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Abstract
It is an open problem whether (**) is divisible by 4 or 9 for all n > 256. In
connection with this, we prove that for a fixed uneven m the asymptotic density of
k’s such that m { (ZI;H) is 0. To do so we examine numbers of the form o* in base
p, where p is a prime and («,p) = 1. For every n and a we find an upper bound
on the number of k’s less than a such that (a*), contains less than n digits greater
than §. This is done by showing that every sequence of the form (o, ...,01,00),
where 0 < g; < p for i > 1 and oy is in the residue class generated by a modulo p,

occurs at specific places in the representation (o/“)p as k varies.

1. Introduction

A well known conjecture by Erdés states that the central binomial coefficient (2:)
is never squarefree for n > 4. The problem was finally solved in 1996 by Granville
and Ramar [5], but is still inspiring further investigation of the central binomial
coefficients. One question left unanswered can be found in Concrete Mathematics

[4] and is the following conjecture, which is the starting point of this paper.

Conjecture 1.1. The central binomial coefficient (27:1) is divisible by 4 or 9 for

every n > 4 except n = 64 and n = 256.

Since 4 divides (277) when n is not a power of 2, we consider only binomial

coefficients of the form (2’;1) in our study of the conjecture. By Kummer’s theorem,
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the greatest exponent of a prime p dividing the central binomial coefficient (27:‘) is
equal to the number of carries as n is added to itself in base p. Thus, to prove the
conjecture it is sufficient to show that there are at least 2 carries when 2% is added
to itself in base 3 and k > 8.

In relation to this, Erdés conjectured in 1979 [2] that the base 3 representation
of 2% only omits the digit 2 for & = 0,2, 8, noting that no methods for attacking it
seemed to exist.

Methods for analysing the digits of powers of a number « in prime bases are
scarce, and further developing such methods is what most of this paper will be
concerned with.

Considering the periodicity of the base p representation of o, for a prime p and
(p, ) = 1, we find new patterns that allow us to bound the function

Sy(a) =# {0 < s <a| (a®), contains less than n digits greater than g} .

Specifically, we show that every sequence of the form (oy,...,01,00), where 0 <
o; < p for i > 1 and oy is in the residue class generated by « modulo p, occurs at
given places in the representation (ak)p as k varies.

Interestingly, if p is not a Wieferich prime base «, it turns out that this system
occurs on every digit of (aF),.

We use the above observations to show that

n—1 1 ptl
S'(a) <8 (log,(a))" "a og, (#3 ), (1)
and in special cases we improve results due to Narkiewicz [8], and Kennedy and

Cooper [1]. The bound (1) is used to prove that for any odd m € N, the set of
numbers k such that m { (2;:1) has asymptotic density 0, which in the case m =9
specifically addresses conjecture 1.1.

Lastly, we have used computer experiments to improve a result due to Goet-
gheluck [3] which confirmed Conjecture 1.1 for all n < 242107,

Theorem 1.2. The central binomial coefficient (27?) is divisible by 4 or 9 for every
n such that 4 <n < 210" except for n = 64 and n = 256.

See the Appendix for source code.

2. Large Digits in Prime Bases

In this section we explore the base p representation of powers of an integer a;, where
p is a prime not dividing a. We say that a digit n is “small” if n < £ and “large”
otherwise. Further, p will always denote an odd prime, and o > 1 an integer with
(Oé,p) =1L

The main goal of the section is to bound the following function in various ways.
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Definition 2.1. Let p be an odd prime and a,n € N. Fix « such that pt«. Then
set
Sy (a) =#{0 < s <al (a*), contains < n large digits} .

Bounding the S} is done by considering periodic properties of a® in base p as k
varies.

2.1. Notation and Definitions

Definition 2.2. Let p be a prime and n,k € N. We write p* || n if p* | n and
Pt 4 n, ie., if k is the greatest exponent of p dividing n.

