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Abstract
In this paper, confirming a conjecture of Kaplan et al., we prove that every abelian
group G, which is of odd order or contains exactly three involutions, has the zero-
sum-partition property. As a corollary, every tree with |G| vertices and at most one
vertex of degree 2 is G-anti-magic.

1. Introduction

In 1990, Hartsfield and Ringel [2] introduced the concept of anti-magic graphs. An
anti-magic labeling of a graph with m edges and n vertices is a bijection from the
set of edges to the set of integers {1,2,...,m} such that all the n vertex-sums are
pairwise distinct, where the vertex-sum of a vertex v is the sum of labels of all
edges incident with v. A graph is called anti-magic if it has an anti-magic labeling.
Hartsfield and Ringel showed the anti-magicness of some graphs and conjectured
that all connected graphs except Ks are anti-magic.

The conjecture has received much attention. Many graphs have been proven to
be anti-magic, see [1, 3] for example. However, the conjecture is still open.

In [3], Kaplan, Lev and Roditty consider the following generalization of the
concept of an anti-magic graph. For an abelian group, let G* = G\ {0}.

Definition 1.1. ([3]) Let H = (V, E) be a graph, where |V| =n, |E| = m. Let G
be an abelian group and let A be a finite subset of G* with |A| = m. An A-labeling
of H is a one-to-one mapping f : E(H) — A. Given an A-labeling of H, the weight
of a vertex v € V(G) is w(v) = X e par) f(wv).

(i) We shall say that H is A-anti-magic if there is an A-labeling of H such that
the weights {w(v) : v € V(H)} are all distinct.
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(ii) In the case that G is finite, we shall say that H is G-anti-magic if H is
G*-anti-magic.

They conjecture that a tree with |G| vertices is G-anti-magic if and only if G
is not a group with a unique involution. To tackle the conjecture, the following
definition is introduced.

Definition 1.2. ([3]) Let G be an abelian group and A a finite subset of G* with
|A] = n. We say that A has the zero-sum-partition property (ZSP-property) if, for
every partition n = r1 + 79 + --- + 1 of n, with r; > 2 for 1 < ¢ < ¢, there is a
partition of A into pairwise disjoint subsets Ay, As, ..., Ay, such that |A;| = r; and
ZaeAi a =0 for 1 <17 <t. In the case that G is finite, we shall say that G has the
ZSP-property if A = G* has the ZSP-property.

To verify that A has the ZSP-property, it suffices to show that, for any non-
negative integers k and ! with n = 3k + 2[, there is a partition of A into pair-
wise disjoint subsets Ai,...,Ag,B1,..., B, such that |4;] = 3, |B;| = 2 and
ZaeAi a= Zbij b=0for1<i<kand1l<j <l Obviously, B; = {bj, —b;} for
some b; € A.

The following proposition shows the relation between the two definitions above.
A tree is called a 2-tree if it has at most one vertex of degree 2.

Proposition 1.3. ([3]) Let G be a finite abelian group with the ZSP-property. Then
every 2-tree with |G| vertices is G-anti-magic.

Therefore, to show that such a 2-tree is G-anti-magic, it suffices to show the ZSP-
property of G. G. Kaplan, A. Lev and Y. Roditty suggest the following conjecture.

Conjecture 1.4. ([3]) Let G be a finite abelian group. Then G has the ZSP-property
if and only if either G is of odd order or G contains exactly three involutions.

The authors of [3] prove the necessity of the conjecture and verify the ZSP-
property for cyclic groups of odd order and elementary abelian groups of order
n = p¥, where p is a prime congruent to 1 modulo 3. As a corollary, every 2-tree
with n vertices, where n is odd, is Z,-anti-magic. In particular, such a tree is
anti-magic.

In this paper, we completely prove the sufficiency of the conjecture.

Theorem 1.5. Let G be a finite abelian group of odd order or with exactly three
involutions. Then G has the ZSP-property.

Together with Proposition 1.3, we have

Corollary 1.6. Let G be a finite abelian group of odd order or with exactly three
involutions. Then every 2-tree with |G| vertices is G-anti-magic.
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For convenience, let G denote the set consisting of all abelian groups which are
of odd order or contain exactly three involutions. Notice that for every G € G, we
have G = Zoa @ Zgs & K, where K is of odd order and a = =0o0r 1 < a < j.
Since the properties and results in this paper are invariant under the isomorphism
between groups, we only need to consider a group in an isomorphism class. For
an integer a and the residue class group Z,, we use a to denote the corresponding
residue class in Z,,.

