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Abstract
In this paper, confirming a conjecture of Kaplan et al., we prove that every abelian
group G, which is of odd order or contains exactly three involutions, has the zero-
sum-partition property. As a corollary, every tree with |G| vertices and at most one
vertex of degree 2 is G-anti-magic.

1. Introduction

In 1990, Hartsfield and Ringel [2] introduced the concept of anti-magic graphs. An
anti-magic labeling of a graph with m edges and n vertices is a bijection from the
set of edges to the set of integers {1, 2, . . . ,m} such that all the n vertex-sums are
pairwise distinct, where the vertex-sum of a vertex v is the sum of labels of all
edges incident with v. A graph is called anti-magic if it has an anti-magic labeling.
Hartsfield and Ringel showed the anti-magicness of some graphs and conjectured
that all connected graphs except K2 are anti-magic.

The conjecture has received much attention. Many graphs have been proven to
be anti-magic, see [1, 3] for example. However, the conjecture is still open.

In [3], Kaplan, Lev and Roditty consider the following generalization of the
concept of an anti-magic graph. For an abelian group, let G• = G \ {0}.

Definition 1.1. ([3]) Let H = (V,E) be a graph, where |V | = n, |E| = m. Let G
be an abelian group and let A be a finite subset of G• with |A| = m. An A-labeling
of H is a one-to-one mapping f : E(H) ! A. Given an A-labeling of H, the weight
of a vertex v 2 V (G) is w(v) =

P
uv2E(H) f(uv).

(i) We shall say that H is A-anti-magic if there is an A-labeling of H such that
the weights {w(v) : v 2 V (H)} are all distinct.
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(ii) In the case that G is finite, we shall say that H is G-anti-magic if H is
G•-anti-magic.

They conjecture that a tree with |G| vertices is G-anti-magic if and only if G
is not a group with a unique involution. To tackle the conjecture, the following
definition is introduced.

Definition 1.2. ([3]) Let G be an abelian group and A a finite subset of G• with
|A| = n. We say that A has the zero-sum-partition property (ZSP-property) if, for
every partition n = r1 + r2 + · · · + rt of n, with ri � 2 for 1  i  t, there is a
partition of A into pairwise disjoint subsets A1, A2, . . . , At, such that |Ai| = ri andP

a2Ai
a = 0 for 1  i  t. In the case that G is finite, we shall say that G has the

ZSP-property if A = G• has the ZSP-property.

To verify that A has the ZSP-property, it su�ces to show that, for any non-
negative integers k and l with n = 3k + 2l, there is a partition of A into pair-
wise disjoint subsets A1, . . . , Ak, B1, . . . , Bl, such that |Ai| = 3, |Bj | = 2 andP

a2Ai
a =

P
b2Bj

b = 0 for 1  i  k and 1  j  l. Obviously, Bj = {bj ,�bj} for
some bj 2 A.

The following proposition shows the relation between the two definitions above.
A tree is called a 2-tree if it has at most one vertex of degree 2.

Proposition 1.3. ([3]) Let G be a finite abelian group with the ZSP-property. Then
every 2-tree with |G| vertices is G-anti-magic.

Therefore, to show that such a 2-tree is G-anti-magic, it su�ces to show the ZSP-
property of G. G. Kaplan, A. Lev and Y. Roditty suggest the following conjecture.

Conjecture 1.4. ([3]) Let G be a finite abelian group. Then G has the ZSP-property
if and only if either G is of odd order or G contains exactly three involutions.

The authors of [3] prove the necessity of the conjecture and verify the ZSP-
property for cyclic groups of odd order and elementary abelian groups of order
n = pk, where p is a prime congruent to 1 modulo 3. As a corollary, every 2-tree
with n vertices, where n is odd, is Zn-anti-magic. In particular, such a tree is
anti-magic.

In this paper, we completely prove the su�ciency of the conjecture.

Theorem 1.5. Let G be a finite abelian group of odd order or with exactly three
involutions. Then G has the ZSP-property.

Together with Proposition 1.3, we have

Corollary 1.6. Let G be a finite abelian group of odd order or with exactly three
involutions. Then every 2-tree with |G| vertices is G-anti-magic.
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For convenience, let G denote the set consisting of all abelian groups which are
of odd order or contain exactly three involutions. Notice that for every G 2 G, we
have G ⇠= Z2↵ � Z2� �K, where K is of odd order and ↵ = � = 0 or 1  ↵  �.
Since the properties and results in this paper are invariant under the isomorphism
between groups, we only need to consider a group in an isomorphism class. For
an integer a and the residue class group Zn, we use ā to denote the corresponding
residue class in Zn.

Throughout the paper, unions will always be disjoint.

2. A Lemma

In this section, we prove a lemma which plays an important role in the proof of the
main result.

Lemma 2.1. Let G 2 G and Bij(G) denote the set of all bijections from G to itself.
Then there exist �,' 2 Bij(G) (not necessarily distinct) such that a+�(a)+'(a) = 0
for every a 2 G. In particular, we may assume that �(0) = '(0) = 0.

