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Abstract
Let � be any permutation on n symbols, and let c(k,�) be the number of permu-
tations that k-commute with �. The cycle type of a permutation � is a vector
(c1, . . . , cn) such that � has exactly ci cycles of length i in its disjoint cycle fac-
torization. In this article we obtain formulas for c(k,�), for some cycle types. We
also express these formulas in terms of integer sequences as given in “The On-line
Encyclopedia of Integer Sequences” (OEIS). For some of these sequences, we obtain
either new interpretations or relationships with sequences in the OEIS database.

1. Introduction

Let Sn denote the group of permutations on the set {1, . . . , n}. For a nonnegative
integer, k, we say that two permutations, ↵,� 2 Sn k-commute (resp. ( k)-
commute) if H(↵�,�↵) = k (resp. H(↵�,�↵)  k), where H denotes the Hamming
metric between permutations (see Deza and Huang [6] for a survey about metrics
on permutations). For a given permutation, �, and a nonnegative integer, k, let
c(k,�) (resp. c( k,�)) denote the number of permutations that k-commute (resp.
( k)-commute) with �. It is known [11] that c(k,�) only depends on the cycle type
of �. In [11], we began the study of k-commuting permutations and presented the
first partial results for the problem of computing c(k,�). The original motivation
for studying these types of questions was to develop tools in order to solve the open
problem of determining the stability of the equation xy = yx in permutations1 (see
[8, 11] for the definitions). Also, the comprehensive problem of determining c(k,�)
is interesting in the context of integer sequences. The problem of computing explicit
formulas for c(k,�), for any k and any �, seems to be a di�cult task in general,
however we think that for some choices of k and � the problem is manageable. For

1During the review process, Arzhantseva and Păunescu [1], proved that the equation xy = yx
is stable in permutations using ultraproduct techniques.
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example, in [11] it was found a characterization of permutations that k-commute
with a given permutation � and, as consequence, formulas for c(k,�) when k = 3, 4
were obtained. For k > 4, the problem was solved only when � is a transposition, a
fixed-point free involution, or an n-cycle. Based on this previous work, we continue
this line of research and we obtain formulas when � is a 3-cycle, a 4-cycle, an (n�1)-
cycle, and other special cases. We also present an upper bound for c( k,�), when
� is any n-cycle, and explicit formulas for c( k,�), when � is a transposition, a
3-cycle, or a 4-cycle.

Surprisingly, in [11] and in this work, for some values of k and some permutations
�, the number c(k,�) is shown to be related to some integer sequences in “The On-
line Encyclopedia of Integer Sequences” (OEIS). Consequently, a new interpretation
for some of these sequences is pointed out. For example:

• Sequence A208528 [5, 12] corresponds to the “number of permutations on
n > 1 having exactly 3 points, P , on the boundary of their bounding square.”
This sequence also counts the number of permutations on n symbols that
3-commute with a transposition. In Section 4.1 we provide an explicit rela-
tionship between these two structures.

• For sequence A001044, the formula is a(n) = (n!)2 and has di↵erent inter-
pretations [18]. In this article we show that a(n) also counts the number
of permutations on 2n symbols that 2n-commute with a permutation on 2n
symbols that has exactly n fixed points.

• Let a(n) denote the sequence A004320. For n � 3, a(n� 2) is the number of
permutations on n symbols that 3-commute with an n-cycle.

• Sequence A001105 is given by a(n) = 2n2 and has several interpretations.
(See [19]). We note that a(n) is also the number of permutations on 2n sym-
bols that 0-commute, i.e., that commute, with a permutation whose disjoint
cycle factorization consists of a product of two n-cycles.

• Let a(n) denote sequence A027764. For n � 3, a(n) is also the number of
permutations on n + 1 symbols that 4-commute with an (n + 1)-cycle.

• Sequence A000165 is the double factorial of even numbers, that is, a(n) =
(2n)!! = 2nn!, but there are more interpretations (see [15]). We note that a(n)
also counts the number of permutations on 2n symbols that 0-commute with
a fixed-point free involution (a permutation whose disjoint cycle factorization
consists of n transpositions).

For other cases, we obtain the following expressions:

• Let a(n) denote the sequence A027765. We show that “8a(n) is the number
of permutations on (n + 1) symbols that 5-commute with an (n + 1)-cycle.”
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• Let a(n) and b(n) denote sequences A016777 and A052560, respectively. For
n � 3, we show that a(n� 3)⇥ b(n� 3) is the number of permutations on n
symbols that 3-commute with a 3-cycle.

• Let a(n) and b(n) denote the sequences A134582 and A052578, respectively.
For n � 5 we show that a(n� 3)⇥ b(n� 4) is the number of permutations on
n symbols that 5-commute with a 4-cycle.

The idea of computing our formulas in terms of sequences in the OEIS database
was motivated by the Future Projects section in the OEIS Wiki page [14]. One
project is searching sequences in books, journals, and preprints, as suggested in
the OEIS Wiki page: “What needs to be done: Scan these journals, books and
preprints looking for new sequences or additional references for existing sequences.”
After finding some equations for c(k,�), for some k and �, we decided to work
through these results to find all the sequences that occur in these formulas. First,
we factorized a formula, and then we looked for factors in the OEIS database. Our
results were gathered in tables and used to determine new relationships in the OEIS
database.

In Section 2, we give some definitions and notation that is used through the paper.
In Section 3, we present formulas for c(k,�) when � is a 3-cycle, a 4-cycle, an (n�1)-
cycle, or another special case. We also present an upper bound for c( k,�) when
� is an n-cycle. In Section 4, we show some relationships on the number c(k,�)
with integer sequences in the OEIS database, where � is a transposition, a 3, 4, n,
and (n� 1)-cycle, or is the product of specific cycles. In Section 5, we present our
final comments and discuss the case k = 0 for some permutations.

2. Basic Definitions

In this section, we give some definitions and notation that used throughout the
paper. Let [n] denote the set {1, . . . , n} whose elements are called points. A per-
mutation of [n] is a bijection from [n] onto [n]. We use Sn to denote the group
of all permutations of [n]. We write ⇡ = p1 . . . pn for the one-line notation of
⇡ 2 Sn, i.e., ⇡(i) = pi for every i 2 [n], and ⌧ = (a1 . . . am) for an m-cycle in
Sn, i.e., ⌧(ai) = ai+1, for 1  i  m � 1, ⌧(am) = a1, and ⌧(a) = a for every
a 2 [n] \ {a1, . . . , am}. The support supp(⇡) of ⇡ 2 Sn is {x 2 [n] : ⇡(x) 6= x},
and the set of fixed points fix(⇡) of ⇡ is [n] \ supp(⇡). The product ↵� of per-
mutations is computed first by applying � and then ↵. We say that ⇡ has cycle
⇡0 or that ⇡0 is a cycle of ⇡, if ⇡0 is a factor in the disjoint cycle factorization of
⇡. The cycle type of a permutation, �, is a vector (c1, . . . , cn) such that � has
exactly ci cycles of length i in its disjoint cycle factorization. The Hamming metric
between permutations ↵,� 2 Sn, denoted H(↵,�), is |{a 2 [n] : ↵(a) 6= �(a)}|.
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We say that ↵ and � k-commute if H(↵�,�↵) = k. We say that a 2 [n] is a
good commuting point (or bad commuting point) of ↵ and � if ↵�(a) = �↵(a) (or
↵�(a) 6= �↵(a)). Usually, we abbreviate good commuting points (or bad com-
muting points) with g.c.p. (or b.c.p.) and we sometimes omit the reference to ↵
and �. Let C(k,�) = {↵ 2 Sn : H(↵�,�↵) = k} and c(k,�) = |C(k,�)|. Let
C( k,�) = {↵ 2 Sn : H(↵�,�↵)  k} and c( k,�) = |C( k,�)|. In this paper,
we use the convention, m mod m = m, for every positive integer m.