Throughout the paper, unions will always be disjoint.

2. A Lemma

In this section, we prove a lemma which plays an important role in the proof of the
main result.

Lemma 2.1. Let G € G and Bij(G) denote the set of all bijections from G to itself.
Then there exist ¢, p € Bij(G) (not necessarily distinct) such that a+¢(a)+e(a) =0
for every a € G. In particular, we may assume that ¢(0) = p(0) = 0.

Proof. First we prove an assertion: let G1,G2 € G and suppose we have proven
the lemma for G1,Gs, then the lemma holds for G = G; & G3. Indeed, suppose
the resulting bijections are ¢; and ¢y for G; and ¢2 and o for Go. Consider the
following maps:

¢ = (¢p1,02) 1 G1® G2 — G1 @ Ga, (a1,a2) — ($1(a1), p2(az))

and
v =(p1,92): G1®G2 — G1 &G, (a1,a2) — (pi(a1), p2(a2)).

It is easy to see that ¢ and ¢ are the desired bijections and thus the assertion is
proven.

By the assertion above and noting that this lemma is invariant under the iso-
morphism, it suffices to prove the lemma for G of odd order and G = Zgo ® Zos
with 1 < a < S.

The case when G is of odd order is very simple. Indeed, let ¢(a) = a and
p(a) = —2a for every a € G. Then these two maps are the desired bijections and
thus we are done.

Now, we tackle the case when G = Zga @ Zys, whose elements are denoted by
(Z,y) with x,y € Z. The proof is by induction on |G|. We handle three basic cases.

Suppose first that G = Z3 © Z. Then the following table gives the desired
bijections.

g [©.0)[(L0) [0, [(LI)
8(9) [(0,0) [ (0,1 [ (LD | (L0)
2(9) | (0.0) | (L1 | (1.0) [ (0,1)
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Next suppose G = Zs @ Z4. Then the following table gives the desired bijections.

g TO0[0D][0,2]0.3 L0 LD (LY] L3
4(9) | (0.0) | (L0) | (0,1) | (LD [ (1.2) | (0,2) | (1.3) | (0,3)
2(9) (0,0 L3O (L) ] 0.2 LD ] 03] (L2

Finally, suppose G = Zs & Zsg. We have a disjoint partition

G = {O}U (U{ai,l,ai,%ai,z’)}) ) (2.1)

where a; ; € G and a;1 + a;2 + a;3 = 0. Indeed, the following partition is such a
partition.

G = {00} J{(1.0),(1,1),0,7}J{1,2),1,4),(0,2)}
Ji@3).a OG}U{iS (1,6), (0,5)} | {(0,1),(0,3), (0,4)}.

Define ¢ and ¢ as follows.

0 ifa=0
a2 if a = a;; for some 1 <7 <5,
9la) = a3 if a = a; 5 for some 1 <7 <5,
a1 if a = a; 3 for some 1 <7 <5,
and
0 ifa=0
ai 3 if a = a;; for some 1 <17 <5,
wla) = a1 if a = a; 2 for some 1 <17 <5,
a2 if a = a; 3 for some 1 <17 <5.

It is easy to see that such ¢ and ¢ are as desired.

Now we proceed to the induction part.

Suppose first that G = Zga @ Zos with o > 2. Then there exists a subgroup
Go € G such that G/Gg = Zy @ Zy. By the induction hypothesis, there are ¢g, ¢o €
Bij(Go) such that a + ¢o(a) + po(a) = 0 for every a € Gy. Choose a set of coset
representatives for G/Gy to be {0, ¢, d, —c — d}. Note that

(c+Go) | Jd+ Go) | J(—e—d+Go) = | {c+b,d+o(b), —c— d+po(b)},
beGo

and every subset {¢+ a,d + ¢o(a), —c — d + po(a)} is zero-sum. Thus define ¢ and
 as follows.

¢o(a) if a € Gy
d + ¢o(b) if a = ¢+ b for some b € Gy,
—c—d+cp0(b) if a = d + ¢o(b) for some b € Gy,
+b if a =—c—d+ ¢o(b) for some b € Gy,

¢(a) =
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and
wo(a) if a € Gy
—c—d+ o(b) if a = ¢+ b for some b € Gy,
c+b if a =d+ ¢o(b) for some b € Gy,
d + ¢o(b) if a =—c—d+ ¢o(b) for some b € Gy.

pa) =

Such ¢ and ¢ are as desired. Thus it remains to handle the case when o = 1.