Proof. First we prove an assertion: let G1, G2 2 G and suppose we have proven
the lemma for G1, G2, then the lemma holds for G = G1 � G2. Indeed, suppose
the resulting bijections are �1 and '1 for G1 and �2 and '2 for G2. Consider the
following maps:

� = (�1,�2) : G1 �G2 ! G1 �G2, (a1, a2) 7! (�1(a1),�2(a2))

and
' = ('1,'2) : G1 �G2 ! G1 �G2, (a1, a2) 7! ('1(a1),'2(a2)).

It is easy to see that � and ' are the desired bijections and thus the assertion is
proven.

By the assertion above and noting that this lemma is invariant under the iso-
morphism, it su�ces to prove the lemma for G of odd order and G = Z2↵ � Z2�

with 1  ↵  �.
The case when G is of odd order is very simple. Indeed, let �(a) = a and

'(a) = �2a for every a 2 G. Then these two maps are the desired bijections and
thus we are done.

Now, we tackle the case when G = Z2↵ � Z2� , whose elements are denoted by
(x̄, ȳ) with x, y 2 Z. The proof is by induction on |G|. We handle three basic cases.

Suppose first that G = Z2 � Z2. Then the following table gives the desired
bijections.

g (0̄, 0̄) (1̄, 0̄) (0̄, 1̄) (1̄, 1̄)
�(g) (0̄, 0̄) (0̄, 1̄) (1̄, 1̄) (1̄, 0̄)
'(g) (0̄, 0̄) (1̄, 1̄) (1̄, 0̄) (0̄, 1̄)
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Next suppose G = Z2�Z4. Then the following table gives the desired bijections.

g (0̄, 0̄) (0̄, 1̄) (0̄, 2̄) (0̄, 3̄) (1̄, 0̄) (1̄, 1̄) (1̄, 2̄) (1̄, 3̄)
�(g) (0̄, 0̄) (1̄, 0̄) (0̄, 1̄) (1̄, 1̄) (1̄, 2̄) (0̄, 2̄) (1̄, 3̄) (0̄, 3̄)
'(g) (0̄, 0̄) (1̄, 3̄) (0̄, 1̄) (1̄, 0̄) (0̄, 2̄) (1̄, 1̄) (0̄, 3̄) (1̄, 2̄)

Finally, suppose G = Z2 � Z8. We have a disjoint partition

G = {0}
[ 

5[
i=1

{ai,1, ai,2, ai,3}
!

, (2.1)

where ai,j 2 G and ai,1 + ai,2 + ai,3 = 0. Indeed, the following partition is such a
partition.

G = {(0̄, 0̄)}
[

{(1̄, 0̄), (1̄, 1̄), (0̄, 7̄)}
[

{(1̄, 2̄), (1̄, 4̄), (0̄, 2̄)}[
{(1̄, 3̄), (1̄, 7̄), (0̄, 6̄)}

[
{(1̄, 5̄), (1̄, 6̄), (0̄, 5̄)}

[
{(0̄, 1̄), (0̄, 3̄), (0̄, 4̄)}.

Define � and ' as follows.

�(a) =

8>>>><
>>>>:

0 if a = 0
ai,2 if a = ai,1 for some 1  i  5,
ai,3 if a = ai,2 for some 1  i  5,
ai,1 if a = ai,3 for some 1  i  5,

and

'(a) =

8>>>><
>>>>:

0 if a = 0
ai,3 if a = ai,1 for some 1  i  5,
ai,1 if a = ai,2 for some 1  i  5,
ai,2 if a = ai,3 for some 1  i  5.

It is easy to see that such � and ' are as desired.
Now we proceed to the induction part.
Suppose first that G = Z2↵ � Z2� with ↵ � 2. Then there exists a subgroup

G0 2 G such that G/G0
⇠= Z2�Z2. By the induction hypothesis, there are �0,'0 2

Bij(G0) such that a + �0(a) + '0(a) = 0 for every a 2 G0. Choose a set of coset
representatives for G/G0 to be {0, c, d,�c� d}. Note that

(c + G0)
[

(d + G0)
[

(�c� d + G0) =
[

b2G0

{c + b, d + �0(b),�c� d + '0(b)},

and every subset {c + a, d + �0(a),�c� d + '0(a)} is zero-sum. Thus define � and
' as follows.

�(a) =

8>>>><
>>>>:

�0(a) if a 2 G0

d + �0(b) if a = c + b for some b 2 G0,

�c� d + '0(b) if a = d + �0(b) for some b 2 G0,

c + b if a = �c� d + '0(b) for some b 2 G0,
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and

'(a) =

8>>>><
>>>>:

'0(a) if a 2 G0

�c� d + '0(b) if a = c + b for some b 2 G0,

c + b if a = d + �0(b) for some b 2 G0,

d + �0(b) if a = �c� d + '0(b) for some b 2 G0.