Definition 2.3. We define the following:
e §={a* modp|k € Z},ie §is the set of residues generated by o modulo
p.
o 0 =#{aco|0<a<}§} ie 0 is the number of small residues in 4.
e v =ordy(a) = 9]
Definition 2.4. Let n € Ng. We let A,, denote the set of sequences of the form
(OnyOp—1y--.,01,00),
where cp € d and 0 < o; <pfor 1 <i<n.

Definition 2.5. Let m € N be represented in base p as m = Zizo a;p*, where 0 <
a; < p. To pinpoint specific digits we make the following definitions: ax = (m),[k]
and (ag,---,a1) = (m)plk: 1],k > 1.

2.2. Sequences

We will now consider the representations (a*), when s varies to show how members
of Ay occur as subsequences of these representations.
First, we need a couple of lemmas.

Lemma 2.6. Let p be an odd prime and o > 1 be given such that (p,a) = 1. Let
k+1

further pt || o — 1 for some t >0 and k > 0. Then p'*™ || a??"™ — 1.

Proof. Let P = up? + 1 with (u,p) = 1. Then

P = (up® + 1)p =1+ up!tt + 2p* (g) + R,

where R is divisible by p?" and thus divisible by p*? since ¢ > 0. Further, p | (}),
so p'2 [ u?p? (5) and we get

T = 1 4t (mod p'™?),

showing that pt*1 || """ — 1. O
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Lemma 2.7. Let p be an odd prime and o > 1 be given such that (p,a) = 1.
Assume that p™ || ¥ — 1. Then

p | o — 1 and ord,-+x () = A"

for every k > 0.

Proof. The first part follows easily by induction on k using Lemma 2.6. For the
second part, note that

v = ordy(a) | ord,-+x(a) and ord,-+x(a) | yp*.

Thus, ord,-+x(a) = vp” for some r < k. By the first part, we have p R

a1, 50 p"tE 4 a7 — 1 and we must have ord,+x (a) = yp". O

With these lemmas at hand we are ready to analyse the base p representation
(a®)p. To do so, we use the following definition.

Definition 2.8. Let a = ...asa1a¢ be any integer represented by an infinite se-
quence (a;)ien, in some base. Then we define

crr(a) = (@rip—1,.-.,0r41,0r,00).
We make this definition since our interest lies in the digits underlined here:
...(17-+k_1...(17-...a1@,

because all the elements of A, will appear periodically as subsequences of (a®),
on these positions, when s changes. This is captured in the main theorem of the
section.

Theorem 2.9. Let p be an odd prime and a > 1 be given such that (p,a) = 1.
Further, let 7 > 0 be the integer satisfying p™ || ¥ — 1. Then for any k >0

{eri((@®)p) [0 < b <yp"} = Ag.

Proof. Let T := {c;1((a),) | 0 <b < yp*}. Clearly, T C Ay since every member
of T is of the form (o), 0%_1,...,01,00), where 0 < o; < pfor 1 <i < kand gy € 9,
because (a?),[0] € § for any b > 0.

We now prove T = Ay, by showing |T| = vp* = |Ax|, where the last equality
already follows from the definition of Ag.

Since p” || @ — 1 both (a®),[r —1: 0] and (a?),[0] are periodic with respect to
b with least period v and no repetitions in the period. This means that for b,¢ > 0
we have (a®),[r —1:0] = (a®),[r — 1: 0] if and only if (a®),[0] = (a*),[0].

Now, assume for contradiction that ¢, x((a?),) = ¢, x((af),) for some 0 < b <
¢ < vp®. Since (ab),[0] = (a®),[0] we have (a®),[r —1: 0] = (a),[r —1: 0], so
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(@)t +k—=1:0] = (a)p[r +k —1:0], ie. a® = a® (mod p™*). Therefore,
p" Tk | ab(a=? — 1), but this means that p™** | a°~% — 1 contradicting Lemma 2.7
since0<c—b< 'ypk.

Thus, all the elements in the definition of T" are different, and |T| = yp”. O

2.2.1. Wieferich Primes

The main result of the section has a curious corollary related to the Wieferich
primes.