Suppose now that G = Zy ® Zgs. The cases when 3 < 3 have been shown
in the base of the induction. Thus we may assume that 3 > 4 and there is a
subgroup Gy € G such that G/Gy = Zs. By the induction hypothesis, there are
®0, o € Bij(Gp) such that a + ¢o(a) + po(a) = 0 for every a € Gg. Since

Zs = {0,4} {1,2,5} {-1=7,-2=6,-5=3},
we can choose a set of coset representatives for G/Gg to be {0, e, ¢, d, —c—d, —c, —d, c+
d} with 2e € Gy. Since G; = Go U (e + Gy) is a group and Gy < G1 < G, we have
G1 € G. Thus there are ¢1,¢1 € Bij(G1) such that a + ¢g(a) + wo(a) = 0 for every
a € (1. Similarly as above, we have

(c+ Go) | Jd+ Go) [ J(—=c—d+ Go) = | {c+b,d+ ¢o(b), —c — d + po(b)}

beGy

and

(—c+Go) | J(=d + Go) | J(c+d+ Go) = | {—c+b,—d+do(b),c+d+po(b)}.
beGo

Thus G = G1 U (U?ﬁ”l{ai,l,aw, a; 3}) where a; 1 +a;2+a;3 =0 for 1 <i <2|Gyl.
Define ¢ and ¢ as follows.

o1(a) ifae Gy
a;2 if a = a;1 for some 1 < i < 2|Gyl,
9la) = a3 if a = a; 2 for some 1 < i < 2|Gy|,
a1 if a = a; 3 for some 1 < i < 2|Gy|,
and
v1(a) ifae Gy
i3 if @ = a;1 for some 1 <i < 2|Gyl,
pla) = ai1 it @ = a; 2 for some 1 <i < 2|Gyl,
@i 2 if @ = a;,3 for some 1 <i < 2|Gy|.

Such ¢ and ¢ are as desired. This completes the proof of the main part of the
lemma.

Finally, suppose we have found ¢, ¢ € Bij(G) such that a + ¢(a) + ¢(a) = 0 for
every a € G. Consider new bijections ¢', ¢’ defined by ¢'(a) = ¢(a) — ¢(0) and
¢'(a) = p(a) — p(0) for every a € G. The final statement of the lemma follows. O



INTEGERS: 15 (2015) 6

3. Some cases

When G is a cyclic group of odd order, it is a result of Kaplan et al.
Theorem 3.1. ([3]) Let G = Z,,, where n is odd. Then G has the ZSP-property.
Using the same method, we can obtain the following lemma.

Lemma 3.2. Let t be a positive integer and
T={-t,—(t-1),...,-1,1,2,...,t} CZ.
Then T has the ZSP-property.

Proof. Let k and [ be nonnegative integers with 2¢ = 3k + 2I. We shall show that
there are pairwise disjoint subsets A1, Ao, ..., Ak, B1,. .., B; which form a partition
of T, such that [4;[ =3, [Bj| =2and } e, a =3 cp b=0forevery 1 <i<k
and 1 <j <L

If k = 0, that is, t = [, set B; = {i,—i} for 1 < i < t, and the lemma easily
follows. Thus we may assume from now on that k& > 1. Note that 3|(t — ). We
define the following 3-subsets of T

A1:{1,%+l+1,—%l—l—2}7

Ay ={2, 5 +1+2,-EL—1—4},

Ao = {558,200 ) 4y,

2(t=1) t—1 t—1
D i, -t —i—1,-15,

2(t—1)

c =1
{ 3 +Z+27_%7l_l_37_%7l+1}a

Az(t;z)_l :{@4‘14‘%_17_%—[ _l_(@ _3)7_%_[4_%_1_2}
={t—1,—t+3,—2},

Ap = Az = {t,—t +1,-1},
3

and the following 2-subsets of T":
By :{tT_j+17_tT_j_l}v
BQZ{%+27_%_2}a
B :{%4+l,—%7l—l}.

One can observe that T is the disjoint union of Ay, As, ..., Ag, B, Bs, ..., B;. More-
over, all these subsets are zero-sum. Thus the lemma follows. O
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Corollary 3.3. Let G be an abelian group and g € G of order n. Then the set

A = {tg,2tg, ... itg,(n—it)g,(n — (i — Dt)g,...,(n —t)g}

has the ZSP-property, where t and i are positive integers with it < (n — it).