2.1. Blocks in Cycles

This section is based on Section 2.1 in [11]. Let ⇡ 2 Sn. A block in a cycle
⇡0 = (a1 . . . am) of ⇡ is a consecutive nonempty substring ai . . . ai+l of ai . . . ai�1

where (ai . . . ai�1) is one of the m equivalent expressions of ⇡0 (the sums are taken
modulo m). This definition was motivated by the notion of a block when the
permutation is written in one-line-notation as in [2, 4]. The length |A| of block
A = ai . . . ai+l is the number of elements in the string A, i.e., |A| = l + 1. Two
blocks are disjoint if they do not have points in common. The product AB of
two disjoint blocks, A and B, not necessarily from the same cycle of ⇡, is defined
as the usual concatenation of strings. Notice that AB is not necessarily a block
in a cycle of ⇡. If (a1 . . . am) is a cycle of ⇡ we write (A1 . . . Ak) to mean that
A1 . . . Ak = ai . . . ai�1, where (a1 . . . am) = (ai . . . ai�1). A block partition of cycle
⇡0 is a set {A1, . . . , Al} of pairwise disjoint blocks in ⇡0 such that there exists a
block product Ai1 . . . Ail such that ⇡0 = (Ai1 . . . Ail). Let A = P1 . . . Pk be a block
product of k pairwise disjoint blocks, not necessarily from the same cycle of ⇡, and
let ⌧ be a permutation in Sk. The block permutation �⌧ (A) of A, induced by ⌧ , is
defined as the block product P⌧(1) . . . P⌧(k).

Example 2.1. Let ⇡ = (1 2 3 4 5)(6 7 8 9) 2 S9. Some blocks in cycles of ⇡ are
P1 = 1 2 3, P2 = 4, P3 = 6, P4 = 7 8 9. One block in (1 2 3 4 5) is P5 = 3 4 5 1 2.
The set of blocks {P3, P4} is a block partition of (6 7 8 9). The product P1P2 is a
block in (1 2 3 4 5). The product P1P3 = 1 2 3 6 is not a block in any cycle of ⇡.

Example 2.2. Let ⇡0 = (3 4 1 2 6) be a cycle of ⇡ 2 S6 and P = P1P2P3 the block
product given by P1 = 3 4, P2 = 1 and P3 = 2 6. Let ↵ = (2 3 1) 2 S3. The block
permutation �↵(P ) is P2P3P1 = 1 2 6 3 4, where, for example, P3P1 = 2 6 3 4 is a
block in ⇡0. If ⌧ = (1 3), then �⌧ (P ) = P3P2P1 = 2 6 1 3 4, where P3P2 = 2 6 1 is
not a block in ⇡0.

If ⇡ 2 Sn and X ✓ [n], the restriction function of ⇡ to set X is denoted by ⇡|X ,
i.e., ⇡|X : X ! X is defined as ⇡|X(a) = ⇡(a) for every a 2 X. Let ↵,� 2 Sn. Let
�0 = (b1 . . . bm) be a cycle of �. As ↵�0↵�1 = (↵(b1) . . .↵(bm)) (see, e.g., [7, Prop.
10, p. 125]) we use the following notation for ↵|supp(�0)

↵|supp(�0) =
✓

b1 . . . bm

↵(b1) . . . ↵(bm)

◆
. (1)
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If ↵|supp(�0) is written as in (1), we write:

↵|supp(�0),k =
✓

B1 . . . Bk

J1 . . . Jk

◆
, (2)

to mean that B1 . . . Bk = b1 . . . bm and J1, . . . , Jk are blocks in cycles of �, where
J1 . . . Jk = ↵(b1) . . .↵(bm) and |Ji| = |Bi|, for 1  i  k. This notation is called
block notation (with respect to �) of ↵|supp(�0). Notice that this notation depends on
the particular selection of one of the m equivalent cyclic expressions of �: (b1 . . . bm),
(b2 . . . b1), . . . , (bm . . . bm�1). Sometimes we omit k in ↵|supp(�0),k.

Example 2.3. Let ↵,� 2 S6, where ↵ = (1 2 3)(4 5 6) and � = (1 2 3 4)(5 6). If
�0 = (1 2 3 4), then ↵(1 2 3 4)↵�1 = (2 3 1 5) and ↵|supp(�0) can be written as

↵|supp(�0) =
✓

1 2 3 4
2 3 1 5

◆
.

Two ways of writing ↵|supp(�0) in block notation are
✓

1 2 3 4
2 3 1 5

◆
and

✓
1 2 3 4
2 3 1 5

◆
,

where the vertical lines denote the limits of the blocks. If �0 = (2 3 4 1) then block
notation of ↵supp(�0) is ✓

2 3 4 1
3 1 5 2

◆
.

3. Formulas for c(k, �) for Some Cycle Types of �

In this section, we show some formulas for c(k,�) when � is a 3-cycle, a 4-cycle,
or an (n � 1)-cycle. The following observation is easy to prove directly or as a
consequence of Theorem 3.8 in [11].

Observation 3.1. Let � be any permutation.

1. If x 2 fix(�), then ↵�(x) = �↵(x) if and only if ↵(x) 2 fix(�).

2. If x 2 supp(�) and ↵(x) 2 fix(�), then ↵�(x) 6= �↵(x).

3.1. The Case of m-cycles

Let �m = (b1 . . . bm) 2 Sn such that fix(�m) = {f1, . . . , fn�m}. By Theorem 3.8
in [11], and without loss of generality, we have that any permutation ↵ that k-
commutes with �m, has the following block notation
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✓
B1 . . . Bk2

J1 . . . Jk2

◆✓
f1

b01

◆
. . .

✓
fk1

b0k1

◆✓
fk1+1

f 01

◆
. . .

✓
fn�m

f 0n�m�k1

◆
, (3)

where: 1) (B1 . . . Bk2) = (b1 . . . bm); 2) fi and f 0j are fixed points of �m and bl

belongs to supp(�m) for every i, j and l; 4) Ji is either a block in (b1 . . . bm) or
a block in a 1-cycle of �m, for 1  i  k2; 5) JiJi+1 (mod k2) is not a block in
(b1 . . . bm), for 1  i  k2.

Computing a general formula for c(k,�m) for every m and every k seems to be a
di�cult task because we need to consider all solutions of the equation k = k1 + k2

subject to the restriction 0  k1  k2. Furthermore, for every one of those solutions
we need to consider all possible ways to write ↵ as in (3). However, we have obtained
some formulas for some choices of k and m.