Such � and ' are as desired. Thus it remains to handle the case when ↵ = 1.
Suppose now that G = Z2 � Z2� . The cases when �  3 have been shown

in the base of the induction. Thus we may assume that � � 4 and there is a
subgroup G0 2 G such that G/G0

⇠= Z8. By the induction hypothesis, there are
�0,'0 2 Bij(G0) such that a + �0(a) + '0(a) = 0 for every a 2 G0. Since

Z8 = {0̄, 4̄}
[

{1̄, 2̄, 5̄}
[

{�1̄ = 7̄,�2̄ = 6̄,�5̄ = 3̄},

we can choose a set of coset representatives for G/G0 to be {0, e, c, d,�c�d,�c,�d, c+
d} with 2e 2 G0. Since G1 = G0 [ (e + G0) is a group and G0 < G1 < G, we have
G1 2 G. Thus there are �1,'1 2 Bij(G1) such that a + �0(a) + '0(a) = 0 for every
a 2 G1. Similarly as above, we have

(c + G0)
[

(d + G0)
[

(�c� d + G0) =
[

b2G0

{c + b, d + �0(b),�c� d + '0(b)}

and

(�c + G0)
[

(�d + G0)
[

(c + d + G0) =
[

b2G0

{�c + b,�d + �0(b), c + d + '0(b)}.

Thus G = G1 [ ([2|G0|
i=1 {ai,1, ai,2, ai,3}) where ai,1 +ai,2 +ai,3 = 0 for 1  i  2|G0|.

Define � and ' as follows.

�(a) =

8>>>><
>>>>:

�1(a) if a 2 G1

ai,2 if a = ai,1 for some 1  i  2|G0|,
ai,3 if a = ai,2 for some 1  i  2|G0|,
ai,1 if a = ai,3 for some 1  i  2|G0|,

and

'(a) =

8>>>><
>>>>:

'1(a) if a 2 G1

ai,3 if a = ai,1 for some 1  i  2|G0|,
ai,1 if a = ai,2 for some 1  i  2|G0|,
ai,2 if a = ai,3 for some 1  i  2|G0|.

Such � and ' are as desired. This completes the proof of the main part of the
lemma.

Finally, suppose we have found �,' 2 Bij(G) such that a + �(a) + '(a) = 0 for
every a 2 G. Consider new bijections �0,'0 defined by �0(a) = �(a) � �(0) and
'0(a) = '(a)�'(0) for every a 2 G. The final statement of the lemma follows.
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3. Some cases

When G is a cyclic group of odd order, it is a result of Kaplan et al.

Theorem 3.1. ([3]) Let G = Zn, where n is odd. Then G has the ZSP-property.

Using the same method, we can obtain the following lemma.

Lemma 3.2. Let t be a positive integer and

T = {�t,�(t� 1), . . . ,�1, 1, 2, . . . , t} ⇢ Z.

Then T has the ZSP-property.

Proof. Let k and l be nonnegative integers with 2t = 3k + 2l. We shall show that
there are pairwise disjoint subsets A1, A2, . . . , Ak, B1, . . . , Bl which form a partition
of T , such that |Ai| = 3, |Bj | = 2 and

P
a2Ai

a =
P

b2Bj
b = 0 for every 1  i  k

and 1  j  l.
If k = 0, that is, t = l, set Bi = {i,�i} for 1  i  t, and the lemma easily

follows. Thus we may assume from now on that k � 1. Note that 3|(t � l). We
define the following 3-subsets of T :

A1 = {1, t�l
3 + l + 1,� t�l

3 � l � 2},
A2 = {2, t�l

3 + l + 2,� t�l
3 � l � 4},

...
A t�l

3
= { t�l

3 , 2(t�l)
3 + l,�t},

A t�l
3 +1 = {2(t�l)

3 + l + 1,� t�l
3 � l � 1,� t�l

3 },
A t�l

3 +2 = {2(t�l)
3 + l + 2,� t�l

3 � l � 3,� t�l
3 + 1},

...
A 2(t�l)

3 �1
= {2(t�l)

3 + l + t�l
3 � 1,� t�l

3 � l � (2(t�l)
3 � 3),� t�l

3 + t�l
3 � 2}

= {t� 1,�t + 3,�2},
Ak = A 2(t�l)

3
= {t,�t + 1,�1},

and the following 2-subsets of T :

B1 = { t�l
3 + 1,� t�l

3 � 1},
B2 = { t�l

3 + 2,� t�l
3 � 2},

...
Bl = { t�l

3 + l,� t�l
3 � l}.

One can observe that T is the disjoint union of A1, A2, . . . , Ak, B1, B2, . . . , Bl. More-
over, all these subsets are zero-sum. Thus the lemma follows.
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Corollary 3.3. Let G be an abelian group and g 2 G of order n. Then the set

A = {tg, 2tg, . . . , itg, (n� it)g, (n� (i� 1)t)g, . . . , (n� t)g}

has the ZSP-property, where t and i are positive integers with it < (n� it).

Proof. Note that

A = {tg, 2tg, . . . , itg, (n� it)g, (n� (i� 1)t)g, . . . , (n� t)g}
= {�i,�(i� 1), . . . ,�1, 1, 2, . . . , i}tg.

The corollary follows directly from Lemma 3.2.

To prove the ZSP-property for general abelian groups, it is useful to introduce
a definition. We call a 6-subset C of an abelian group G good if C = {c, d,�c �
d,�c,�d, c + d} for some distinct c, d 2 G. Since

C = {c, d,�c� d} [ {�c,�d, c + d} = {c,�c} [ {d,�d} [ {c + d,�c� d},

our main idea is to obtain a partition of G• with as many good 6-subsets as possible.
Now we give some results in this direction.