Proof. Note that

A = {tgv2tgaaZtga(nilt)ga(ni(Zil)t)gv7(n7t)g}
= {—i,—(i—-1),...,-1,1,2,... i}tg.
The corollary follows directly from Lemma 3.2. U

To prove the ZSP-property for general abelian groups, it is useful to introduce
a definition. We call a 6-subset C' of an abelian group G good if C = {¢,d,—c —
d,—c,—d,c+ d} for some distinct ¢,d € G. Since

C={e,d,—c—d}U{—c,—d,c+d} ={c,—c} U{d,—d} U{c+d,—c—d},

our main idea is to obtain a partition of G® with as many good 6-subsets as possible.
Now we give some results in this direction.

Lemma 3.4. Let G = Z, ® Z, where p is an odd prime.
(i) If p =2 mod 3, then

(»*-1)/6
= J ¢,
i=1
where C1,...,C2_1y/6 are pairwise disjoint good 6-subsets.
(i) If p =1 mod 3, then
(r—1)%/6
=c¢ el U o).
i=1

where G_1 and Go are distinct proper subgroups of order p and Cy,...,C,_1)2/6
are pairwise disjoint good 6-subsets.
Moreover, in both cases, G has the ZSP-property.

Proof. Let G_1 = {(0,1)) and G; = ((1,4)) for 0 <i < p — 1. Obviously, G* is the
disjoint union of G}, -1 <i <p—1.
We assert that, for all 0 < j < p—2, G}_; UG} UG}, can be partitioned into
the disjoint union of good 6-subsets. Indeed, for j = 0,
aJaslJar (0, Dy Ju@on Ju1, e
(0, 1) (@0 (=1, -1
(p—1)/2 B o

U {(672)’ (57 6)7 (_zv —E), (07 _2)7 (—%7 6), (i7 Z)}7
i=1
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and for j # 0,

The assertion follows.

Note that there are p + 1 G;’s. Also note that 3|(p + 1) if p = 2 mod 3 and
3|/(p—1) if p=1mod 3. Thus Statements (i) and (ii) follow.

Finally, we show that G has the ZSP-property. Let k and ! be nonnegative
integers with |G*| = 3k + 2I. Obviously, k is even.

Suppose p = 2 mod 3. We only need to choose k/2 good 6-subsets, each of which
is partitioned into the union of two zero-sum 3-subsets, and then partition each of
other 6-subsets into the union of three zero-sum 2-subsets.

Suppose then p = 1 mod 3. If k < (p—1)?/3, we first choose k/2 good 6-subsets,
each of which is partitioned into the union of two zero-sum 3-subsets; then partition
each of the others into the union of three zero-sum 2-subsets; finally partition G* ;
and G into the union of (p—1)/2 zero-sum 2-subsets respectively. If k > (p—1)2/3,
then by Theorem 3.1, G_; and Gg have the ZSP-property. Thus G?,; and G§ can
be partitioned into the union of (p — 1)/3 zero-sum 3-subsets respectively. Then we
choose k/2 — (p — 1)/3 good 6-subsets, each of which is partitioned into the union
of two zero-sum 3-subsets, and then partition each of other 6-subsets into the union
of three zero-sum 2-subsets.

This completes the proof of the lemma. O

Lemma 3.5. Let G = Zg. Then
G = {0,4}|_J{1,2,5,-1,-2, -5},
where the latter subset is a good 6-subset.
Proof. Obvious. O
Lemma 3.6. Let G = Zo ® Zo ® Z,, where n > 1 is odd. Then
(n—1)/2
G'z{el,eg,el—i—eg}UK'U U c;i |,

i=1
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where ey, ez, and e1 + ey are the three involutions, K = ((0,0,1)) is the cyclic sub-
group of order n and C1,...,C(,_1y/2 are pairwise disjoint good 6-subsets. More-
over, G has the ZSP-property.

Proof. If n = 1, then the lemma follows trivially. Now assume that n > 1. Let
d = (0,0,1). Note that

G\K = (€1+K)U(€2+K)U(61+€2+K)
= {ey,e2,€1 +€2}U
(n—1)/2
U {61 + ld, es + ld, e; + ey — QZd, €1 — Zd, €y — Zd, e1 +eg + 2’Ld}
i=1

The partition is as desired.