Definition 2.10. Let p be a prime and « > 1 be given such that (o, p) = 1. Then
p is a Wieferich prime base a if p? | a7 — 1.

Since numerics [6] indicate that for any « > 1 the Wieferich primes base « are
somewhat scarce, it is interesting that the following elegant property holds for any
(p, &) such that p is not a Wieferich prime base a.

Corollary 2.11. Let p be a prime which is not a Wieferich prime base a. Then
{(ab)p[k :01]0<b< ’ypk} = Ay.

Proof. Since p is not a Wieferich prime base «, we have p! || a”. Noticing that
c1,k(a) = alk : 0] the corollary follows directly from Theorem 2.9. O

Thus, p not being a Wieferich prime base « implies that the first k£ + 1 digits of
(o), will form all sequences of Ay periodically as s varies.
2.3. Bounds on Sg

The findings of the previous section allow us to obtain various bounds on the func-
tion §7. First we introduce a lemma, which is a step on the way to bounding S
for n = 1.

Lemma 2.12. Let s,t > 0, p be a prime, and v = ord,(a). Then we have
p+1 ¢
1 ¢
S, (s7p") < st <T> .

Proof. The number of sequences of A; containing only small digits is 8 (pT"H)t. Thus,
by Theorem 2.9 there are at most 6 (p—;l)t integers 0 < h < 7p', such that (a®),
does not contain any large digits. Now, letting p” || ¥ — 1 we have, by Lemma
2.7, that the last 7+t — 1 digits of (o), are periodic with respect to h with least
period vp' and no repetition in the period. Thus,

A= {eri((@®)p) [0 b <} = {era((@®)y) [ 17" <0< (r+ 1)yp'}
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for every r € Ny, and we can see that there are at most 6 (p—;l)t integers rypt <
h < (r + 1)yp! such that (o), does not contain any large digits.

This yields
t
1 ¢ p+1
Sp(syp’) < b <T> :
]

Now, the following theorem improves a result by Narkiewicz [8] by a constant
factor.

Theorem 2.13. Let o = 2 (mod 3) in the definition of S. For every a € N we
have Si(a) < 1.3a'°83(2),

Proof. The theorem obviously holds for a« = 1. Now consider an a > 2, and let s,t
be given such that s € {1,2} and s-2-3" <a < (s+1)-2-3" We now have

t <logg(a) — logs(2s),
and since Si clearly is weakly increasing and by Lemma 2.12, we get
Si(a) <S8y ((s+1)-2-3") < (s+1)-2" < (s+1)-27108a(2) . glogs(a),
For s € {1,2} the constant (s 4 1) -2~ °8:5(2%) is maximised by s = 1, and so
Si(a) < 2-27108(2) . gloga(@) < 1 341085(2), 0

The function S}, for m > 2 is studied by R. E. Kennedy and C. Cooper [1], and
if we consider only the cases when m is a prime, we get the following improvement
of their results, which replaces a factor increasing with m with a constant.
Theorem 2.14. Let p be a prime and « arbitrary in the definition of S. Then for

all a € N, we have Sé(a) < 4aos (7).

Proof. The theorem holds for a < v since a < 402 (") for o < .

Now let a > v and s,t be integers with 0 < s < p such that syp’ < a < (s + 1)yp'.
Now, t < log,(a) — log,(s7), and letting uu = log, (%) we get, by Lemma 2.12,

t log, (a)—log,, (sv)
1 P P
sha) < S+ 1) < 5+ 00 (151 ) < o (217
= (s+1)0(sy) " a".

Since 0 < v < p we get

_s+l 2

1 s+1 1—p p s+1 1—p p
Spla) s — =7 M < —=p'a i L
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Considering =t! we see that 4 () = s7#71(s(1 — p) — p), and thus =£! is

SH ds \ sk
strictly decreasing for s € |1, 1%“ and strictly increasing for s € (£ “,p] and
consequently attains its maximum on [1, p] either at 1 or p. Since s = 1,s = p both
yield L = pp—f =2, we get S (a) < 4a’. O

Finally, we generalize our observations regarding S

Lemma 2.15. Let s >0, t > 1, p be a prime, and v = ord,(a). Then we have

t
n t n—1 p+ 1
Sy (syp") < 287t <2> :

Proof. For t =1 the result is clear. Now, assume ¢t > 1.

