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Abstract
Let p be an odd prime number, and X a large real number. In this note, we consider
the lower and upper bounds of the number of pure number fields of degree p with
the absolute values of discriminants at most X by elementary methods.

1. Introduction

Let n be a positive integer, X a large positive number, and N, (X) the number of
number fields F' of degree n with |d(F)| < X. Here d(F') is the discriminant of a
number field F'. A well-known conjecture asserts that

Np(X) ~ enX

for some ¢,,. This conjecture has been proved for n = 2, 3, 4, and 5 ([3], [1], [2]).
However, this problem is very difficult and deep. In this paper, we consider the
distribution of pure number fields of odd prime degree by elementary methods.

Let p be an odd prime number, and F' a number field of degree p. If there exists
a p-free positive integer n > 1 such that F = Q(¢/n), then we shall call F a pure
number field of degree p. (If there is no prime number [ such that [¥|n, then n is
said to be k-free.) For X > 0, we denote the number of pure number fields F' of
degree p with |d(F)| < X by P,(X).

Theorem 1. For an odd prime number p, we have

%Xﬁ < Py(X) < %X
where ((s) is the Riemann zeta function,
PPl ppl 2
(p? = 1)p?
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and
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(p+1)pr—1  (p+1)pr—T

For example, P5(X) is the number of pure cubic fields F' with |d(F)| < X, and

1 37
VX < P(X) < oo XL
PN A )
To show this theorem, we use two important lemmas.
First, we explain a result of Cohen and Robinson [4]. Let k, ¢ > 1 be positive
integers, a € Z/qZ, and X a real positive large number. We set

Qr(X;a,q) =t{n: k-free < X, n = a (mod q)}.

If there is a k-free positive integer n such that n = a (mod ¢), then n = ¢q + a for
some ¢ € Z and gcd(a, q) must be k-free. Thus, since Qx(X;a,q) = 0 when ged(a, q)
is not k-free, we assume gcd(a, q) is k-free.

A divisor d > 0 of ¢ is called a unitary divisor when ged(d, g/d) = 1. If d is a
unitary divisor of g, we write d|.q. The largest unitary divisor of ¢ which is a divisor
of a is denoted by (a, q).. Moreover, we denote the core of H by Hy. Namely, Hy
is the largest square-free divisor of H.

In [4], Cohen and Robinson proved the following result.

Lemma 1. Let H := (a,q).. We have

o4 et (HG/H) 1 ;
Qi) = g wya q O

where

Ji(n) = n* 1;[ (1—%)

Liprime

and

For example, if H = 1, then

1 1\t 1 .
Qk-(X;a,fJ):a ll_q[ (l_l_k) mX+O(\/)_()-

Next lemma computes the discriminants of pure number fields.
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Lemma 2 (Fujisaki [5], p.133). Let p be an odd prime number, n a p-free positive
integer, and ng the core of n. Put F = Q(¥/n). We have

d(F) = (—1)%])1’_2(710)19_1 if nP~1' =1 mod p?,
(=1)"= pP(no)*=" if nP~1 #1 mod p*.

Since the author doesn’t find the proof of this lemma in the literature, and the

original proof was published in Japanese, we shall sketch the proof here. Every

p-free positive integer n can be put uniquely into the form n = fz_ll al where

a; € Lo and ng = Hfz_ll a;. Put
1
P -t
ij—[2]p
aj = <| I a; * )
i=1

for j =0,1,--- ,p — 1. Let n be the Z-module generated by ag,--- ,ap—1. We can
check d(n) = (OF : n)?d(F) where O is the ring of integers of F', and d(n) is the
discriminant of n as Z-module. By algebraic argument, we obtain

d(n) = (=1)"% p"(ng)? !

and

p if n?~' =1 mod p?,
(OF : ‘(1) = . 1 5
1 if n?7* # 1 mod p°.

For more details, refer to [5].

2. Proof
First, we consider the upper bound. It is obvious that

Pp(X) < §{n : p-free > 1,]d(Q(¥/n))| < X}

2
p

= Z #{n : p-free > 1,n = a(mod p?), |d(Q(¥/n))| < X}

a=1
P2
=: Z P, q(X).
a=1

If a?~! = 1(mod p?), we have

P, o(X) = t{n : p-free > 1,n = a(mod p?),p? " *nL "' < X}
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by Lemma 2. Since n < ng_l for p-free number n, we see

X 2
PP;G(X) S QP (pp27a/7p )

in this case. Similarly, if a?~! # 1(mod p?), we obtain

X 2
Pru(X) < Q, (ﬁ,a,p )

by Lemma 2.
We can estimate @, (X; a,p?) for a =1,2,--- ,p? by using Lemma 1. Note that
(a,p?)« = p? if a = p? and (a,p?), = 1 otherwise. Thus, we have

pr 2 1
Qp(X;a,p°) ~ —— —X,
2 ) PP —1¢(p)
Whena:1,~-,p2—1,and
pP~2 -1 1
Q X;p2ap2 ~ X
2 ) pP—1 ((p)

Therefore, for a large number X, we obtain that

Pp(X) = Z Ppa(X) + Z Ppa(X)

aP~1=1(mod p?) a?~1%£1(mod p?)
X X
< Z Qp (ﬁﬂlaﬁ) + Z Qp (—p;a,P2>
a?~1=1(mod p?) p aP~1#1(mod p?) p
2 1 X p=2 1 X
- Y et Y e
pP —1¢(p) p? p? —1¢(p) p?

aP~1=1(mod p?) aP~1z1(mod p2)

a#p2
pr-1 1 X
+ pP —1 ((p) pP
Y S SN pH_l)X
B ((p 1) o — 2 " =) = p = 1pr ) )
(et

Thus, we have proved that P,(X) < A,X/{(p).
Finally, we consider the lower bound. Since Q(¥/n) # Q(¥/m) for distinct square-
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free numbers m and n, it is obvious that

P,(X) > #{n : square-free > 1,d(Q(¢/n)) < X}

2

= Zﬁ{n : square-free > 1,n = a(mod p?),d(Q(¢/n)) < X}
a=1

=Y P} (X).
a=1

If a?~! = 1(mod p?), we have
P, (X) = #{n : square-free > 1,n = a(mod p?), PP 2nk 7 < X}

. _ -1
by Lemma 2. Since n?~1 > nf™" we see

P;,Q(X) > Q2 <<p5(2) p-1 ;a,p2>

in this case. Similarly, if a?~! # 1(mod p?), we obtain

P (X)>Q ((g) " ;a,p2>

Since ged(p?, p?) = p? is not square-free, we see that

Q2(X;p%, p%) = 0.

by Lemma 2.

By Lemma 1, we have

9 1
Q) ~ e~

fora=1,2,---,p* —1.
Therefore, for a large number X, we obtain that

P(X)> > )Qz((p£(2>p_il;a,p2>+ > Qz((g)ﬁ;aﬁ)

aP~1=1(mod p2 aP=1%1(mod p2)
azp?

~ 0~V () "o e () .

_ ( 1 n P > X1
(p+pi=t  (p+1pr1 ) C(2)
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Thus, it holds that P,(X) > BpXﬁ/((Q). This completes the proof of the asser-
tion.
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