Lemma 3.4. Let G = Zp � Zp where p is an odd prime.
(i) If p ⌘ 2 mod 3, then

G• =
(p2�1)/6[

i=1

Ci,

where C1, . . . , C(p2�1)/6 are pairwise disjoint good 6-subsets.
(ii) If p ⌘ 1 mod 3, then

G• = G•
�1

[
G•

0

[0
@(p�1)2/6[

i=1

Ci

1
A ,

where G�1 and G0 are distinct proper subgroups of order p and C1, . . . , C(p�1)2/6

are pairwise disjoint good 6-subsets.
Moreover, in both cases, G has the ZSP-property.

Proof. Let G�1 = h(0̄, 1̄)i and Gi = h(1̄, ī)i for 0  i  p� 1. Obviously, G• is the
disjoint union of G•

i , �1  i  p� 1.
We assert that, for all 0  j  p� 2, G•

j�1 [G•
j [G•

j+1 can be partitioned into
the disjoint union of good 6-subsets. Indeed, for j = 0,

G•
�1

[
G•

0

[
G•

1 = h(0̄, 1̄)i•
[
h(1̄, 0̄)i•

[
h(1̄, 1̄)i•

= h(0̄, 1̄)i•
[
h(1̄, 0̄)i•

[
h(�1̄,�1̄)i•

=
(p�1)/2[

i=1

{(0̄, ī), (̄i, 0̄), (�ī,�ī), (0̄,�ī), (�ī, 0̄), (̄i, ī)},
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and for j 6= 0,

G•
j�1

[
G•

j

[
G•

j+1

= h(1̄, j � 1)i•
[
h(1̄, j̄)i•

[
h(1̄, j + 1)i•

= h(1̄, j � 1)i•
[
h(�2̄,�2j)i•

[
h(1̄, j + 1)i•

=
(p�1)/2[

i=1

{(̄i, i(j � 1)), (�2i,�2ij), (̄i, i(j + 1)),

(�ī,�i(j � 1)), (2i, 2ij), (�ī,�i(j + 1))}.

The assertion follows.
Note that there are p + 1 Gi’s. Also note that 3|(p + 1) if p ⌘ 2 mod 3 and

3|(p� 1) if p ⌘ 1 mod 3. Thus Statements (i) and (ii) follow.
Finally, we show that G has the ZSP-property. Let k and l be nonnegative

integers with |G•| = 3k + 2l. Obviously, k is even.
Suppose p ⌘ 2 mod 3. We only need to choose k/2 good 6-subsets, each of which

is partitioned into the union of two zero-sum 3-subsets, and then partition each of
other 6-subsets into the union of three zero-sum 2-subsets.

Suppose then p ⌘ 1 mod 3. If k  (p�1)2/3, we first choose k/2 good 6-subsets,
each of which is partitioned into the union of two zero-sum 3-subsets; then partition
each of the others into the union of three zero-sum 2-subsets; finally partition G•

�1

and G•
0 into the union of (p�1)/2 zero-sum 2-subsets respectively. If k > (p�1)2/3,

then by Theorem 3.1, G�1 and G0 have the ZSP-property. Thus G•
�1 and G•

0 can
be partitioned into the union of (p� 1)/3 zero-sum 3-subsets respectively. Then we
choose k/2� (p� 1)/3 good 6-subsets, each of which is partitioned into the union
of two zero-sum 3-subsets, and then partition each of other 6-subsets into the union
of three zero-sum 2-subsets.

This completes the proof of the lemma.

Lemma 3.5. Let G = Z8. Then

G = {0̄, 4̄}
[

{1̄, 2̄, 5̄,�1̄,�2̄,�5̄},

where the latter subset is a good 6-subset.

Proof. Obvious.

Lemma 3.6. Let G = Z2 � Z2 � Zn where n � 1 is odd. Then

G• = {e1, e2, e1 + e2}
[

K•
[0
@(n�1)/2[

i=1

Ci

1
A ,
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where e1, e2, and e1 + e2 are the three involutions, K = h(0̄, 0̄, 1̄)i is the cyclic sub-
group of order n and C1, . . . , C(n�1)/2 are pairwise disjoint good 6-subsets. More-
over, G has the ZSP-property.

Proof. If n = 1, then the lemma follows trivially. Now assume that n > 1. Let
d = (0̄, 0̄, 1̄). Note that

G \ K = (e1 + K)
[

(e2 + K)
[

(e1 + e2 + K)

= {e1, e2, e1 + e2}
[

(n�1)/2[
i=1

{e1 + id, e2 + id, e1 + e2 � 2id, e1 � id, e2 � id, e1 + e2 + 2id}.

The partition is as desired.
Now we prove that G has the ZSP-property. Let k and l be nonnegative integers

with |G•| = 3k + 2l. Obviously, k is odd. If k  n, then choose (k � 1)/2 good
6-subsets, each of which is partitioned into the union of two zero-sum 3-subsets.
Together with {e1, e2, e1 + e2}, we have k zero-sum 3-subsets. Note that the set of
remainder elements is the union of zero-sum 2-subsets. The partition is as desired.
If k > n, all the good 6-subsets are partitioned into the union of zero-sum 3-subsets,
and then K• can be partitioned into the union of k � n 3-subsets and l 2-subsets
by Theorem 3.1.

