove combinatorially now.

Proposition 4.1. For any positive n, the generating function eAFC
n�1(q) satisfies

eAFC
n�1(q) ⌘

1
1� qn

 
2n
n

�
q

� 2

!
. (8)

Proof. We have to count FC heaps, corresponding to FC elements in eAn�1, with
respect to their number of vertices. Take a large enough such FC heap H: we
will need to assume that |Hs0 | > n/2, which holds as soon as |H| is large enough
(in fact |H| � n2 as is easily seen through the alternating condition). For any
i 2 {0, . . . , n � 1}, denote the elements of the chain Hsi by s(1)

i < s(2)
i < · · · <

s(hi)
i . Let k be the number of such indices i satisfying s(1)

i+1 < s(1)
i . Notice that

k 2 {1, . . . , n� 1}.
Consider now the ascending chain s(1)

0 < s(j1)
1 < · · · < s

(jn�k)
n�k where j0 := 1,

ji+1 � ji is 1 if s(1)
i+1 < s(1)

i and 0 otherwise. Consider also the descending chain
s
(jn�k)
n�k > s

(jn�k+1)
n�k+1 > · · · > s(jn)

n = s(jn)
0 where ji+1 � ji is �1 if s(1)

i+1 > s(1)
i and

0 otherwise. Now jn = 1 as a quick computation will show; the construction is
illustrated in Figure 3, left.

Let Hlow be the poset induced by the s(j)
i for all i 2 {0, . . . , n � 1} and all

j 2 {1, . . . , ji � 1}. It is isomorphic to a Ferrers diagram included in the box
k ⇥ (n � k), where si-vertices correspond to cells in the ith diagonal of the box;
conversely, all such diagrams give valid posets Hlow, and we recall that they have⇥n
k

⇤
q

as generating polynomial by Lemma 3.4. The same construction can be made
on the top part of the heap (which amounts to performing our construction on the
dual heap of H), resulting in a poset Hhigh. Remark that thanks to our assumption
|Hs0 | > n/2, it is easily seen that Hlow and Hhigh are disjoint. Notice that the same
integer k occurs in both constructions of Hlow and Hhigh.

The remaining vertices of H are easy to count; write m = |Hs0 |. Then all the
si-vertices in H � (Hlow [Hhigh), for i = 0, 1, . . . , n� 1, are counted by

m,m� 1, . . . ,m� k,m� k, . . . ,m� k| {z }
n�2k+1

,m� k + 1, . . . ,m� 1,

so the total size of H � (Hlow [Hhigh) is given by (m� k)n + k2.
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n
�
k

n
�
k

k

k n
�
k

s(1)1

s(1)0

s(2)2

s(2)3

s(3)4

s(3)5

s(2)6

s(2)7

s(1)0

s(1)0

Figure 3: Decomposition of a FC heap of type eA7.

Therefore we have

eAFC
n�1(q) ⌘

X
m>n/2

n�1X
k=1


n

k

�2
q

q(m�k)n+k2
=

qdn/2en

1� qn

n�1X
k=1


n

k

�2
q

qk2�kn

⌘ 1
1� qn

n�1X
k=1


n

k

�2
q

qk2 ⌘ 1
1� qn

 
nX

k=0


n

k

�2
q

qk2 � 2

!
.

We used the fact that qan/(1� qn) ⌘ 1/(1� qn) for any integer a: this allowed us
to simplify qdn/2en, q�kn and qn2

which appeared in the numerators. By using (5)
in the case a = b = n, we finally obtain the right-hand side of (8).

From this formula we can deduce the minimal period in type eAn�1.

Proposition 4.2. In type eAn�1, the growth function (a(n)
l )l�0 is ultimately pe-

riodic, with minimal period equal to p↵�1 if n = p↵ is a prime power, and to n
otherwise.

Proof. We expand (8) into partial fractions, yielding:

eAFC
n�1(q) ⌘

1
n

n�1X
j=0

an,j

1� q⇠j
n

, (9)
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where an,j =

2n
n

�
⇠n�j

n

� 2 thanks to (3). From Lemma 3.3 with n replaced by 2n,

k by n and j by 2j, we get by setting d := (n, j):

an,j =
✓

2(n, n� j)
(n, n� j)

◆
� 2 =

✓
2d
d

◆
� 2. (10)

This shows that an,j 6= 0 if and only if d > 1. We now use Corollary 3.2, which
says that the minimal period is the least common multiple of the numbers n/d for
j = 0, 1, . . . , n � 1 such that d > 1. Hence this minimal period is also the least
common multiple of all strict divisors of n.