First, we count the number of sequences 17 € A; such that n contains less than n
large elements. This is done by counting for each ¢ < n how many sequences n € A,
that contain exactly ¢ large elements.

For each ¢ we split up into two cases:

Case 1: The last element of 7 is large (which means ¢ > 0). This element can then
be chosen in v — 6 ways, and there are (,)) (p—gl)z_l (%)t“_Z
the remaining ¢ elements such that exactly ¢ — 1 of them are large.
Case 2: The last element of 7 is small. This element can then be chosen in 6 ways,

ways to choose

1N t—i ..
and there are (f) (”2—1)1 (pTH) ’ ways to choose the remaining ¢ elements such that
exactly i of them are large.

Thus, we can express the number of elements in A; containing less than n large

elements by

So-o( ) (7)) R0 ) ()
<("5) %)

=0
n—1

t
p+1 i
<v<—2 ) S
1=0

since t > 1.

Now, as in the proof of Lemma 2.12, we can conclude by Theorem 2.9 and
Lemma 2.7 that for every r € Ny there are at most 2yt" ! (pTH)t integers rypt <
k < (r + 1)yp’ such that (a¥), contains less than n large digits. Thus, we have

t
n t n—1 p+ 1
Sy (s7p") < 271 <T> :
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O

Theorem 2.16. Let p be a prime and « arbitrary in the definition of S. Then for
1
all a,n € N, where a > yp, we have S}}(a) < 8logp(a)"*1a1°gp(%)

Proof. Let a > vp be given, and s,t be integers with 0 < s < p and ¢ > 1 such that
syp' < a < (s+ 1)yp'. Now, t <log,(a) —log,(sy), and letting u = log, (2£1) we
use Lemma 2.15 and the fact that %Ml’yl_“ < 4 from the proof of Theorem 2.14 to
get

Si(a) <S) ((s+ 1))

0
<2(s+ 1)yt t (%)

log,, (a)—log,, (s7)

n—1 (P +1 P P
< 2(s 4 1)y (log,(a) —log,(s7)) <—2 )
< 2(s +1)y(s7) " log,(a)" " a

s+1

=9 n—1_u
SH

7' log,(a)"a

<8 logp(a)"_lalogp(%l)

3. Application to Central Binomial Coefficients

This section will apply the bounds on S to a generalisation of Conjecture 1.1 in
order to show that the set of numbers not satisfying the conjecture restricted to the
case n = 2° has asymptotic density 0.

For this we need the following theorem by Kummer.

Theorem 3.1 (Kummer [7]). Let n,m > 0 and p be a prime. Then the greatest
ezponent of p dividing (";m) is equal to the number of carries, when n is added to
m in base p.

Further we define the following function:
Definition 3.2. Let m € N be odd. Then we define
25+1
()}
It is clear that to show Conjecture 1.1 we would have to bound 7y by Z9(a) < 5 for

all a. Instead we can get a partial result by connecting 7 and S in the following
way:

Tm(a)z#{0§s<a
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Lemma 3.3. Let a,n € N, a = 2 in the definition of S, and p be an odd prime.
Then Tyn(a) < S (a).

Proof. Adding 27 to itself in base p will yield at least one carry for every large digit
in (2°),. Thus, by Kummer’s theorem, we must have T« (a) < S)'(a). O

With this at hand, it is possible to give an asymptotic upper bound on 7, for every
odd m.

Theorem 3.4. Let m > 1 be odd and let p be the greatest prime dividing m. Then

Tn(a) =0 (abgp(%)“>
for any € > 0.