This completes the proof of the lemma.

Lemma 3.7. Let G = Z2 � Z4 � Zn where n � 1 is odd. Then G has the ZSP-
property.

Proof. We consider the following partition of G0 = Z2 � Z4n, which is isomorphic
to G:

G•
0 = {(1̄, 1̄), (1̄, 4n� 1)}

[
{(0̄, 2n� 1), (0̄, 2n + 1)}

[
{(1̄, 2n), (1̄, 0̄), (0̄, 2n)}

[
A
[ 

n�1[
i=1

Ci

!
,

where

Ci = {(1̄, 1 + i), (1̄, 2n + i), (0̄, 2n� 2i� 1),
(1̄, 4n� (1 + i)), (1̄, 4n� (2n + i)), (0̄, 4n� (2n� 2i� 1))}

is a good 6-subset for every 1  i  n� 1 and

A = {(0̄, 2̄), (0̄, 4̄), . . . , (0̄, 2n� 2), (0̄, 2n + 2)), (0̄, 2n + 4)), . . . , (0̄, 4n� 2)},
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which has the ZSP-property by Corollary 3.3. Thus, for any nonnegative integers
k and l which satisfy |G•

0| = 3k + 2l and l � 2, there are pairwise disjoint zero-sum
subsets A1, . . . , Ak, B1, . . . , Bl, which form a partition of G•

0, such that |Ai| = 3 for
1  i  k and |Bj | = 2 for 1  j  l. Since G is isomorphic to G0, the conclusion
above also holds for G. To prove the lemma, it remains to deal with the cases l  1.

Suppose first that l = 0. Then |G| ⌘ 1 mod 3 and n ⌘ 2 mod 3. We have the
following partition of G = Z2 � Z4 � Zn:

G• =
(n�3)/2[

i=0

{(0̄, 1̄, ī), (0̄, 1̄, i + (n + 1)/2), (0̄, 2̄, (n� 1)/2� 2i)}

[0
@(n�1)/2[

i=1

{(1̄, 3̄, ī), (1̄, 3̄, i + (n� 1)/2), (0̄, 2̄, (n + 1)/2� 2i)}

1
A

[ 
n�1[
i=1

{(0̄, 3̄, ī), (1̄, 1̄, i + (n + 1)/2), (1̄, 0̄, (n� 1)/2� 2i)}
!

[
{(0̄, 1̄, (n� 1)/2), (0̄, 3̄, 0̄), (0̄, 0̄, (n + 1)/2)}[
{(1̄, 1̄, (n + 1)/2), (1̄, 3̄, 0̄), (0̄, 0̄, (n� 1)/2)}[
{(0̄, 2̄, (n + 1)/2), (1̄, 0̄, (n� 1)/2), (1̄, 2̄, 0̄)}

[
B,

where

B = {(0̄, 0̄, ī) : 1  i  n� 1, i 6= (n� 1)/2, (n + 1)/2}
[

{(1̄, 2̄, j̄) : 1  j  n� 1}.

Note that the subset {(0̄, 0̄, ī) : 0  i  n � 1}
S
{(1̄, 2̄, j̄) : 0  j  n � 1} is a

subgroup isomorphic to Z2n. Let � be an isomorphism between these two groups.
Moreover we may assume that

�(B) = {̄i : 1  i  2n� 1, i 6= n� 1, n, n + 1}.

Since �(B) has the ZSP-property by Corollary 3.3, so does B. Note that |B| = 2n�4
is a multiple of 3. Thus B can be partitioned into the union of zero-sum 3-subsets.
Therefore G• is the union of zero-sum 3-subsets, as desired.

Now suppose l = 1. Then 3| |G| and there is a subgroup L  G with G/L ⇠= Z3.
Let {c, 0,�c} be a set of coset representatives for G/L. Note that L 2 G. By
Lemma 2.1, there are �,' 2 Bij(L) such that a + �(a) + '(a) = 0 for every a 2 L.
Thus we have the following partition:

G• = {c,�c}
[ [

a2L•

{a, c + �(a),�c + '(a)}
!

,

as desired.
This completes the proof of the lemma.
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Lemma 3.8. Let G = Z2 � Z8 � Zn where n � 1 is odd. Then G has the ZSP-
property.

Proof. Similarly as in the proof of Lemma 3.7, we have the following partition of
G0 = Z2 � Z8n, which is isomorphic to G:

G•
0 = {(1̄, 1̄), (1̄, 8n� 1)}

[
{(0̄, 4n� 1), (0̄, 4n + 1)}

[
{(1̄, 4n), (1̄, 0̄), (0̄, 4n)}

[
A
[ 

2n�1[
i=1

Ci

!
,

where

Ci = {(1̄, 1 + i), (1̄, 4n + i), (0̄, 4n� 2i� 1),
(1̄, 8n� (1 + i)), (1̄, 8n� (4n + i)), (0̄, 8n� (4n� 2i� 1))}

is a good 6-subset for every 1  i  2n� 1 and

A = {(0̄, 2̄), (0̄, 4̄), . . . , (0̄, 4n� 2), (0̄, 4n + 2)), (0̄, 4n + 4)), . . . , (0̄, 8n� 2)}

which has the ZSP-property by Corollary 3.3. Let k and l be nonnegative integers
with |G•

0| = 3k + 2l. The cases l � 2 have been done by the partition above. To
prove the lemma, it remains to deal with the cases l  1.