Proposition 3.2. Let n,m 2 N, with m � 2 and n � 2m � 1. If �m 2 Sn is an
m-cycle, then

1. c(2m,�m) = m!(n�m)!
�n�m

m

�
.

2. c(2m� 1,�m) = m(n�m)!m!
�n�m

m�1

�
.

Proof. Let �m = (b1 . . . bm) 2 Sn such that fix(�m) = {f1, . . . , fn�m}. Let ↵ be
any permutation that does not commute with �m on exactly k1 (resp. k2) points
in fix(�m) (resp. supp(�m)).

By Observation 3.1 we have that if k = 2m (or k = 2m � 1) then k1 = m
(or k1 = m � 1). The result is obtained by constructing all permutations that
k-commute with �m.

Proof of part 1. We have that k1 = k2 = m and hence ↵|supp(�m) should be a
bijection from supp(�m) to a subset B0 ✓ fix(�m), with |B0| = m. There are

�n�m
m

�
ways to choose B0 and there are m! bijections from supp(�m) onto B0. Now we
construct ↵|fix(�m). First select a set B = {fi1 , . . . , fim} ✓ fix(�m) whose elements
will be b.c.p. of ↵ and �m (in

�n�m
m

�
ways). Then we construct a bijection from

B onto supp(�m) (in m! ways). Finally, we construct a bijection from fix(�m) \ B
onto fix(�m) \ B0 (in (n� 2m)! ways). Therefore, we have

c(2m,�m) =
✓

n�m

m

◆2

(m!)2(n� 2m)! = m!(n�m)!
✓

n�m

m

◆
.

Proof of part 2. For this case, k1 = m� 1 and k2 = m. We have that exactly m� 1
points, in the support of �m, should be the images under ↵ of exactly m� 1 fixed
points. There are

�n�m
m�1

�
ways to select a subset B ✓ fix(�m), with |B| = m�1, that

will be the b.c.p. of ↵ and �m. There are m ways to select a set S 0 ⇢ supp(�m),
|S 0| = m� 1, that will be the range of ↵|B and there are (m� 1)! bijections from B
onto S 0. Let {y0} = supp(�m)\S 0. There are

�n�m
m�1

�
ways to select a set B0 ✓ fix(�)
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of m � 1 fixed points. By Theorem 3.8 in [11], any bijection from supp(�m) onto
B0[{y0} produces m b.c.p. in supp(�m). There are m! such bijections. Finally, the
(n � 2m + 1)! bijections from fix(�m) \ B onto fix(�m) \ B0 produce only g.c.p. as
desired. Therefore, we have

c(2m� 1,�m) =
✓

n�m

m� 1

◆2

m(m� 1)!m!(n� 2m + 1)! = m(n�m)!m!
✓

n�m

m� 1

◆
.

The formula for c(2m,�m) can be written in terms of sequences in the OEIS
database.

c(2m,�m) =
✓

n�m

m

◆
⇥m!(n�m)!

= A052553(n,m)⇥A098361(n,m).

3.2. The Case of 3 and 4-cycles

We present formulas for c(k,�) when � is either a 3-cycle or 4-cycle.

Theorem 3.3. If �3 2 Sn is a 3-cycle, then

1. c(0,�3) = 3(n� 3)!, n � 3.

2. c(3,�3) = (3(n� 3) + 1)3(n� 3)!, n � 3.

3. c(4,�3) = 3(n� 3)3(n� 3)!, n � 4.

4. c(5,�3) = 6
�n�3

2

�
3(n� 3)!, n � 5.

5. c(6,�3) = 2
�n�3

3

�
3(n� 3)!, n � 6.

6. c(k,�3) = 0, for 7  k  n.

Proof. The case c(k,�3), for k � 7, follows from Proposition 6.1 in [11]. The cases
c(3,�) and c(4,�) follow from Theorems 5.1 and 5.2 in [11], respectively. The cases
c(5,�) and c(6,�) follow from Proposition 3.2.

Theorem 3.4. If �4 2 Sn is a 4-cycle, then

1. c(0,�4) = 4(n� 4)!, n � 4.

2. c(3,�4) = (4n� 12)4(n� 4)!, n � 4.

3. c(4,�4) = (1 + 8(n� 4)) 4(n� 4)!, n � 4.

4. c(5,�4) =
�
12(n� 4) + 8

�n�4
2

��
4(n� 4)!, n � 5.
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5. c(6,�4) =
�
14n2 � 126n + 280

�
4(n� 4)!, n � 6.

6. c(7,�4) = 24
�n�4

3

�
4(n� 4)!, n � 7.

7. c(8,�4) = 6
�n�4

4

�
4(n� 4)!, n � 8.

8. c(k,�4) = 0, for 9  k  n.

Proof. The case c(k,�4), for k � 9, follows from Proposition 6.1 in [11]. The cases
k = 3 and k = 4 follow from Theorems 5.1 and 5.2 in [11], respectively. The cases
k = 7 and k = 8 follow from Proposition 3.2.

Proof of the case k = 5.
Let ↵ be a permutation that 5-commutes with �4 = (a1a2a3a4). In this proof

we use the notation [s, f ] to indicate that �4 has s (resp. f) b.c.p. of ↵ and �4 in
supp(�4) (resp. fix(�4)). When k = 5, it is easy to see that the unique options are
either [4, 1] or [3, 2].

Subcase [4, 1]. For this case, and without loss of generality, any permutations (in
block notation) that 5-commute with �4 are seen as

✓
a1 a2 a3 a4

f 01 ai1 ai2 ai3

◆✓
f1

ai4

◆✓
f2

f 02

◆
. . .

✓
fn�m

f 0n�m

◆
,

where fj , f 0j 2 fix(�4), for j 2 {1, . . . , n�m}, and aij aij+1 is not a block in (a1 . . . a4),
for j 2 {1, 2}. There are n � 4 ways to select the point f1 and there are 4 ways
to select the point ai4 . There are 4 ways to select point a1 2 supp(�4) and there
are n � 4 ways to select the fixed point f 01. It is easy to check that once we have
selected one point z0 from {a1, a2, a3, a4} \ {ai4} as the image under ↵ of one point
z in {a2, a3, a4}, the images under ↵ of the points in {a2, a3, a4} \ {z} is uniquely
determined, i.e., after the selection of z (in 3 ways) there are unique bijection from
{a2, a3, a4} onto supp(�4) \ {ai4} with the desired properties (to have four b.c.p. in
supp(�)). Finally, there are (n�5)! bijections from fix(�4)\{f1} onto fix(�4)\{f 01}.
Therefore, for this case we have 12(n� 4)4(n� 4)! permutations.

Subcase [3, 2]. For this case, and without loss of generality, any permutations (in
block notation) that 5-commute with �4 are seen as

✓
a1 a2 a3 a4

f 01 f 02 ai1 ai2

◆✓
f1

ai3

◆✓
f2

ai4

◆✓
f3

f 03

◆
. . .