If n = p↵, these divisors are p� for � = 0, . . . ,↵ � 1, and the least common
multiple of these is p↵�1. If n has more than one prime factor, it can be written
n = n1n2 with (n1, n2) = 1 and n1, n2 < n. Then the least common multiple of n1

and n2 is n, which achieves the proof.

Remark 4.3. Equations (1),(7) and (8) give three expressions for the series eAFC
n�1(q)

up to a polynomial. This entails that the numerators di↵er by a multiple of 1� qn.
It seems a challenging problem to prove these equalities combinatorially. Note also
that one can give a new proof of (7) based on (8) by noting that

Pn
k=0

⇥n
k

⇤2
q

and⇥2n
n

⇤
q

are equal for all q = ⇠j
n (0  j  n� 1), using Lemma 3.3.

Corollary 4.4. The growth function (a(n)
l )l�0 for fully commutative involutions of

type eAn�1 is ultimately periodic with minimal period n if n is even. If n is odd,
there are finitely many fully commutative involutions of type eAn�1.

Proof. As noticed in [2, 19], the heaps H corresponding to FC involutions are those
that are vertically symmetric. In the proof of Proposition 4.1 which focuses on
elements of large length, this symmetry condition means that Hlow and Hhigh are
mirror images, which entails in particular k = n � k. This shows that there is
no such configuration when n is odd, so there are finitely many fully commutative
involutions in this case. If n is even, we get:

eAFCI
n�1 (q) ⌘

X
p>n/2


n

n/2

�
q2

q(p�n/2)n+n2/4 ⌘ qn2/4

1� qn


n

n/2

�
q2

. (11)

The numerators appearing in the partial fraction expansion of this series never
vanish, by Equation (3) and Lemma 3.3. Corollary 3.2 then yields the result.

5. Types eC, eB, and eD
Let (c(n)

l )l�0 be the growth function of FC elements in type eCn. As shown in [3], it
is ultimately periodic with period n + 1, which is readily seen from (2). To obtain
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an expression of the minimal period, we will need a new expression for eCFC
n (q), as

was the case in type eA.

Proposition 5.1. For any positive integer n, the length generating function of fully
commutative elements in eCn satisfies:

eCFC
n (q) ⌘ (�q; q)2n

1� qn+1
+

2n
1� q

. (12)

Proof. As explained in Section 2, there are two kinds of long FC elements of typeeCn. For the ones corresponding to zigzag heaps, the generating function is given by
the second term in (12) (up to a polynomial). Therefore it is enough to focus on
the alternating elements.

Fix an alternating FC element w 2 eCn, and denote by H the corresponding
alternating heap; we have to count such heaps with respect to their number of
vertices. Set s0 := t and sn := u. To ensure that the subsets Hlow and Hhigh

constructed below are well defined and disjoint, we will assume that |Hs0 | > n,
which holds as soon as |H| is large enough (larger than 3n(n+1)/2, as can easily be
seen from the alternating condition). For any i 2 {0, . . . , n}, denote the elements
of the chain Hsi by s(1)

i < s(2)
i < · · · < s(hi)

i . Let j be the number of such indices i

satisfying s(1)
i+1 < s(1)

i . Notice that j 2 {0, . . . , n}.
Consider now the ascending chain s(1)

0 < s(v1)
1 < · · · < s

(vn�j)
n�j where v0 := 1,

vi+1 � vi is 1 if s(1)
i+1 < s(1)

i and 0 otherwise. Consider also the descending chain
s
(vn�j)
n�j > s

(vn�j+1)
n�j+1 > · · · > s(vn)

n where vi+1�vi is �1 if s(1)
i+1 > s(1)

i and 0 otherwise.
Now vn = 1 as a quick computation will show. Call Hlow the subheap with vertices
sv

i for all i 2 {0, . . . , n} and all v 2 {1, . . . , vi}: it forms a Ferrers diagram included
in the box j ⇥ (n � j), and any diagram gives a valid Hlow. By Lemma 3.4, such
Ferrers diagrams have

⇥n
j

⇤
q

as generating function. The same construction can be
made on the top part of the heap (which amounts to performing our construction
on the dual heap of H), resulting in a subset Hhigh, corresponding this time to
a Ferrers diagram included in the box (n � k) ⇥ k, for a k 2 {0, . . . , n}. These
constructions are illustrated in Figure 4.