Suppose first that l = 0. Then |G| ⌘ 1 mod 3 and n ⌘ 1 mod 3. If n = 1, such a
partition is given in (2.1). If n > 1, let L be the subgroup satisfying G/L ⇠= Z2�Z8.
Thus we can choose a set of coset representatives, say A, such that

A = {0}
[ 

5[
i=1

{bi, ci,�bi � ci}
!

.

Since L 2 G, there are �,' 2 Bij(L) such that a + �(a) + '(a) = 0 for every a 2 L
by Lemma 2.1. We have the following partition:

G• = L•
[ 

5[
i=1

[
a2L

{bi + a, ci + �(a),�bi � ci + '(a)}
!

.

Note that L is isomorphic to Zn, which has the ZSP-property by Theorem 3.1. Thus
L also has the ZSP-property. Since n ⌘ 1 mod 3, L• can be partitioned into the
union of zero-sum 3-subsets. Therefore G• is the union of zero-sum 3-subsets, as
desired.

Now suppose l = 1. The case is the same as the corresponding case in the proof
of Lemma 3.7.

This completes the proof of the lemma.
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Lemma 3.9. Let G = Z4 � Z4, G = Z4 � Z8 or G = Z8 � Z8. Then G has the
ZSP-property.

Proof. First we consider the case G = Z4 � Z4. It easily follows from the following
partition:

G• = {(0̄, 2̄), (2̄, 0̄), (2̄, 2̄)}
[

{(0̄, 1̄), (1̄, 2̄), (3̄, 1̄), (0̄, 3̄), (3̄, 2̄), (1̄, 3̄)}[
{(1̄, 0̄), (1̄, 1̄), (2̄, 3̄), (3̄, 0̄), (3̄, 3̄), (2̄, 1̄)},

where the latter two 6-subsets are both good.
Next we consider the case G = Z8 � Z8. Let L be the subgroup of G satisfying

L ⇠= Z2 � Z2 and G/L ⇠= Z4 � Z4. As seen above, we can choose a set of coset
representatives, say A, such that

A = {0, e1, e2,�e1 � e2}
[ 

2[
i=1

{bi, ci,�bi � ci,�bi,�ci, bi + ci}
!

,

where 2e1, 2e2 2 L. By Lemma 2.1, there are �,' 2 Bij(L) such that a + �(a) +
'(a) = 0 for every a 2 L. Thus

G• = L•
[

(e1 + L) [ (e2 + L) [ (�e1 � e2 + L)
[

[
1i2

a2L

{bi + a, ci + �(a),�bi � ci + '(a),�bi � a,�ci � �(a), bi + ci � '(a)},

where the latter 6-subsets are good. Since L[ (e1 +L)[ (e2 +L)[ (�e1� e2 +L) is
a subgroup isomorphic to Z4 � Z4, it has the ZSP-property by the first paragraph,
and so the ZSP-property of G follows.

Finally, we consider the case G = Z4 � Z8. Let k and l be nonnegative integers
such that |G•| = 3k + 2l. Consider the following partition:

G• = {(0̄, 1̄), (1̄, 2̄), (3̄, 5̄), (0̄, 7̄), (3̄, 6̄), (1̄, 3̄)}[
{(1̄, 1̄), (3̄, 2̄), (0̄, 5̄), (3̄, 7̄), (1̄, 6̄), (0̄, 3̄)}[
{(3̄, 1̄), (0̄, 2̄), (1̄, 5̄), (1̄, 7̄), (0̄, 6̄), (3̄, 3̄)}[
{0̄, 4̄), (2̄, 0̄), (2̄, 4̄)}

[
{(1̄, 0̄), (3̄, 0̄)}

[
{(1̄, 4̄), (3̄, 4̄)}[

{(2̄, 1̄), (2̄, 7̄)}
[

{(2̄, 2̄), (2̄, 6̄)}
[

{(2̄, 3̄), (2̄, 5̄)},

where the first three 6-subsets are good. When k = 1, 3, 5, 7, the desired partitions
follow from the partition above by partitioning some of the good 6-subsets into
zero-sum 3-subsets and others 2-subsets. It remains to show the case when k = 9.
Let L be the subgroup of G satisfying that L ⇠= Z2 � Z4 and G/L ⇠= Z2 � Z2. Let
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A = {0, e1, e2,�e1 � e2} be a set of coset representatives. Since L 2 G, there are
�,' 2 Bij(L) such that a + �(a) + '(a) = 0 for every a 2 L by Lemma 2.1. Thus

G• = L•
[ [

a2L

{e1 + a, e2 + �(a),�e1 � e2 + '(a)}
!

.