✓
fn�m

f 0n�m

◆
,

where fj , f 0j 2 fix(�4), for j 2 {1, . . . , n�m}, and ai1ai2 is a block in (a1 . . . a4).
Notice that either ai3ai4 or ai4ai3 is a block in (a1 . . . a4). There are

�n�4
2

�
ways to

select the subset {f1, f2} ✓ fix(�4). There are 4 ways to select the subset {x, y} ⇢
{a1, a2, a3, a4} that will satisfy ↵({f1, f2}) = {x, y} = {ai3 , ai4} (once we select a
point, say x, the second is uniquely determined). There are 2 bijections from {f1, f2}
onto {x, y}. There are 4 ways to select a1 from sup(�4). There are

�n�4
2

�
ways to

select the set {x0, y0} ✓ fix(�4) that will satisfy ↵({a1, a2}) = {x0, y0} = {f 01, f 02}.
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There are 2 bijections from {a1, a2} onto {x0, y0}. Finally there are (n�6)! bijections
from fix(�4) \ {f1, f2} onto fix(�4) \ {f 01, f 02}. Therefore, for this case, we have

8
✓

n� 4
2

◆
4(n� 4)!,

permutations ↵ that 5-commute with �4. Therefore

c(5,�4) = 12(n� 4)4(n� 4)! + 8
✓

n� 4
2

◆
4(n� 4)!.

Finally, as

c(6,�4) = n!�
 

c(7,�4) + c(8,�4) +
5X

k=0

c(k,�4)

!
,

the result for c(6,�4) follows by direct calculation.

3.3. The Case of (n � 1)-cycles

Let ⇡ = p1 . . . pn be a permutation of [n] in its one-line notation. A substring pipi+1,
with 1  i  n� 1, is called a succession of ⇡ if pi+1 = pi + 1. Let S(n) denote the
number of permutations in Sn without a succession. In [3, Sec. 5.4] there are some
formulas for S(n). For example

S(n) = (n� 1)!
n�1X
k=0

(�1)k n� k

k!
, n � 1,

and the recursive formula

S(n) = (n� 1)S(n� 1) + (n� 2)S(n� 2), for n � 3, with S(1) = S(2) = 1.

The sequence A000255 [17] satisfies the recurrence relation

A000255(n) = nA000255(n� 1) + (n� 1)A000255(n� 2), for n � 2,

and A000255(0) = 1 and A000255(1) = 1.
It is easy to see that S(n) = A000255(n� 1), for n � 1. Let C(k) be the number

of cyclic permutations of {1, . . . , k} with no i 7! i+1 mod k (see [3, Sec. 5.5]). The
number C(k) is sequence A000757 in [14].

Theorem 3.5. Let n � 4 be an integer. If �n�1 2 Sn is any (n� 1)-cycle, then

c(k,�n�1) = (n� 1)
✓

n� 1
k

◆
C(k) + (n� 1)2

✓
n� 3
k � 3

◆
S(k � 2).
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Proof. Let �n�1 = (b1 . . . bn�1)(bn) be an (n � 1)-cycle in Sn. In this proof we
write � instead of �n�1. Let C = {↵ 2 C(k,�) : ↵(bn) = bn}. Notice that ↵ 2 C
if and only if ↵�(bn) = �↵(bn), and this fact implies that for any ↵ 2 C, ↵|supp(�)

is a permutation of {b1, ..., bn�1} that k-commutes with the cyclic permutation
(b1 . . . bn�1). By Theorem 4.13 in [11], we have that |C| = (n� 1)

�n�1
k

�
C(k).

Let C = C(k,�) \ C. We calculate |C| by constructing all permutations in C, i.e.,
permutations ↵ such that ↵(bn) 6= bn and that do not commute with � on exactly
k � 1 points in supp(�). Let x = ↵(bn). First, it is easy to see that ↵ 2 C if and
only if ↵(bn) 2 supp(�). Therefore, Theorem 3.8 in [11] implies that ↵ restricted to
supp(�) can be written as

↵|supp(�) =
✓

B1 . . . Bj br Bj+1 . . . Bk�2

B0
i1 . . . B0

ij
bn B0

ij+1
. . . B0

ik�2

◆
, (4)

where

1. the set {B1, . . . , Bj , br, Bj+1, . . . , Bk�2} is a block partition of (b1 . . . bn�1)
such that

(b1 . . . bn�1) = (B1 . . . BjbrBj+1 . . . Bk�2);

2. the string B0
i1 . . . B0

ij
B0

ij+1
. . . B0

ik�2
is a block permutation of B0

1 . . . B0
k�2,

where {B0
1, . . . , B

0
k�2, x} is a block partition of (b1 . . . bn�1), with |B0

ij
| = |Bj |,

for 1  j  k � 2, and such that

(b1 . . . bn�1) = (B0
1 . . . B0

k�2x); (5)

3. B0
is

B0
is+1

is not a block in (b1 . . . bn�1) for s 2 {1, ..., k�3}\{j}, and B0
ij

B0
ij+1

may or not may be a block in (b1 . . . bn�1).

Now we count the number of ways to construct ↵ 2 C as in (4). There are (n�1)
ways to choose x 2 supp(�) such that x = ↵(bn). There are

�n�3
k�3

�
ways to choose the

block partition {B0
1, . . . , B

0
k�2, x} of (b1 . . . bn�1). Indeed, we only need to choose

the first element of k � 3 blocks between n � 3 points in {b1, . . . , bn�1} because
the corresponding first points of blocks x and B0

1 in (5) are uniquely determined (x
was already chosen). There are n � 1 ways to select the first element of block B1

in (4) and the rest of the blocks are uniquely determined by the lengths of blocks
B0

1, . . . , B
0
k�2, x. Then we have

(n� 1)2
✓

n� 3
k � 3

◆
R

ways to construct ↵|supp(�) as in (4), where R is the number of ways to construct
the second row of the matrix in (4) in such a way that we have exactly k� 1 b.c.p.
of ↵ and �. Now, the matrix in (4) can be rewritten as

↵|supp(�) =
✓

Bj+1 . . . Bk�2 B1 . . . Bj br

B0
ij+1

. . . B0
ik�2

B0
i1 . . . B0

ij
bn

◆
. (6)
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Notice that br is necessarily a b.c.p. of ↵ and �. Therefore, in order to obtain
exactly k � 1 b.c.p. we need for the blocks product

B0
ij+1

. . . B0
ik�2

B0
i1 . . . B0

ij

to not have a string of the form B0
rB

0
r+1, for 1  r  k � 3 (in this way we obtain

a b.c.p. per block), which is true if and only if B0
ij+1

. . . B0
ik�2

B0
i1 . . . B0

ij
is equal

to a block permutation B0
⌧(1) . . . B0

⌧(k�2) of B0
1 . . . B0

k�2, where ⌧ is a permutation
without a succession. As there are S(k � 2) such permutations we have that R =
S(k � 2) and the result follows.

Previously, in joint work with Rutilo Moreno (that is part of his PhD Thesis [10]),
we obtained the formula

c(k,�n�1) = (n� 1)
✓

n� 1
k

◆
C(k) + (n� 1)2

✓
n� 3
k � 3

◆
T (k), for n � 4.

where

T (k) = (k � 2)C(k � 2) + (2k � 5)C(k � 3) + (k � 3)C(k � 4), for k � 4.