Proof. Assume m has prime factorisation m = pflpgz . -pf’“ with p; <p2 <--- <
pEt+1

pr- Then 8Pi(a) = O (logpk (a)ﬁk—lalogpk( 2 >> for all 1 <14 < k, since p; < pg,

and thus,

k 1 pr+1
To(a) < 3 8P (a) = 0 (logpk (a)P 1w (25 )) —, (alogpk( o )+6>
=1

for any € > 0. O

Although we still cannot give a definite answer to Conjecture 1.1, we do get the
following corollary.

Corollary 3.5. For every odd m the set of integers s such that m { (2;1) has
asymptotic density 0.

Proof. By Theorem 3.4 we have 7,,(a) = o(a). O

Since the case m = 9 is not special in this corollary, it seems natural to pose the
following conjecture, which strengthens Conjecture 1.1.

Conjecture 3.6. For every odd m there is an N € N such that m | (2;:1) for every
k> N.

It seems by Theorem 2.9 and by computer heuristics that the digits of (2°), are
uniformly distributed for large s in the sense that for any 0 < a < p most digits in
the representation have probability roughly 1/p of being a.

Assuming such a random distribution of the digits in the representation and
considering computer experiments on a selection of primes p < 200 has lead to the
following conjecture.
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Conjecture 3.7. For an odd prime, p, let ¢,(a) be the function satisfying p»(®) || a

. ((QMD _ 18 L o).

2k ) ) 2log(p)

for every a. Then
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Appendix

The following code checks that the central binomial coefficient (*") is divisible by
4 or 9 for every n such that 4 < n < 210" except for n = 64 and n = 256. The
Java-code checks the first 35 digits of the base 3 representation of 2* for every k
such that 0 < k < 10'3. Every k such that the first 35 digits of 2* do not contain
two 2’s is written to a file containing special cases. These cases are then checked
individually by the Python-code.
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JAVA source

import java.io.FileWriter;
import java.io.IOException;
import java.io.File;

class NewSearcher {
private static int[] number = new int[35];
private static int size = O;
private static final int MAX_SIZE = 35;

private static final String ERROR_FILE = "Check_needed.txt";

public static void main(String[] args) {
deleteFile (ERROR_FILE) ;

addNum(1) ;

for (int a=0; a<10000000; a++) {
for (int b=0; b<1000000; b++) {
if (doubleIt()) {
String output = String.format("%d’%06d", a, b);
System.out.println(output);
writeNumberToFile (ERROR_FILE, output);

private static void addNum(int num) {
if (size < MAX_SIZE) {
number [size] = num;
size ++;

public static boolean doubleIt() {
int totalCarry = 0;
int carry = O;
int i=0;

while (totalCarry < 2 && i<size) {
int res = (number[i]*2 + carry);
carry = (res>=3) 7 1 : 0;

number[i] = (res % 3);
if (carry==1) totalCarry ++;
it+;

>
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while (i<size) {
int res = (number[i]*2 + carry);
carry = (res>=3) 7 1 : 0;

number [i] = (res % 3);
i++;
}
if (carry == 1) {
addNum (1) ;
}
return (totalCarry<2);
}
public static void writeNumberToFile(String filename, String number)
{
try
{
FileWriter fw = new FileWriter(filename, true);
fw.write(number + "\r\n");
fw.close();
}
catch(I0Exception e)
{
System.out.println("I0Exception: " + e.getMessage());
}

}

public static void deleteFile(String filename) {
try {
File toDelete = new File(filename);
toDelete.delete();
} catch (Exception e) {

}
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Python source

13

def mod(n, md):
if n < 10:
return 2**n%md

return 2**(n%2)*mod(n/2, md)**2%md

def checkCarry(n):
tmp = n
count = 0
while tmp and count<2:
if tmph3 == 2:
count += 1
tmp /= 3

return count<2
fil = file("Check_needed.txt", "r")
nls = []
while True:

try:
next = int(fil.readline())

if checkCarry(mod(next, 3%%*50)):

nls.append(next)
except ValueError:
break

for i in nls:
if checkCarry(mod(i, 3%x80)):
print i