Since L has the ZSP-property by Lemma 3.7, L• can be partitioned into the union
of a zero-sum 3-subset and two zero-sum 2-subsets. Therefore, G• is the union of
nine zero-sum 3-subsets and two zero-sum 2-subsets, as desired.

4. Proof of the Main Result

Now we are in a position to give the proof of the main result.

Proof. Suppose the theorem is false and let G be the smallest group in G without
the ZSP-property.
Case 1. Suppose there is a subgroup L < G such that G/L ⇠= Zp � Zp, where p
is an odd prime congruent to 2 modulo 3. By Lemma 3.4, we can choose a set of
coset representatives, say A, such that

A = {0}
[0
@(p2�1)/6[

i=1

Ci

1
A ,

where Ci = {bi, ci,�bi�ci,�bi,�ci, bi+ci}, i = 1, . . . , (p2�1)/6 are pairwise disjoint
good 6-subsets. Since L 2 G, there are �,' 2 Bij(L) such that a + �(a) + '(a) = 0
for every a 2 L by Lemma 2.1. Thus we have the following partition of G•:

G• = L•
[ [

1i(p2�1)/6
a2L

{bi+a, ci+�(a),�bi�ci+'(a),�bi�a, ci��(a), bi+ci�'(a)},

where the latter 6-subsets are good. Since |L| < |G|, L has the ZSP-property, which
implies that G also has the ZSP-property, a contradiction.
Case 2. Suppose there is a subgroup L < G such that G/L ⇠= Zp � Zp, where p
is an odd prime congruent to 1 modulo 3. By Lemma 3.4, we can choose a set of
coset representatives, say A, such that

A = {0}
[

G•
�1

[
G•

0

[0
@(p�1)2/6[

i=1

Ci

1
A ,

where the images of G�1 and G0 in G/L are distinct subgroups of order p, G•
�1 =

{a 2 G�1 : a 62 L}, G•
0 = {a 2 G0 : a 62 L} and Ci = {bi, ci,�bi � ci,�bi,�ci, bi +
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ci}, i = 1, . . . , (p � 1)2/6 are pairwise disjoint good 6-subsets. The same as in the
Case 1, we have the following partition of G•:

G• = L•
[0
@ [

a2G•
�1

(a + L)

1
A[

0
@ [

a2G•
0

(a + L)

1
A

[ [
1i(p�1)2/6

a2L

{bi + a, ci + �(a),�bi � ci + '(a),

�bi � a, ci � �(a), bi + ci � '(a)}. (4.1)

We remark that [a2G�1(a + L) = L [ ([a2G•
�1

(a + L)) and [a2G0(a + L) = L [
([a2G•

0
(a+L)) are both subgroups of G. Now we want to show that G has the ZSP-

property, which will lead to a contradiction. Let k and l be nonnegative integers
with |G•| = 3k + 2l.

Suppose k  (p � 1)|L|/3. Since [a2G�1(a + L) is a smaller group in G, it has
the ZSP-property. Thus

�
[a2G�1(a + L)

�• is the union of k zero-sum 3-subsets
and (p|L|� 1� 3k)/2 zero-sum 2-subsets. Note that the remaining elements of G•

are the union of zero-sum 2-subsets. Thus G• is the union of k zero-sum 3-subsets
and l zero-sum 2-subsets. Now suppose k > (p � 1)|L|/3 instead. As a set of all
non-zero elements of a cyclic group of order p, the image of G•

0 in G/L is the union
of (p�1)/3 zero-sum 3-subsets in G/L by Theorem 3.1. Hence we may assume that
G•

0 = [(p�1)/3
i=1 {gi, hi,�gi � hi}. Thus

[
a2G•

0

(a + L) =
(p�1)/3[

i=1

[
a2L

{gi + a, hi + �(a),�gi � hi + '(a)}.

Note that the rest elements of G is the union of a subgroup with the ZSP-property
and several good 6-subsets, thus they can be partitioned into the union of k� (p�
1)|L|/3 zero-sum 3-subsets and l zero-sum 2-subsets. Thus, G has the ZSP-property,
a contradiction to the hypothesis.
Case 3. Suppose G = Z2↵ � Z2� � H, where |H| is odd, 1  ↵  � and
� � 4. Then there is a subgroup L 2 G such that L ⇠= Z2↵ � Z2��3 � H and
G/L ⇠= Z8. By Lemma 3.5, we can choose a set of coset representatives, say A, such
that A = {0, e} [ {b, c,�b� c,�b,�c, b + c}, where 2e 2 L. Since L 2 G, there are
�,' 2 Bij(L) such that a + �(a) + '(a) = 0 for every a 2 L by Lemma 2.1. Thus

G• = L•
[

(e+L)
[ [

a2L

{b+a, c+�(a),�b�c+'(a),�b�a,�c��(a), b+c�'(a)}.