Using this formula and Theorem 3.5, we have the following relation between se-
quences A000255 and A000757, for k � 4.

A000255(k�3) = (k�2)A000757(k�2)+(2k�5)A000757(k�3)+(k�3)A000757(k�4).

When k = 3 we have

c(3,�n�1) = (n� 1)
✓

n� 1
3

◆
+ (n� 1)2,

= (n� 1)⇥
✓✓

n� 1
3

◆
+ n� 1

◆
,

= (n� 1)⇥A000125(n� 2), for n � 3,

where
A000125(m) =

✓
m + 1

3

◆
+ m + 1, for m � 0,

is the formula for the Cake numbers. We do not find sequences in the OEIS database
that correspond to c(�n�1, k) when 4  k  10 and it is possible that no such
relations existed until now for k � 11.

By direct calculation we obtain

c( 3,�n�1) = (n� 1)⇥
✓✓

n� 1
3

◆
+ n

◆
.

The sequence A011826(m) is equal to
�m

3

�
+ (m + 1), for 1  m  1000, as was

noted by Layman in [9]. Then we have that

c( 3,�n�1) = (n� 1)⇥A011826(n� 1), for 2  n  1000.
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3.4. Other Cases

We obtain formulas for c(n,�) and c(n� 1,�) for some special choices of � 2 Sn.

Proposition 3.6. If � 2 S2m is a permutation with exactly m fixed points, then

1. c(2m,�) = (m!)2;

2. c(2m� 1,�) = m2(m!)2.

Proof. Part 1). Let ↵ be any permutation that 2m-commutes with � 2 S2m. By
Observation 3.1, ↵ (fix(�)) ✓ supp(�). As |fix(�)| = |supp(�)| = m then ↵(fix(�))
is equal to supp(�), which implies that ↵(supp(�)) = fix(�). Then ↵|fix(�) (resp.
↵|supp(�)) is any bijection from fix(�) (resp. supp(�)) onto supp(�) (resp. fix(�)).
Therefore we have (m!)2 ways to construct ↵.
Proof of part 2). Let x be the unique g.c.p. of ↵ and �. It is easy to see that x
and ↵(x) belong to fix(�). Then, ↵|fix(�) is any bijection from fix(�) onto supp(�)\
{a} [ {x0}, for some a 2 supp(�) and x0 2 fix(�) (there are m! such bijections),
and ↵|supp(�) is any bijection from supp(�) onto fix(�) \ {x0} [ {a} (there are m!
such bijections). As we have m ways to select x0 and m ways to select a then
c(2m� 1,�) = m2(m!)2.

For � as in the previous proposition we have

c(2m,�) = (m!)2 = A001044(m),m � 0,

and

c(2m� 1,�) = m2 ⇥ (m!)2 = A000290(m)⇥A001044(m)
= m⇥m(m!)2 = m⇥A084915(m).

From this we obtain the following identity

m⇥A084915(m) = A000290(m)⇥A001044(m).

Proposition 3.7. If � 2 S2m�1 is a permutation with exactly m � 1 fixed points,
then c(2m� 1,�) = (m!)2.

Proof. As all the fixed points are b.c.p., then ↵ (fix(�)) is a subset of supp(�)
and ↵ (supp(�)) = fix(�) [ {a}, for some a 2 supp(�). Then, ↵|fix(�) should be
any bijection from fix(�) onto a subset B of supp(�), with |B| = m � 1, and
↵|supp(�) should be any bijection from supp(�) onto fix(�) [ (supp(�) \ B). There
are

� m
m�1

�
(m� 1)! = m(m� 1)! ways to construct ↵|fix(�) and there are m! ways to

construct ↵|supp(�). Then we have that c(2m� 1,�) = m(m� 1)!m! = (m!)2.
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3.5. Upper Bound for c( k, �) When � is an n-cycle

In the following theorem we use the convention that (�1)! = 1.

Theorem 3.8. If � is an n-cycle, then

c( k,�)  n

✓
n

k

◆
(k � 1)!� n

✓
n

k

◆
+ n,

with equality for 0  k  3 and k = n.

Proof. Let � = (b1 . . . bn). First, we select a block partition {B1, . . . , Bk} of b1 . . . bn

(in
�n

k

�
ways), such that B1 . . . Bk = b1 . . . bn. Next, we construct a permutation ↵

in block notation as
↵ =

✓
P1 . . . Pk

Bi1 . . . Bik

◆
,

where (P1 . . . Pk) = (b1 . . . bn), Bi1 . . . Bik is any block permutation of B1 . . . Bk,
and |Pj | = |Bij |, for 1  j  k. We have n ways to select the first element in block
P1 and the rest of the blocks in first row are uniquely determined by the lengths of
blocks Bi. For each selection of the partition {B1, . . . , Bk}, there are (k � 1)! ways
to arrange the blocks B1, . . . , Bk in the second row of this matrix. Indeed, for each
selection of partition {B1, . . . , Bk}, the k cyclic permutation of B1 . . . Bk will give
k repeated permutations. Thus, there are at most n

�n
k

�
(k � 1)! permutations that

( k)-commute with �. We can reduce this bound a little more. Notice that for
every one of the n di↵erent possibilities for P1 . . . Pk in the first row of the matrix,
the vector hb1, . . . , bni appears

�n
k

�
times in the second row (there are

�n
k

�
block

partitions {B1, . . . , Bk} of b1 . . . bn such that B1 . . . Bk = b1 . . . bn, and every one of
this partitions appear once in the second row). Therefore, we have

c( k,�)  n

✓
n

k

◆
(k � 1)!� n

✓
n

k

◆
+ n,

The fact that equality is reached when 0  k  3 and k = n follows by direct
calculation.

4. Relations with Integer Sequences

In this section, we write some formulas for c(k,�) and c( k,�) in terms of sequences
in the OEIS database. These formulas are obtained by simple inspection or with the
help of a computer algebra system and an exhaustive search on the OEIS database.
We use the following notation. We write formula a⇥ b as Ai⇥Aj, to mean that a
(or b) is the formula for sequence Ai (or Aj) in the OEIS database.
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4.1. Transpositions

In [11] we showed the following result.

Proposition 4.1. If �2 2 Sn is a transposition, then

1. c(0,�2) = 2(n� 2)!, n � 2.

2. c(3,�2) = 4(n� 2)(n� 2)!, n � 3.

3. c(4,�2) = (n� 2)(n� 3)(n� 2)!, n � 4.

4. c(k,�2) = 0, 5  k  n.

In [11] it was noted that c(0,�2), c(3,�2), and c(4,�2) coincide with the number
of permutations in Sn, n � 2, having exactly 2, 3, and 4 points, respectively, on the
boundary of their bounding square [5] (sequences A208529, A208528, and A098916,
respectively). Here we provide an explicit relationship between these numbers. The
following definition is taken from problem 1861 in [5]. A permutation ↵ 2 Sn can
be represented in the plane by the set of n points P↵ = {(i,↵(i)) : 1  i  n}.
The bounding square of P↵ is the smallest square bounding P↵. In other words, the
bounding square can be described as the square with sides parallel to the coordinate
axis containing (1, 1) and (n, n) (see [12]).

Proposition 4.2.