The remaining vertices of H are easy to count: let us assume without loss of
generality that n � j  k. Write m = |Hs0 |. Then the number of si-vertices in
H � (Hlow [Hhigh), for i = 0, 1, . . . , n, is given by

m,m� 1, . . . ,m� (n� j), . . . ,m� (n� j)| {z }
k+j�n+1

,m� (n� j) + 1, . . . ,m + j � k,

so the total size of H � (Hlow [Hhigh) is given by (m� (n� j))(n+1)+
�n�j+1

2

�
+�n�k+1

2

�
. Therefore, replacing j (respectively k) by n � j (respectively n � k), we
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j

k

n�
j

n�
k

Figure 4: Decomposition of an alternating FC heap of type eC8.

have

eCFC
n (q)� 2n

1� q
⌘

X
m>n

nX
k=0

nX
j=0


n

k

�
q


n

j

�
q

q(
j+1
2 )+(k+1

2 )+(m�j)(n+1)

=
qn+1

1� qn+1

 
nX

i=0


n

i

�
q

qi(i+1)/2

!2

,

which, by using (6), yields (12).

We can deduce the minimal period in type eCn. In the rest of this section we let
2m + 1 be the largest odd divisor of n + 1, and we write n + 1 = 2↵(2m + 1).

Proposition 5.2. The growth function (c(n)
l )l�0 is ultimately periodic with minimal

period equal to 2m + 1.

Proof. We expand (12) into partial fractions, yielding:

eCFC
n (q) ⌘ 1

n + 1

nX
j=0

cn,j

1� q⇠j
n+1

+
2n

1� q
, (13)
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where by (3) we have

cn,j = (�q; q)2n
��
q=⇠�j

n+1
=

 
nY

l=1

(1 + ⇠�jl
n+1)

!2

=
1
4

 
nY

l=0

(1 + ⇠�jl
n+1)

!2

. (14)

Now ⇠�j
n+1 has order f := (n + 1)/d, where d := (n + 1, j), so we get

cn,j =
1
4

 
f�1Y
l=0

(1 + ⇠l
f )

!2d

.

Moreover Xf � 1 =
f�1Y
l=0

(X � ⇠l
f ) yields (�1)f � 1 = (�1)f

f�1Y
l=0

(1 + ⇠l
f ) so that

cn,j =
1
4

⇣
1� (�1)

n+1
d

⌘2d
. (15)

This shows that cn,j 6= 0 if, and only if (n + 1)/d is odd (this can also be de-
duced directly from (14)). From Corollary 3.2, we know that the minimal period
of eCFC

n (q)� 2n/(1� q) is equal to the least common multiple of all odd divisors of
n + 1, which completes the proof, as 2n/(1� q) has period 1.

Proposition 5.3. The growth function (c(n)
l )l�0) of a�ne fully commutative invo-

lutions in type eCn is ultimately periodic with minimal period 2(2m + 1).

Proof. To obtain an expression for FC involutions, we need to consider those heaps
described in the proof of Proposition 5.1 which are vertically symmetric. From [2],
we know that the corresponding zigzag heaps have 2q2n+3/(1 � q2) as generating
function, so we may focus solely on alternating heaps. Here the vertical symmetry
means that j = n � k and the two Ferrers diagrams identified in the proof of
Proposition 5.1 have to be identical. This shows that

eCFCI
n (q)� 2q2n+3

1� q2
⌘ 1

1� qn+1

nX
k=0


n

k

�
q2

q(n�k+1)(n�k+2)/2+(k+1)(k+2)/2

=
1

1� qn+1

nX
k=0


n

k

�
q2

qk2�nk+2+n(n+3)/2

⌘ q1+(n+1)(n+2)/2

1� qn+1

nX
k=0


n

k

�
q2

qk2+k

=
q1+(n+1)(n+2)/2

1� qn+1
(�q2; q2)n,
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where we have used (6) with q replaced by q2 for proving the last equality. Finally,
the partial fraction decomposition of eCFCI

n (q) takes the form

eCFCI
n (q) ⌘ 1

n + 1

nX
j=0

cn,j

1� q⇠j
n+1

+
2q

1� q2
,

where by (3)

cn,j = q1+(n+1)(n+2)/2(�q2; q2)n

���
q=⇠�j

n+1

=
(�1)nj⇠j

n+1

2

nY
l=0

(1 + ⇠2jl
n+1).

Set as usual d := (n + 1, j) and f := (n + 1)/d, yielding

cn,j =
(�1)nj⇠j

n+1

2

 
f�1Y
l=0

(1 + ⇠2l
f )

!d

.