Note that L[ (e+L) is a subgroup of G. So, L[ (e+L) has the ZSP-property and
thus G has the ZSP-property, a contradiction.
Case 4. Suppose G = Z2↵ �Z2� �H, where |H| > 1 is odd and 2  ↵  �. Then
there is a subgroup L 2 G such that G/L ⇠= Z2 � Z2 � Zn where n > 1 is odd. By
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Lemma 3.6, we can choose a set of coset representatives, say A, such that

A = {0, e1, e2,�e1 � e2}
[

K•
[0
@(n�1)/2[

i=1

Ci

1
A ,

where 2e1, 2e2 2 L, the image of K in G/L is a cyclic group of order n and Ci =
{bi, ci,�bi � ci,�bi,�ci, bi + ci} is a good 6-subset for every 1  i  (n � 1)/2.
Since L 2 G, there are �,' 2 Bij(L) such that a + �(a) + '(a) = 0 for every a 2 L
by Lemma 2.1. Thus,

G• = L•
[

(e1 + L)
[

(e2 + L)
[

(�e1 � e2 + L)
[ [

a2K•

(a + L)

[ [
1i(n�1)/2

a2L

{bi + a, ci + �(a),�bi � ci + '(a),

�bi � a, ci � �(a), bi + ci � '(a)}.

We now prove that G has the ZSP-property. Let k and l be nonnegative integers
with |G•| = 3k + 2l.

Suppose k  |L|. Since L[ (e1 +L)[ (e2 +L)[ (�e1� e2 +L) is a smaller group
in G, it has the ZSP-property. Thus L• [ (e1 + L)[ (e2 + L)[ (�e1� e2 + L) is the
union of k zero-sum 3-subsets and (4|L|� 1� 3k)/2 zero-sum 2-subsets. Note that
the remaining elements of G• are the union of zero-sum 2-subsets. Thus, G• is the
union of k zero-sum 3-subsets and l zero-sum 2-subsets. Now we instead suppose
k > |L|. We consider the following partition:

(e1 + L)
[

(e2 + L)
[

(�e1 � e2 + L) =
[
a2L

{e1 + a, e2 + �(a),�e1 � e2 + '(a)}.

Note that [a2K(a+L) is a smaller group in G. Hence it has the ZSP-property. Thus,
the remaining elements of G are the union of a subgroup with the ZSP-property
and several good 6-subsets, and can be partitioned into the union of k � |L| zero-
sum 3-subsets and l zero-sum 2-subsets. Therefore, G has the ZSP-property, a
contradiction to the hypothesis.
Case 5. Suppose G = Z2↵ �Z2� �H, where |H| > 3 is odd, 3| |H| and ↵ = � = 0
or 1  ↵  �.

First we consider the case ↵ = � = 0. Now G contains a subgroup L such that
G/L ⇠= Z3. Let {b, 0,�b} be a set of coset representatives. Let I ⇢ L be such that
L• is the disjoint union of I and �I. Then we have the following partition:

G• = {b,�b}
[ [

c2I

{b + c,�b + c,�2c, b� c,�b� c, 2c}
!

,

where the latter 6-subsets are good. Thus G has the ZSP-property, a contradiction.
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Then we consider the case 1  ↵  �. Let T be the subgroup isomorphic to
Z2↵ � Z2� . Since T 2 G, there are �,' 2 Bij(T ) such that �(0) = '(0) = 0 and
a + �(a) + '(a) = 0 for every a 2 T by Lemma 2.1. Since T < G, T has the
ZSP-property. From the above paragraph, we have

H• = {b,�b}
[ [

c2I

{b + c,�b + c,�2c, b� c,�b� c, 2c}
!

for some b 2 H, and thus

G• = T •
[

(b + T )
[

(�b + T )
[ [

c2I

[
a2T

Ca,c

!
.

where the Ca,c are good 6-subsets for all c 2 I and a 2 T . Let k and l be nonnegative
integers with |G•| = 3k + 2l.

If k < |T |, then T • provides a zero-sum 3-subset and (|T | � 4)/2 zero-sum 2-
subsets; (b+T )[(�b+T ) only provides zero-sum 2-subsets; (k�1)/2 good 6-subsets
provide k� 1 zero-sum 3-subsets and the other good 6-subsets provide zero-sum 2-
subsets. This shows that G• is the union of k zero-sum 3-subsets and l zero-sum
2-subsets. Now suppose k � |T |. Note that

T •
[

(b + T )
[

(�b + T ) = {b,�b}
[ [

a2T•

{b + a,�b + �(a),'(a)}
!

.

Thus, good 6-subsets provide k + 1� |T | zero-sum 3-subsets and l � 1 zero-sum 2-
subsets, and now G• is the union of k zero-sum 3-subsets and l zero-sum 2-subsets.
Therefore, G has the ZSP-property, a contradiction.

Now we summarize what we have done and what is left. Let G = Z2↵ �Z2� �H,
where |H| is odd and 0 = ↵ = � or 1  ↵  �. Cases 1,2 and 5 show that H must
be cyclic or trivial. In particular, if 0 = ↵ = �, then G has the ZSP-property by
Theorem 3.1. Case 3 shows that ↵  �  3, and Case 4 that if H is not trivial,
then ↵ = 1. Therefore, it remains to consider the cases: Z2�Z2�Zn, Z2�Z4�Zn,
Z2�Z8�Zn, Z4�Z4, Z4�Z8 and Z8�Z8, where n � 1 is odd. These cases have
been tackled in Lemmas 3.6, 3.7, 3.8 and 3.9 of Section 3. This completes the proof
of the theorem.
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