1. A permutation ↵ has only two points on the boundary of their bounding square
if and only if ↵ commutes with transposition (1, n).

2. A permutation ↵ has only m points on the boundary of their bounding square
if and only if ↵ m-commutes with transposition (1, n), for m 2 {3, 4}.

Proof. In this proof we use some results from [5].
Proof of 1: Permutation ↵ commutes with (1, n) if and only if either ↵(1) = 1

and ↵(n) = n, or ↵(1) = n and ↵(n) = 1, i.e., if and only if P↵ contains both (1, 1)
and (n, n), or both (1, n) and (1, n), which is true if and only if P↵ has exactly two
points on the boundary of its bounding square; see [5].

Proof of 2: Permutation ↵ 4-commutes with (1, n) if and only if ↵(1) 62 {1, n}
and ↵(n) 62 {1, n}, i.e., if and only if P↵ does not contain any of the points (1, 1),
(n, n), (1, n), and (1, n), which is true if and only if P↵ has exactly four points
on the boundary of its bounding square; see [5]. The case m = 3 follows because
both {C(0,�), C(3,�), C(4,�)} and the collection of sets Bm of permutations ↵
that have m points on the boundary of the bonding square of P↵, for m 2 {2, 3, 4},
are partitions of Sn.
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By direct calculation we obtain

c( 3,�2) = 2(n� 2)! + 4(n� 2)(n� 2)!
= 2⇥ (2(n� 2) + 1)(n� 2)!
= 2⇥A007680(n� 2), n � 2.

c( 4,�2) = n!
= A000142(n), n � 2.

From these formulas we obtain the following relation that was announced by the
author in the FORMULA section of sequence A007680.

A007680(n� 2) =
A208529(n) + A208528(n)

2
, n � 2.

We can also obtain the following relations.

A000142(n) = A208529(n) + A208528(n) + A098916(n), n � 3.
A000142(n) = A098916(n) + 2⇥A007680(n� 2), n � 3.

4.2. Some Cases for 3 and 4-cycles

Tables 1 and 2 show formulas for c(k,�3) (Theorem 3.3) and c( k,�3), respec-
tively, in terms of sequences in the OEIS database. The formulas for c( k,�3) =Pk

i=0 c(k,�3) are obtained by direct calculation.

k c(k, �3)
0 3(n� 3)! A052560(n� 3), n � 3
3 (3(n� 3) + 1)⇥ 3(n� 3)! A016777(n� 3)⇥A052560(n� 3), n � 3
4 3(n� 3)⇥ 3(n� 3)!, n � 4 A008585(n� 3)⇥A052560(n� 3), n � 3
5 3(n� 4)(n� 3)⇥ 3(n� 3)!, n � 5 A028896(n� 4)⇥A052560(n� 3), n � 4

3(n� 4)⇥ 3(n� 3)(n� 3)!, n � 5 A008585(n� 4)⇥A083746(n� 1), n � 5
A008585(n� 4)⇥A052673(n� 3), n � 5

9(n� 4)⇥ (n� 3)(n� 3)!, n � 5 A008591(n� 4)⇥A001563(n� 3), n � 5
3⇥ 3(n� 4)⇥ (n� 3)(n� 3)!, n � 5 3⇥A008585(n� 4)⇥A001563(n� 3), n � 5

6 2
�n�3

3

�
⇥ 3(n� 3)!, n � 6 A007290(n� 3)⇥A052560(n� 3), n � 6

6
�n�3

3

�
⇥ (n� 3)!, n � 6 A007531(n� 3)⇥A000142(n� 3), n � 6

(n� 3)(n� 4)⇥ (n� 5)(n� 3)!, n � 6 A002378(n� 4)⇥A052571(n� 5), n � 6
(n� 5)(n� 3)⇥ (n� 3)!(n� 4), n � 6 A005563(n� 5)⇥A062119(n� 3), n � 6
(n� 5)(n� 4)⇥ (n� 3)(n� 3)!, n � 6 A002378(n� 5)⇥A001563(n� 3), n � 6
(n� 3)2(n� 4)⇥ (n� 4)!(n� 5), n � 6 A045991(n� 3)⇥A062119(n� 4), n � 6
(n� 3)2(n� 4)(n� 5)⇥ (n� 4)!, n � 6 A047929(n� 3)⇥A000142(n� 4), n � 6
(n� 3)2 ⇥ (n� 4)(n� 5)(n� 4)!, n � 6 A000290(n� 3)⇥A098916(n� 2), n � 6
(n� 5)(n� 3)2 ⇥ (n� 4)(n� 4)!, n � 6 A152619(n� 5)⇥A001563(n� 4), n � 6

� 7 0 A000004(n)

Table 1: Formulas for c(k,�3) written in terms of sequences in the OEIS database.
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k c( k, �3)
0 3(n� 3)! A052560(n� 3), n � 3
3 (3n� 7)⇥ 3(n� 3)! A016789(n� 3)⇥A052560(n� 3), n � 3

(9n� 21)⇥ (n� 3)! A017233(n� 3)⇥A000142(n� 3), n � 3
4 (6(n� 3) + 2)⇥ 3(n� 3)! A016933(n� 3)⇥A052560(n� 3), n � 4

6⇥ (3(n� 3) + 1) (n� 3)! 6⇥A082033(n� 3)
(9(n� 3) + 3)⇥ 2((n� 1)� 2)! A017197(n� 3)⇥A208529(n� 1), n � 4

5 (20� 15n + 3n2)3(n� 3)! A077588(n� 2)⇥A052560(n� 3), n � 5
� 6 n! A000142(n), n � 6

2
�n
3

�
⇥ 3(n� 3)! A007290(n)⇥A052560(n� 3), n � 6

Table 2: Formulas for c( k,�3) written in terms of sequences in the OEIS database.

From these tables we obtain the following identities.

A016789(n) = A016777(n) + 1, n � 0.(see [16]).

A016933(n) = A016789(n) + A008585(n), n � 0.

= A016777(n) + A008585(n) + 1, n � 0.

A077588(n� 2) = A016933(n� 3) + A028896(n� 4), n � 4.

= A016789(n� 3) + A008585(n� 3) + A028896(n� 4), n � 4.

= A016777(n� 3) + A008585(n� 3) + A028896(n� 4) + 1, n � 4.

A007290(n) = A077588(n� 2) + A007290(n� 3), n � 3.

= A016933(n� 3) + A028896(n� 4) + A007290(n� 3), n � 4.

= A016789(n� 3) + A008585(n� 3) + A028896(n� 4) +

+ A007290(n� 3), n � 4.

Tables 3 and 4 show formulas for c(k,�4) and c( k,�4), respectively, in terms
of sequences in the OEIS database. From these tables we deduce the following
identities.

A052578(n) = A000142(n� 1)⇥ (A016813(n)� 1) , n � 1.
A052578(n) = A000142(n� 1)⇥A008586(n), n � 1.
A008598(n) = 4⇥ (A016813(n)� 1) , n � 0.
A016813(n) = A017593(n� 1)�A017077(n� 1), n � 1.

We encourage the interested reader to obtain more identities from these tables.

4.3. The Case of n-cycles

Let C(k) = A000757(k). The following proposition was proved in [11].

