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Abstract
Let p be an odd prime number, and X a large real number. In this note, we consider
the lower and upper bounds of the number of pure number fields of degree p with
the absolute values of discriminants at most X by elementary methods.

1. Introduction

Let n be a positive integer, X a large positive number, and Nn(X) the number of
number fields F of degree n with |d(F )|  X. Here d(F ) is the discriminant of a
number field F . A well-known conjecture asserts that

Nn(X) ⇠ cnX

for some cn. This conjecture has been proved for n = 2, 3, 4, and 5 ([3], [1], [2]).
However, this problem is very di�cult and deep. In this paper, we consider the
distribution of pure number fields of odd prime degree by elementary methods.

Let p be an odd prime number, and F a number field of degree p. If there exists
a p-free positive integer n > 1 such that F = Q( p

p
n), then we shall call F a pure

number field of degree p. (If there is no prime number l such that lk|n, then n is
said to be k-free.) For X > 0, we denote the number of pure number fields F of
degree p with |d(F )|  X by Pp(X).

Theorem 1. For an odd prime number p, we have

Bp

⇣(2)
X

1
p�1  Pp(X)  Ap

⇣(p)
X

where ⇣(s) is the Riemann zeta function,

Ap =
pp+1 � pp�1 + pp�2 � 1

(pp � 1)pp
,
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and

Bp =
1

(p + 1)p
p�2
p�1

+
p

(p + 1)p
p

p�1
.

For example, P3(X) is the number of pure cubic fields F with |d(F )|  X, and

1
2
p

3⇣(2)

p
X  P3(X)  37

351⇣(3)
X.

To show this theorem, we use two important lemmas.
First, we explain a result of Cohen and Robinson [4]. Let k, q > 1 be positive

integers, a 2 Z/qZ, and X a real positive large number. We set

Qk(X; a, q) = ]{n : k-free  X,n ⌘ a (mod q)}.

If there is a k-free positive integer n such that n ⌘ a (mod q), then n = cq + a for
some c 2 Z and gcd(a, q) must be k-free. Thus, since Qk(X; a, q) = 0 when gcd(a, q)
is not k-free, we assume gcd(a, q) is k-free.

A divisor d > 0 of q is called a unitary divisor when gcd(d, q/d) = 1. If d is a
unitary divisor of q, we write d|⇤q. The largest unitary divisor of q which is a divisor
of a is denoted by (a, q)⇤. Moreover, we denote the core of H by H0. Namely, H0

is the largest square-free divisor of H.
In [4], Cohen and Robinson proved the following result.

Lemma 1. Let H := (a, q)⇤. We have

Qk(X; a, q) =
qk�1

Jk(q)
'⇤(Hk

0 /H)
Hk

0 /H

1
⇣(k)

X + O( k
p

X)

where

Jk(n) = nk
Y
l|n

l:prime

✓
1� 1

lk

◆

and

'⇤(n) = n
Y

le|⇤n
l:prime

✓
1� 1

le

◆
.

For example, if H = 1, then

Qk(X; a, q) =
1
q

Y
l|q

l:prime

✓
1� 1

lk

◆�1 1
⇣(k)

X + O( k
p

X).

Next lemma computes the discriminants of pure number fields.
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Lemma 2 (Fujisaki [5], p.133). Let p be an odd prime number, n a p-free positive
integer, and n0 the core of n. Put F = Q( p

p
n). We have

d(F ) =

(
(�1)

p�1
2 pp�2(n0)p�1 if np�1 ⌘ 1 mod p2,

(�1)
p�1
2 pp(n0)p�1 if np�1 6⌘ 1 mod p2.

Since the author doesn’t find the proof of this lemma in the literature, and the
original proof was published in Japanese, we shall sketch the proof here. Every
p-free positive integer n can be put uniquely into the form n =

Qp�1
i=1 ai

i where
ai 2 Z>0 and n0 =

Qp�1
i=1 ai. Put

↵j =

 
p�1Y
i=1

a
ij�[ ij

p ]p

i

! 1
p

for j = 0, 1, · · · , p� 1. Let n be the Z-module generated by ↵0, · · · ,↵p�1. We can
check d(n) = (OF : n)2d(F ) where OF is the ring of integers of F , and d(n) is the
discriminant of n as Z-module. By algebraic argument, we obtain

d(n) = (�1)
p�1
2 pp(n0)p�1

and

(OF : n) =

(
p if np�1 ⌘ 1 mod p2,

1 if np�1 6⌘ 1 mod p2.

For more details, refer to [5].