Now we prove that G has the ZSP-property. Let k£ and [ be nonnegative integers
with |G*| = 3k + 2I. Obviously, k is odd. If k¥ < n, then choose (k — 1)/2 good
6-subsets, each of which is partitioned into the union of two zero-sum 3-subsets.
Together with {e1, e2,e1 + e2}, we have k zero-sum 3-subsets. Note that the set of
remainder elements is the union of zero-sum 2-subsets. The partition is as desired.
If £ > n, all the good 6-subsets are partitioned into the union of zero-sum 3-subsets,
and then K*® can be partitioned into the union of k — n 3-subsets and [ 2-subsets
by Theorem 3.1.

This completes the proof of the lemma. O

Lemma 3.7. Let G = Zo @ Zy ® Z,, where n > 1 is odd. Then G has the ZSP-
property.

Proof. We consider the following partition of Gg = Zo @ Z4,,, which is isomorphic
to G-

Gy = {(LD, (LI —=D} 0,20 =1),0,2n+ 1)}
Ja@.zm). 1.0y, 0.20)} | Ja (U cy-) ,

where

), (1,205 7), (0,20 — 2 — 1),
—(1+414)),(1,4n — (2n+1)),(0,4n — (2n — 2i — 1))}

c o= (1,
(1. 2n

is a good 6-subset for every 1 <i<mn —1 and

A={(0,2),(0,4),...,(0,2n—=2),(0,2n + 2)), (0,2n + 4)), ..., (0,dn — 2)},
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which has the ZSP-property by Corollary 3.3. Thus, for any nonnegative integers
k and ! which satisfy |G§| = 3k + 2] and | > 2, there are pairwise disjoint zero-sum
subsets Ay, ..., Ag, B1,..., B, which form a partition of G§, such that |A;| = 3 for
1<i<kand|Bj|=2for1l<j <l Since G is isomorphic to Gy, the conclusion
above also holds for G. To prove the lemma, it remains to deal with the cases [ < 1.

Suppose first that { = 0. Then |G| = 1 mod 3 and n = 2 mod 3. We have the
following partition of G = Zo @® Z4 ® Zy,:

where
B={(0,0,i): 1<i<n—1i#m-1)/2,(n+1)/2} HL2j):1<j<n-1}

Note that the subset {(0,0,7) : 0 <i<n-—1}UJ{(1,2,5): 0<j<n-—1}isa
subgroup isomorphic to Zs,. Let x be an isomorphism between these two groups.
Moreover we may assume that

xB)={i:1<i<2n—1,i#n—1,nn+1}

Since x(B) has the ZSP-property by Corollary 3.3, so does B. Note that |B| = 2n—4
is a multiple of 3. Thus B can be partitioned into the union of zero-sum 3-subsets.
Therefore G* is the union of zero-sum 3-subsets, as desired.

Now suppose [ = 1. Then 3| |G| and there is a subgroup L < G with G/L = Zs.
Let {c,0,—c} be a set of coset representatives for G/L. Note that L € G. By
Lemma 2.1, there are ¢, ¢ € Bij(L) such that a + ¢(a) + ¢(a) = 0 for every a € L.
Thus we have the following partition:

G* = {c, —C}U < U {a,c+ ¢(a),—c+ cp(a)}) )

acL®

as desired.
This completes the proof of the lemma. O
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Lemma 3.8. Let G = Zo ® Zg O Z,, where n > 1 is odd. Then G has the ZSP-
property.

Proof. Similarly as in the proof of Lemma 3.7, we have the following partition of
Go = Zgo ® Zsy, which is isomorphic to G:

Gy = {(LD), (13 =D} 0,4 =1),(0,4n + 1)}

J{(1,4n),(1,0), (0 UAU(HQ),

where

), (L A0+ 7), (0,40 — 2 — 1),
—(1+414)),(1,8n — (4n +1)),(0,8n — (4n — 2i — 1))}

G o= {(,
(1,8n

is a good 6-subset for every 1 <1i < 2n — 1 and

A=1{(0,2),(0,4),...,(0,4n —2),(0,4n + 2)), (0,4n + 4)), ..., (0,80 —2)}

which has the ZSP-property by Corollary 3.3. Let k and [ be nonnegative integers
with |G§| = 3k + 2I. The cases [ > 2 have been done by the partition above. To
prove the lemma, it remains to deal with the cases [ < 1.