Proposition 4.3. Let n and k be nonnegative integers, 0  k  n. Let �n 2 Sn be
an n-cycle. Then

c(k,�n) = n

✓
n

k

◆
C(k).
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k c(k, �4)
0 4⇥ (n� 4)! 4⇥A000142(n� 4), n � 4

4(n� 4)! A052578(n� 4), n � 5
2⇥ 2(n� 4)! 2⇥A208529(n� 2), n � 4

2⇥A052849(n� 4), n � 5
3 4⇥ 4(n� 3)! 4⇥A052578(n� 3), n � 4

8⇥ 2(n� 3)! 8⇥A208529(n� 1), n � 4
16(n� 3)⇥ (n� 4)! A008598(n� 3)⇥A000142(n� 4), n � 4
4(n� 3)⇥ 4(n� 4)! A008586(n� 3)⇥A052578(n� 4), n � 5

4 (1 + 8(n� 4))⇥ 4(n� 4)! A017077(n� 4)⇥A052578(n� 4), n � 5
5 (2(n� 3))2 � 4)⇥ 4(n� 4)!, n � 4 A134582(n� 3)⇥A052578(n� 4), n � 5
6 14⇥ (n� 5)(n� 4)⇥ 4(n� 4)! 14⇥A002378(n� 5)⇥A052578(n� 4), n � 5

28⇥
�n�4

2

�
⇥ 4(n� 4)! 28⇥A000217(n� 5)⇥A052578(n� 4), n � 6

7 24⇥
�n�4

3

�
⇥ 4(n� 4)!, 24⇥A000292(n� 6)⇥A052578(n� 4), n � 6

4⇥ 6
�n�4

3

�
⇥ 4(n� 4)! 4⇥A007531(n� 4)⇥A052578(n� 4), n � 7

3⇥ 8
�n�4

3

�
⇥ 4(n� 4)! 3⇥A130809(n� 4)⇥A052578(n� 4), n � 7

8 24⇥
�n�4

4

�
⇥ (n� 4)! 24⇥A000332(n� 4)⇥A000142(n� 4), n � 8

24
�n�4

4

�
⇥ (n� 4)! A052762(n� 4)⇥A000142(n� 4), n � 8

6⇥
�n�4

4

�
⇥ 4(n� 4)! 6⇥A000332(n� 4)⇥A052578(n� 4), n � 8

6
�n�4

4

�
⇥ 4(n� 4)! A033487(n� 7)⇥A052578(n� 4), n � 8

� 9 0 A000004(n)

Table 3: Formulas for c(k,�4) written in terms of sequences in the OEIS database.

k c( k, �4)
3 4⇥ (4(n� 3) + 1)⇥ (n� 4)! 4⇥A016813(n� 3)⇥A000142(n� 4), n � 4

(4(n� 3) + 1)⇥ 4(n� 4)! A016813(n� 3)⇥A052578(n� 4), n � 5
4 4⇥ (12(n� 4) + 6)⇥ (n� 4)! 4⇥A017593(n� 4)⇥A000142(n� 4), n � 4

8⇥ (6(n� 4) + 3)⇥ (n� 4)! 8⇥A016945(n� 4)⇥A000142(n� 4), n � 4
(12(n� 4) + 6)⇥ 4(n� 4)! A017593(n� 4)⇥A052578(n� 4), n � 5
2⇥ (6(n� 4) + 3)⇥ 4(n� 4)! 2⇥A016945(n� 4)⇥A052578(n� 4), n � 5

5 8⇥
�
2(n� 4)2 + 10(n� 4) + 3

�
⇥ (n� 4)! 8⇥A152813(n� 4)⇥A000142(n� 4) , n � 4

2⇥
�
2(n� 4)2 + 10(n� 4) + 3

�
⇥ 4(n� 4)! 2⇥A152813(n� 4)⇥A052578(n� 4), n � 5

6 24⇥
�
3(n� 4)2 + (n� 4) + 1

�
⇥ (n� 4)! 24⇥A056108(n� 4)⇥A000142(n� 4) , n � 4

6⇥
�
3(n� 4)2 + (n� 4) + 1

�
⇥ 4(n� 4)! 6⇥A056108(n� 4)⇥A052578(n� 4), n � 5

7 24⇥
�
2n3 � 21n2 + 79n� 105

�
⇥ (n� 4)! 24⇥A005894(n� 4)⇥A000142(n� 4), n � 4

6⇥
�
2n3 � 21n2 + 79n� 105

�
⇥ 4(n� 4)! 6⇥A005894(n� 4)⇥A052578(n� 4), n � 5

� n(n� 1)(n� 2)(n� 3)/4⇥ 4⇥ (n� 4)! A033487(n)⇥ 4⇥A000142(n� 4), n � 4
8 n(n� 1)(n� 2)(n� 3)/4⇥ 4(n� 4)! A033487(n)⇥A052578(n� 4), n � 5

Table 4: Formulas for c( k,�4) written in terms of sequences in the OEIS database.
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Let Cn,k = n
�n

k

�
C(k). The triangle {Cn,k} is labeled now as sequence A233440

in [14]. In Table 5, we show some formulas for c(k,�n) written in terms of sequences
in the OEIS database, for 0  k  16. This table was announced by the author in
[13]. We searched for some values of k � 17, but no relationships with sequences in
the OEIS database were found until now.

k c(k, �n)
0 A001477(n), n � 0
1 A000004(n), n � 1
2 A000004(n), n � 2
3 A004320(n� 2) = A047929(n)/6, n � 3
4 A027764(n� 1), n � 4
5 A027765(n� 1)⇥A000757(5), n � 5
6 A027766(n� 1)⇥A000757(6), n � 6
7 A027767(n� 1)⇥A000757(7), n � 7
8 A027768(n� 1)⇥A000757(8), n � 8
9 A027769(n� 1)⇥A000757(9), n � 9
10 A027770(n� 1)⇥A000757(10), n � 10
11 A027771(n� 1)⇥A000757(11), n � 11
12 A027772(n� 1)⇥A000757(12), n � 12
13 A027773(n� 1)⇥A000757(13), n � 13
14 A027774(n� 1)⇥A000757(14), n � 14
15 A027775(n� 1)⇥A000757(15), n � 15
16 A027776(n� 1)⇥A000757(16), n � 16

Table 5: Formulas for c(k,�n), 0  k  16, written in terms of sequences in the
OEIS database.

By direct computation, we obtain the following formulas for c( k,�), for k 2
{3, 4}. For the case of k 2 {5, 6, 7}, no relationship with sequences in OEIS was
found and it is possible that for the greatest values of k no such relationship existed
until now.

c( 3,�n) = n

✓
1 +

✓
n

3

◆◆
= n⇥A050407(n + 1), n � 0.

c( 4,�n) = n

✓
1 +

✓
n + 1

4

◆◆
= n⇥A145126(n� 2), n � 2.

From this we can deduce the following identities

n⇥A050407(n + 1) = A233440(n, 0) + A233440(n, 3), n � 0.
n⇥A145126(n� 2) = A233440(n, 0) + A233440(n, 3) + A233440(n, 4), n � 2.