From the factorization of Xf � 1, we derive

p
�1

f � 1 =
f�1Y
l=0

(
p
�1� ⇠l

f ) and (�
p
�1)f � 1 =

f�1Y
l=0

(�
p
�1� ⇠l

f ),

and plugging these into the previous expression for cn,j yields

cn,j =
(�1)nj⇠j

n+1

2

✓✓
1�

p
�1

n+1
d

◆⇣
1� (�

p
�1)

n+1
d

⌘◆d

. (16)

This shows that cn,j = 0 if and only if (n + 1)/d is equal to 0 modulo 4 (it is also
easily seen that the product inside the outside parentheses is equal to 4 (respectively
2) if (n + 1)/d is congruent to 2 modulo 4 (respectively (n + 1)/d is odd.)).

From Corollary 3.2, the minimal period of eCFCI
n (q) � 2q/(1 � q2) is thus equal

to the least common multiple of all divisors of n + 1 which are not congruent to 0
modulo 4. This is either 2m + 1 or 2(2m + 1), and as the period corresponding to
the term 2q/(1� q2) is 2, the conclusion follows.

Finally, we summarize the results corresponding to the a�ne types eBn+1 andeDn+2; this achieves the proof of the main theorem stated in the introduction.

Corollary 5.4. With the same notations as in Proposition 5.2, the growth function
in type eBn+1 ( respectively eDn+2) is ultimately periodic, with minimal period equal
to (2n + 1)(2m + 1) ( respectively n + 1).

Proof. The following identity was proved in [3, Proposition 4.3]:

eBFC
n+1(q) ⌘

2qn+1Ǧn(q)
1� qn+1

+
(2n + 3)q2n+4

1� q
+

q2(2n+1)

1� q2n+1
. (17)
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Thanks to the proof of Proposition 5.2, the minimal period corresponding to the
first term in (17) is 2m+1. Moreover, the period corresponding to the second term
is trivially equal to 1, and the conclusion follows by noting that the minimal period
corresponding to the third term is 2n + 1, which is relatively prime to 2m + 1.

In type eD, we have the following expression ([3, Proposition 4.4]):

eDFC
n+2(q) ⌘

4qn+1Ǧn(q)
1� qn+1

+
(2n + 6)q2n+5

1� q
+

2q3(n+1)

1� qn+1
. (18)

The minimal periods corresponding to each term are 2m+1, 1 and n+1 respectively.
Since 2m + 1 divides n + 1, the conclusion follows.

The case of involutions in these types is easily derived by the same methods, and
is left to the interested reader.

6. Exact and Asymptotic Evaluations

In this section, we use our results to give some explanations to numerical observa-
tions regarding the repartition of the number of FC elements on a period. Let us
start with the example of type eAn�1 with n = 10. Thanks to Proposition 4.2, we
know that the minimal (ultimate) period of the growth function

⇣
a(10)

l

⌘
`�0

is equal
to 10.

The numbers a(10)
l for l = 1, 2, . . . , 10 modulo 10 are given by

18450, 18500, 18450, 18500, 18452, 18500, 18450, 18500, 18450, 18502

if l is large enough. There are very small variations between these values, which
will be explained by the results of this section.

Given two integers r > 0, l � 0, the Ramanujan sum Ramr(l) (see [15, 20]) is
defined as the sum of lth powers of the primitive rth roots of unity

Ramr(l) :=
X

1jr
(j,r)=1

⇠lj
r .

As a function of l, it is clearly periodic with period r and takes real values.

Proposition 6.1. In type eAn�1, the growth function satisfies for any large enough
integer l:

a(n)
l =

1
n

X
d|n , d>1

✓✓
2d
d

◆
� 2
◆

Ramn
d
(l). (19)
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Proof. From (10), we see that the coe�cient an,j in (9) only depends on d := (n, j).
Therefore by taking the coe�cients of ql on both sides of (9), we obtain:

a(n)
l =

1
n

nX
j=1

an,j⇠
�lj
n =

1
n

X
d|n

✓✓
2d
d

◆
� 2
◆ X

1j0n/d
(j0,n/d)=1

(⇠�j0

n/d)
l,

where we set j0 = j/d and wrote ⇠�lj
n = ⇠�lj0

n/d . This is the desired expression (note
that the term for d = 1 vanishes).

Now all Ramanujan sums Ramn
d
(l) are obviously bounded by n in absolute

value. Moreover, the dominant term in the sum (19) is given by d = n, for which
the Ramanujan sum is constant equal to 1. Other terms are obtained for d  n/2
since d divides n. Now Stirling’s asymptotic formula says n! ⇠

n!1
(n/e)n

p
2⇡n,

from which one deduces
�2n

n

�
⇠

n!1
4n/

p
n. Therefore we have

a(n)
l =

�2n
n

�
n

(1 + O(n 2�n)), n ! +1.

We deduce that for n and l large enough, the number a(n)
l is close to the mean value

of the growth function
��2n

n

�
� 2
�
/n. This mean value is 18475.4 when n = 10.