Suppose first that [ = 0. Then |G| = 1 mod 3 and n = 1 mod 3. If n = 1, such a
partition is given in (2.1). If n > 1, let L be the subgroup satisfying G/L = Zo ® Zs.
Thus we can choose a set of coset representatives, say A, such that

5
A= {0} U (U{b“ Ci, —bi — Ci}> .

i=1
Since L € G, there are ¢, € Bij(L) such that a + ¢(a) + ¢(a) = 0 for every a € L
by Lemma 2.1. We have the following partition:

G* = L'U (U U {bi +a,c; + ¢(a), —b; — ¢ +80(a)}> .

i=1a€lL

Note that L is isomorphic to Z,,, which has the ZSP-property by Theorem 3.1. Thus
L also has the ZSP-property. Since n = 1 mod 3, L*® can be partitioned into the
union of zero-sum 3-subsets. Therefore G* is the union of zero-sum 3-subsets, as
desired.

Now suppose [ = 1. The case is the same as the corresponding case in the proof
of Lemma 3.7.

This completes the proof of the lemma. O
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Lemma 3.9. Let G = Zy ® Zy, G = Z4 ® Zsg or G = Zg ® Zs. Then G has the
ZSP-property.

Proof. First we consider the case G = Z4 @® Z4. It easily follows from the following
partition:

where the latter two 6-subsets are both good.

Next we consider the case G = Zg @ Zg. Let L be the subgroup of G satisfying
L >7y®7Zy and G/L = Zy ® Zy4. As seen above, we can choose a set of coset
representatives, say A, such that

2

A = {05617623 —€1 — eZ}U <U{biaci7 7b’L — Gy, 7bi7 7Ciabi + cz}) 3

=1

where 2e1,2e9 € L. By Lemma 2.1, there are ¢, ¢ € Bij(L) such that a + ¢(a) +
(a) =0 for every a € L. Thus

G* = L'\ Jlea+L)U(ea+L)U(—er —ea+ L) |
U {bi +a,ci + ¢(a), =b; — ci + p(a), =b; — a, —c; — ¢(a),b; + ¢; — p(a)},

where the latter 6-subsets are good. Since LU (e; +L)U (ea+ L)U(—e; —ea+ L) is
a subgroup isomorphic to Z4 @ Zy, it has the ZSP-property by the first paragraph,
and so the ZSP-property of G follows.

Finally, we consider the case G = Z4 & Zg. Let k and [ be nonnegative integers
such that |G®| = 3k + 2. Consider the following partition:

U .(3,0) }U{ 1,4),(3,4)}
{2,1),20HJ{22),206) }U{ 3),(2,5)}

where the first three 6-subsets are good. When k = 1,3,5,7, the desired partitions
follow from the partition above by partitioning some of the good 6-subsets into

zero-sum 3-subsets and others 2-subsets. It remains to show the case when k = 9.
Let L be the subgroup of G satisfying that L = Zs & Zy and G/L = Zg ® Zy. Let
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A = {0,e1,e2,—e1 — ea} be a set of coset representatives. Since L € G, there are
o, € Bij(L) such that a + ¢(a) + ¢(a) = 0 for every a € L by Lemma 2.1. Thus

G* = L'U <U {e1+a,es + p(a),—e; —ea + ga(a)}) .

a€Ll

Since L has the ZSP-property by Lemma 3.7, L*® can be partitioned into the union
of a zero-sum 3-subset and two zero-sum 2-subsets. Therefore, G® is the union of
nine zero-sum 3-subsets and two zero-sum 2-subsets, as desired. O

4. Proof of the Main Result

Now we are in a position to give the proof of the main result.

Proof. Suppose the theorem is false and let G’ be the smallest group in G without
the ZSP-property.

Case 1. Suppose there is a subgroup L < G such that G/L = Z, & Z,,, where p
is an odd prime congruent to 2 modulo 3. By Lemma 3.4, we can choose a set of
coset representatives, say A, such that

(»*~1)/6

A=yl U &,

i=1

where C; = {b;, c;, —bi—c;, —b;, —ci, bi+c; }i=1,...,(p?—1)/6 are pairwise disjoint
good 6-subsets. Since L € G, there are ¢, ¢ € Bij(L) such that a + ¢(a) + p(a) =0
for every a € L by Lemma 2.1. Thus we have the following partition of G*:

G*=1L" U U {bi+a,ci+¢(a), —bi—c;+¢(a), —b;—a, c;—@(a),bi+c;i—p(a) },

1<i<(p2-1)/6
acLl

where the latter 6-subsets are good. Since |L| < |G|, L has the ZSP-property, which
implies that G also has the ZSP-property, a contradiction.