From these last relations and from the relations in Table 5, we have:
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A050407(n + 1) = A004320(n� 2)/n + 1, n � 2;
A233440(n, 4) = n⇥ (A145126(n� 2)�A050407(n + 1)) , n � 2; and

A027764(n� 1) = n⇥ (A145126(n� 2)�A050407(n + 1)) , n � 4.

4.4. Some Cases for k = 3 and k = 4

R. Moreno and the author of this article presented in [11] formulas for c(3,�) and
c(4,�), where � is any permutation. We use these results to obtain formulas for
some type of permutations. Let � = (1 . . .m)(m + 1 . . . 2m) 2 S2m. Then

c(3,�) = 2m2 ⇥ 2
✓

m

3

◆

= A001105(m)⇥A007290(m),m � 2.

c(4,�) = 2m2 ⇥
✓

2
✓

m

4

◆
+ m

✓
m

2

◆◆

= 2m2 ⇥
✓

2
✓

m

4

◆
+ (m� 1)m2/2

◆

= A001105(m)⇥ (A034827(m) + A006002(m� 1)) ,m � 2.

Let �m 2 Sn be an m-cycle, for n � 3 and 1 < m  n. By Theorem 5.1 in [11],
we have

c(3,�m) = m(n�m)!
✓✓

m

3

◆
+ m(n�m)

◆
.

In Table 6, we write formulas for c(3,�m) for some values of m in terms of sequences
in the OEIS database.

Let �m 2 Sn be an m-cycle, 4  m  n. By Theorem 5.2 in [11], we have

c(4,�m) = m(n�m)!
✓✓

m

4

◆
+ m(m� 2)(n�m)

◆
.

In this case we found relationships with sequences in the OEIS database only for
4  k  7, and these are shown in Table 7.

5. Final Results and Comments

We conclude this paper by considering the case of the size of the centralizer of some
permutations. When k = 0, c(k,�) is the size of the centralizer of �, that is, if
� is a permutation of cycle type (c1, . . . , cn), then c(0,�) =

Qn
i=1 icici!. When �

is an m-cycle we have that c(0,�) = m(n �m)! = m ⇥ A000142(n �m), that we
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m c(3, �m)
5 25⇥ ((n� 4)! + (n� 5)!) 25⇥A001048(n� 4)!, n � 5

5(n� 3)⇥ 5(n� 5)! A008587(n� 3)⇥A052648(n� 5), n � 6
6 6⇥ (6(n� 3) + 2)⇥ (n� 6)! 6⇥A016933(n� 3)⇥A000142(n� 6), n � 6
7 7(n� 2)⇥ 7(n� 7)! A008589(n� 2)⇥A062098(n� 7)!, n � 8
8 8(n� 1)⇥ 8(n� 8)! A008590(n� 1)⇥A159038(n� 8), n � 9
9 9⇥ (9n + 3)⇥ (n� 9)! 9⇥A017197(n)⇥A000142(n� 9), n � 9
10 10(n + 2)⇥ 10(n� 10)! A008592(n + 2)⇥A174183(n� 10), n � 11
11 11⇥ 11(n + 4)⇥ (n� 11)! 11⇥A008593(n + 4)⇥A000142(n� 11), n � 11
12 12⇥ (12(n + 6) + 4)⇥ (n� 12)! 12⇥A017569(n + 6)⇥A000142(n� 12), n � 12
13 13⇥ 13(n + 9)⇥ (n� 13)! 13⇥A008595(n + 9)⇥A000142(n� 13), n � 13
14 14⇥ 14(n + 12)⇥ (n� 14)! 14⇥A008596(n + 12)⇥A000142(n� 14), n � 14
16 16⇥ 16(n + 19)⇥ (n� 16)! 16⇥A008598(n + 19)⇥A000142(n� 16), n � 16
17 17⇥ 17(n + 23)⇥ (n� 17)! 17⇥A008599(n + 23)⇥A000142(n� 17), n � 17
19 19⇥ 19(n + 32)⇥ (n� 19)! 19⇥A008601(n + 32)⇥A000142(n� 19), n � 19
20 20⇥ 20(n + 37)⇥ (n� 20)! 20⇥A008602(n + 37)⇥A000142(n� 20), n � 20
22 22⇥ 22(n + 48)⇥ (n� 22)! 22⇥A008604(n + 48)⇥A000142(n� 22), n � 22
23 23⇥ 23(n + 54)⇥ (n� 23)! 23⇥A008605(n + 54)⇥A000142(n� 23), n � 23
25 25⇥ 25(n + 67)⇥ (n� 25)! 25⇥A008607(n + 67)⇥A000142(n� 25), n � 25
28 28⇥ 28(n + 89)⇥ (n� 28)! 28⇥A135628(n + 89)⇥A000142(n� 28), n � 28
29 29⇥ 29(n + 97)⇥ (n� 29)! 29⇥A195819(n + 97)⇥A000142(n� 29), n � 29
31 31⇥ 31(n + 114)⇥ (n� 31)! 31⇥A135631(n + 114)⇥A000142(n� 31), n � 31
37 37⇥ 37(n + 173)⇥ (n� 37)! 37⇥A085959(n + 173)⇥A000142(n� 37), n � 37

Table 6: Formulas for c(3,�m) written in terms of sequences in the OEIS database.

m c(4, �m)
5 25⇥ (3(n� 5) + 1)⇥ (n� 5)! 25⇥A016777(n� 5)⇥A000142(n� 5), n � 5
6 18⇥ (8(n� 5)� 3)⇥ (n� 6)! 18⇥A004770(n� 5)⇥A000142(n� 6), n � 6
7 35⇥ (n� 6)⇥ 7(n� 7)! 35⇥A000027(n� 6)⇥A062098(n� 7), n � 8

245⇥ (n� 6)! 245⇥A000142(n� 6), n � 7

Table 7: Formulas for c(4,�m) for some m-cycles

m c(0, �m)
5 5(n� 5)! A052648(n� 5), n � 6
7 7(n� 7)! A062098(n� 7), n � 8
8 8(n� 8)! A159038(n� 8), n � 9
10 10(n� 10)! A174183(n� 10), n � 11

Table 8: Formulas for the centralizer of some m-cycles.
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consider as a trivial relation with sequences in the OEIS database. In Table 8 we
present formulas for the centralizer of some m-cycles, where we have omitted the
trivial cases.

Finally we consider two more cases. Let �m(2) denote a permutation of 2m
symbols whose cycle factorization consists of a product of two m-cycles, and let
�2(m) be a fixed-point free involution of 2m symbols. In these cases we have

c(0,�m(2)) = 2m2 = A001105(m),m � 0 and
c(0,�2(m)) = 2mm! = A000165(m),m � 0,

where A000165 is the double factorial of even numbers.
It is possible that there are more sequences related to the formulas presented in

this work. Also, we think that it is possible to obtain more formulas for c(k,�) for
another special case of permutations. However, we believe that it is a di�cult task
to obtain a general formula for c(k,�). We have worked, without success, for the
case of m-cycles, for every m, so we leave this as an open problem. Another future
project is to find explicit bijections, as in the case of transpositions, between sets
of k-commuting permutations and other combinatorial structures.
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