We have the following analogous result in type eCn.

Proposition 6.2. Write n + 1 = 2↵(2m + 1). For any large enough integer l, the
growth function in type eCn satisfies:

c(n)
l = 2n +

1
4(n + 1)

X
u|2m+1

2u2↵+1
Ram 2m+1

u
(l). (20)

Proof. By proceeding as in the proof of Proposition 6.1 and this time using (15)
and (13), we get:

c(n)
l = 2n +

1
4(n + 1)

X
d|n+1

⇣
1� (�1)

n+1
d

⌘2d
Ramn+1

d
(l).

To finish, notice that a term in the sum is zero unless d = 2↵u for u a divisor of
2m + 1.

This shows that again, for large n, in the periodic range, the number c(n)
l is close

to the mean value 2n + 4n/(n + 1).

It is possible to write the same kinds of expressions regarding the number of FC
involutions of length ` in all a�ne types. We will not give details here, and we just
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mention that the same concentration phenomenon occurs regarding the distribution
of the values on a period.

We shall simply indicate a surprising observation in type eAn�1: there exists a
simple relation between growth functions for FC elements and FC involutions (for
long elements). In the following statement, �(Y ) is the true-false function on the
property Y , which is equal to 1 if Y is true, and 0 otherwise.

Proposition 6.3. For all m, and large enough l (depending on m), we have

a(2m)
l =

8><
>:

a(m)
l/2 + 2�(m divides l/2) if l and m are even,

a(m)
(l+m)/2 + 2�(m divides (l + m)/2) if l and m are odd,

0 if l and m have opposite parity.

Proof. We work with generating functions for a given m. Use (8) with q and n
replaced by q2 and m respectively, and (11) with n replaced by 2m. This yields

AFCI
2m�1(q) ⌘ qm2

✓ eAFC
m�1(q

2) +
2

1� q2m

◆
. (21)

To conclude, notice that m2 is congruent to 0 (respectively m) modulo 2m if m is
even (respectively odd), and then equate the coe�cient of ql in both sides of (21).

7. A Cyclic Sieving Phenomenon

In this short section, we record an occurrence of the cyclic sieving phenomenon [12,
14] which is new to our knowledge. We believe the method of proof is in any case
interesting: although fully commutative elements are not involved in the statement
of our proposition, it turns out that a crucial part of the proof is to use the two
di↵erent methods of counting long fully commutative heaps of type eA, respectively
in [3] and Section 4.

Let X be a finite set endowed with the action of a finite cyclic group C = hci of
order n. Also let P be a polynomial in N[q]. Denote by Xg the subset of elements
of X fixed by g 2 C, and recall that ⇠n := e2i⇡/n.

Definition 7.1 (Cyclic Sieving Phenomenon). The triple (X,C, P ) exhibits
the cyclic sieving phenomenon if

P (⇠j
n) = |Xcj | for any j 2 {0, . . . , n� 1}. (22)

Here we take for X the set Ǒn of lattice paths defined in Section 2; we consider
such paths as drawn on the “cylinder” (Z/nZ)⇥ Z. The cyclic action is generated
by the rotation r which rotates paths one unit to the right. Finally we choose the
polynomial Ǒn(q), which enumerates the paths in Ǒn according to their area.
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Proposition 7.2. The triple (Ǒn, hri , Ǒn(q)) exhibits the cyclic sieving phenomenon.

Proof. We will evaluate both sides of (22). For the right-hand side, we need to
count paths fixed by a power rj . First notice that rj and r(n,j) generate the same
subgroup of C (they have the same order n/(n, j)), hence it is equivalent to count
paths fixed by r(n,j). Such paths are clearly concatenations of n/(n, j) identical
paths of length (n, j), where the repeated portion is allowed to be any element of
Ǒ(n,j). Since this last set has cardinality

�2(n,j)
(n,j)

�
(see [3, Proposition 2.6]), we obtain

���Ǒrj

n

��� =
✓

2(n, j)
(n, j)

◆
.

Now we need to evaluate the polynomial Ǒn(q) at q = ⇠j
n. Note that this is

a priori not obvious, since the polynomial does not possess a nice expression as
far as we know: it can only be computed recursively thanks to certain functional
equations from [3].

The idea is to use the observation from Remark 4.3: we have for a certain
polynomial Q(q) the equality

Ǒn(q) =

2n
n

�
q

+ (1� qn)Q(q),

so both polynomials Ǒn(q) and
⇥2n

n

⇤
q

take the same values at nth roots of unity.
These were calculated in Lemma 3.3, and indeed match the values found for the
fixed points.
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