2. Proof

First, we consider the upper bound. It is obvious that

Pp(X)  ]{n : p-free > 1, |d(Q( p
p

n))|  X}

=
p2X

a=1

]{n : p-free > 1, n ⌘ a(mod p2), |d(Q( p
p

n))|  X}

=:
p2X

a=1

Pp,a(X).

If ap�1 ⌘ 1(mod p2), we have

Pp,a(X) = ]{n : p-free > 1, n ⌘ a(mod p2), pp�2np�1
0  X}
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by Lemma 2. Since n  np�1
0 for p-free number n, we see

Pp,a(X)  Qp

✓
X

pp�2
; a, p2

◆

in this case. Similarly, if ap�1 6⌘ 1(mod p2), we obtain

Pp,a(X)  Qp

✓
X

pp
; a, p2

◆

by Lemma 2.
We can estimate Qp(X; a, p2) for a = 1, 2, · · · , p2 by using Lemma 1. Note that

(a, p2)⇤ = p2 if a = p2 and (a, p2)⇤ = 1 otherwise. Thus, we have

Qp(X; a, p2) ⇠ pp�2

pp � 1
1

⇣(p)
X,

when a = 1, · · · , p2 � 1, and

Qp(X; p2, p2) ⇠ pp�2 � 1
pp � 1

1
⇣(p)

X.

Therefore, for a large number X, we obtain that

Pp(X) =
X

ap�1⌘1(mod p2)

Pp,a(X) +
X

ap�1 6⌘1(mod p2)

Pp,a(X)


X

ap�1⌘1(mod p2)

Qp

✓
X

pp�2
; a, p2

◆
+

X
ap�1 6⌘1(mod p2)

Qp

✓
X

pp
; a, p2

◆

⇠
X

ap�1⌘1(mod p2)

pp�2

pp � 1
1

⇣(p)
X

pp�2
+

X
ap�1 6⌘1(mod p2)

a6=p2

pp�2

pp � 1
1

⇣(p)
X

pp

+
pp�2 � 1
pp � 1

1
⇣(p)

X

pp

=
✓

(p� 1)
pp�2

(pp � 1)pp�2
+ (p2 � p)

pp�2

(pp � 1)pp
+

pp�2 � 1
(pp � 1)pp

◆
X

⇣(p)

=
✓

pp+1 � pp�1 + pp�2 � 1
(pp � 1)pp

◆
X

⇣(p)
.

Thus, we have proved that Pp(X)  ApX/⇣(p).
Finally, we consider the lower bound. Since Q( p

p
n) 6= Q( p

p
m) for distinct square-



INTEGERS: 15 (2015) 5

free numbers m and n, it is obvious that

Pp(X) � ]{n : square-free > 1, d(Q( p
p

n))  X}

=
p2X

a=1

]{n : square-free > 1, n ⌘ a(mod p2), d(Q( p
p

n))  X}

=:
p2X

a=1

P 0
p,a(X).

If ap�1 ⌘ 1(mod p2), we have

P 0
p,a(X) = ]{n : square-free > 1, n ⌘ a(mod p2), pp�2np�1

0  X}

by Lemma 2. Since np�1 � np�1
0 , we see

P 0
p,a(X) � Q2

 ✓
X

pp�2

◆ 1
p�1

; a, p2

!

in this case. Similarly, if ap�1 6⌘ 1(mod p2), we obtain

P 0
p,a(X) � Q2

 ✓
X

pp

◆ 1
p�1

; a, p2

!

by Lemma 2.
Since gcd(p2, p2) = p2 is not square-free, we see that

Q2(X; p2, p2) = 0.

By Lemma 1, we have

Q2(X; a, p2) ⇠ 1
(p2 � 1)⇣(2)

X

for a = 1, 2, · · · , p2 � 1.
Therefore, for a large number X, we obtain that

Pp(X) �
X

ap�1⌘1(mod p2)

Q2

 ✓
X

pp�2

◆ 1
p�1

; a, p2

!
+

X
ap�1 6⌘1(mod p2)

a6=p2

Q2

 ✓
X

pp

◆ 1
p�1

; a, p2

!

⇠ (p� 1)
1

(p2 � 1)⇣(2)

✓
X

pp�2

◆ 1
p�1

+ (p2 � p)
1

(p2 � 1)⇣(2)

✓
X

pp

◆ 1
p�1

=

 
1

(p + 1)p
p�2
p�1

+
p

(p + 1)p
p

p�1

!
X

1
p�1

⇣(2)
.
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Thus, it holds that Pp(X) � BpX
1

p�1 /⇣(2). This completes the proof of the asser-
tion.
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