Case 2. Suppose there is a subgroup L < G such that G/L = Z, & Z,,, where p
is an odd prime congruent to 1 modulo 3. By Lemma 3.4, we can choose a set of
coset representatives, say A, such that

(p—1)%/6

a=@UenUassU|l U al.

i=1

where the images of G_; and Gy in G/L are distinct subgroups of order p, G*; =
{aeG_1:a¢L},Gy={acGo: a¢g L} and C; = {b;, ¢;, —b; — ¢;, —b;, —¢;, by +
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cit,i=1,...,(p—1)2/6 are pairwise disjoint good 6-subsets. The same as in the
Case 1, we have the following partition of G*:

G* = L'U U (a+ L) U U(a+L)

acG* acGyY

U U {bl +a,c + ¢(a)7 —b; —¢; + (p((l),

1<i<(p—1)2/6

: —b; —a,c; — ¢(a),b; +c; — p(a)}. (4.1)

We remark that Useq_, (@ + L) = LU (Ugege (a+ L)) and Ugeg,(a + L) = LU
(Uaegg (a+ L)) are both subgroups of G. Now we want to show that G has the ZSP-
property, which will lead to a contradiction. Let k& and [ be nonnegative integers
with |G®| = 3k + 2I.

Suppose k < (p — 1)|L|/3. Since Ugee_, (a + L) is a smaller group in G, it has
the ZSP-property. Thus (Uaeg_l(a + L)). is the union of k£ zero-sum 3-subsets
and (p|L| — 1 — 3k)/2 zero-sum 2-subsets. Note that the remaining elements of G*
are the union of zero-sum 2-subsets. Thus G* is the union of k zero-sum 3-subsets
and [ zero-sum 2-subsets. Now suppose k > (p — 1)|L|/3 instead. As a set of all
non-zero elements of a cyclic group of order p, the image of G§ in G/L is the union
of (p—1)/3 zero-sum 3-subsets in G/L by Theorem 3.1. Hence we may assume that
Ga = Ufi}l)/:}{gl, hi, —3g; — hl} Thus

(p—1)/3
U (a+ L) = U U{gi+a,hi+¢(a)a*gi —hi +¢(a)}.
acGy i=1 a€L

Note that the rest elements of G is the union of a subgroup with the ZSP-property
and several good 6-subsets, thus they can be partitioned into the union of k — (p —
1)|L|/3 zero-sum 3-subsets and [ zero-sum 2-subsets. Thus, G has the ZSP-property,
a contradiction to the hypothesis.

Case 3. Suppose G = Zga & Zos & H, where |H| is odd, 1 < o <  and
B > 4. Then there is a subgroup L € G such that L & Zoa & Zgs—s & H and
G/L = Zg. By Lemma 3.5, we can choose a set of coset representatives, say A, such
that A ={0,e} U{b,c,—b—¢,—b,—c,b+ ¢}, where 2e € L. Since L € G, there are
¢, € Bij(L) such that a + ¢(a) + ¢(a) = 0 for every a € L by Lemma 2.1. Thus

G*=1L" U(e+L) U U {b+a,c+¢(a), —b—c+yp(a), —b—a, —c—¢(a),b+c—p(a)}.

acl

Note that LU (e + L) is a subgroup of G. So, LU (e+ L) has the ZSP-property and
thus G has the ZSP-property, a contradiction.

Case 4. Suppose G = Zoo B Zqys ® H, where |H| > 1is odd and 2 < o < 8. Then
there is a subgroup L € G such that G/L & Zo ® Zo ® Z,, where n > 1 is odd. By
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Lemma 3.6, we can choose a set of coset representatives, say A, such that

(n—1)/2
A:{O,el,eg,—el—eg}UK'U U Oz )

=1

where 2e1,2es € L, the image of K in G/L is a cyclic group of order n and C; =
{bi, ciy, —b; — ¢i, —b;, —¢;, by + ¢;} is a good 6-subset for every 1 < i < (n —1)/2.
Since L € G, there are ¢, € Bij(L) such that a + ¢(a) + ¢(a) = 0 for every a € L
by Lemma 2.1. Thus,

¢ = LUe+nJe+nJEa-e+nlJ U @+D)

acK®

U U  {bi+aci+dla),—bi—ci+pla),

1<i<(n—1)/2
a€L

—b; —a,c; — ¢(a),b; +c; — p(a)}.

We now prove that G has the ZSP-property. Let k& and [ be nonnegative integers
with |G®| = 3k + 2.

Suppose k < |L|. Since LU (e +L)U (ez+ L)U(—e; —e2 + L) is a smaller group
in G, it has the ZSP-property. Thus L* U (e; + L)U (e2 + L) U (—e; —ea + L) is the
union of k zero-sum 3-subsets and (4|L| — 1 — 3k)/2 zero-sum 2-subsets. Note that
the remaining elements of G* are the union of zero-sum 2-subsets. Thus, G* is the
union of k zero-sum 3-subsets and ! zero-sum 2-subsets. Now we instead suppose
k > |L|. We consider the following partition:

(er + L) Jlea + L) | J(—e1 — e2 + L) = | J{e1 + a,e2 + 6(a), —e1 — 2 + p(a)}.

a€l

Note that Uye g (a+L) is a smaller group in G. Hence it has the ZSP-property. Thus,
the remaining elements of G are the union of a subgroup with the ZSP-property
and several good 6-subsets, and can be partitioned into the union of k — |L| zero-
sum 3-subsets and [ zero-sum 2-subsets. Therefore, G has the ZSP-property, a
contradiction to the hypothesis.
Case 5. Suppose G = Zaa ®Zys ® H, where |[H| > 3isodd, 3||H| anda= =0
orl <a<g.

First we consider the case = 8 = 0. Now G contains a subgroup L such that
G/L = Z3. Let {b,0,—b} be a set of coset representatives. Let I C L be such that
L* is the disjoint union of I and —I. Then we have the following partition:

G* = {b7—b}U (U{b+c, —b—l—c,—2c,b—c,—b—c,2c}> ,

cel

where the latter 6-subsets are good. Thus G has the ZSP-property, a contradiction.
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Then we consider the case 1 < a < (. Let T be the subgroup isomorphic to
Zoo ® ZLgs. Since T € G, there are ¢, ¢ € Bij(T) such that ¢(0) = ¢(0) = 0 and
a+ ¢(a) + ¢(a) = 0 for every a € T by Lemma 2.1. Since T' < G, T has the
ZSP-property. From the above paragraph, we have

H® = {b,—b}U <U{b+c, —b+c,—2c,b—c,—b—c,2€}>

cel
for some b € H, and thus

¢ =1 Jo+nJ-+1J (U U c> .

cel aeT
where the C, . are good 6-subsets for all c € I and a € T'. Let k and [ be nonnegative
integers with |G*| = 3k + 2I.

If & < |T|, then T* provides a zero-sum 3-subset and (|T| — 4)/2 zero-sum 2-
subsets; (b+7)U(—b+T) only provides zero-sum 2-subsets; (k—1)/2 good 6-subsets
provide k — 1 zero-sum 3-subsets and the other good 6-subsets provide zero-sum 2-
subsets. This shows that G* is the union of k zero-sum 3-subsets and [ zero-sum
2-subsets. Now suppose k > |T'|. Note that

| Jo+ 1) J(-b+T) = {b, -0} J ( U {b+a, b+ ¢(a), <p(a)}> .
acT*®
Thus, good 6-subsets provide k + 1 — |T'| zero-sum 3-subsets and [ — 1 zero-sum 2-
subsets, and now G*® is the union of k zero-sum 3-subsets and [ zero-sum 2-subsets.
Therefore, G has the ZSP-property, a contradiction.

Now we summarize what we have done and what is left. Let G = Zoo ®Zos & H,
where |H| is odd and 0 = a = or 1 < a < . Cases 1,2 and 5 show that H must
be cyclic or trivial. In particular, if 0 = o = (3, then G has the ZSP-property by
Theorem 3.1. Case 3 shows that o < 8 < 3, and Case 4 that if H is not trivial,
then o = 1. Therefore, it remains to consider the cases: Zo @ Zo ® Zy,, Lo ®Lis ® Ly,
Zio DL D Ly, Loy ® Ly, Loy ® Zg and Zg P Zg, where n > 1 is odd. These cases have
been tackled in Lemmas 3.6, 3.7, 3.8 and 3.9 of Section 3. This completes the proof
of the theorem. O
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