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Abstract
In this paper, we prove that for d = 3, . . . , 8, every natural number can be written as
tx+ty +3tz +dtw, where x, y, z, and w are nonnegative integers and tk = k(k+1)/2
(k = 0, 1, 2, . . .) is a triangular number. Furthermore, we study mixed sums of
triangular numbers and certain binary quadratic forms.

1. Introduction

Let N = {1, 2, 3, . . .}, N0 = {0, 1, 2, 3, . . .}, and denote the set of squares by {x2 : x 2
Z}. A triangular number is defined as tx = x(x+1)/2, where x 2 N0. Furthermore,
for positive integers j, k, n 2 N, let dj,k(n) denote the number of positive divisors d
of n such that d ⌘ j (mod k).

A well-known result of Gauss states that every n 2 N can be written as a sum
of three triangular numbers; that is, n = �1 + �2 + �3, where �j (1  j  3) is a
triangular number. In 1862 and 1863, Liouville [7, 8] proved the following result:

Theorem 1.1. (Liouville) Let a, b, and c be positive integers with a  b  c. Then
every n 2 N0 can be written as atx + bty + ctz for x, y, z 2 N0 if and only if (a, b, c)
is among the following vectors:

(1, 1, 1), (1, 1, 2), (1, 1, 4), (1, 1, 5), (1, 2, 2), (1, 2, 3), (1, 2, 4).

In this paper, we prove that n = �1 + �2 + 3�3 + d�4, where 3  d  8 and
�j (1  j  4) is a triangular number. To prove this conjecture, we use the results
of Barrucand et al. [2] and Adiga et al. [1], which were obtained using Ramanujan’s
theory of theta functions. For q 2 C such that |q| < 1, we introduce

'(q) =
X
n2Z

qn2
,  (q) =

1X
n=0

qn(n+1)/2, a(q) =
X

m,n2Z
qm2+mn+n2

.
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Note that Williams [10] determined the number of representations of n 2 N0 as
�1 + �2 + 2(�3 + �4) using an entirely arithmetic method.

Our main theorems are as follows:

Theorem 1.2.

(1) For d 2 N with 3  d  8, every n 2 N0 can be represented as tx+ty+3tz+dtw
for x, y, z, w 2 N0.

(2) Let a, b, c, and d be positive integers with a  b  c  d. Then every n 2 N0

can be written as atx+bty+ctz +dtw for x, y, z, w 2 N0 if and only if (a, b, c, d)
is among the following vectors:

(1, 1, 1, d), (1, 1, 2, d), (1, 1, 4, d), (1, 1, 5, d), (1, 2, 2, d), (1, 2, 3, d), (1, 2, 4, d),
(1, 1, 3, 3), (1, 1, 3, 4), (1, 1, 3, 5), (1, 1, 3, 6), (1, 1, 3, 7), (1, 1, 3, 8).

Theorem 1.3. For fixed positive integers a and c, set

ga
c (x, y, z) = atx + c(y2 + yz + z2), with x 2 N0, y, z 2 Z.

(1) The form ga
c represents all n 2 N0 if and only if (a, c) = (1, 1).

(2) If the form ga
c represents n = 1, 2, 4, 8, it represents all n 2 N0.

Theorem 1.4. For fixed positive integers, a, b, and c with a  b, set

ga,b
c (x, y, z, w) = atx + bty + c(z2 + zw + w2), with x, y 2 N0, z, w 2 Z.

(1) The form ga,b
c represents all n 2 N0 if and only if

(a, b, c) =

8>>>>>>>><
>>>>>>>>:

(1, b, 1), (b 2 N),
(2, b, 1), (b = 2, 3, 4, 5, 6, 7, 8),
(1, b, 2), (b = 1, 2, 3, 4),
(1, 2, 3),
(1, b, 4), (b = 1, 2),
(1, 1, 5).

(2) If the form ga,b
c represents n = 1, 2, 4, 5, 8, it represents all n 2 N0.

The remainder of this paper is organized as follows. In Section 2, we introduce
notation that will be used throughout our paper. In Section 3, we prove Theorem
1.2 for d = 3, 6, 7, 8, and in Section 4, we prove Theorem 1.3. In Section 5, we apply
Theorem 1.2 to obtain the su�ciency of Theorem 1.4(1). In Section 6, we prove
Theorem 1.4.
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Remark 1

For d = 4, 5, Theorem 1.2(1) follows from Theorem 1.1 of Liouville.

Remark 2

For fixed positive integers, a, b, and c, set

fa,b,c(x, y, z) = ax2 + by2 + cz2, fa
c (x, y, z) = ax2 + c(y2 + yz + z2),

for x, y, z 2 Z. In [5, p. 104], Dickson proved that there exist no positive integers a,
b, and c such that fa,b,c can represent all nonnegative integers. In [9], we showed
that there exist no positive integers a and c such that fa

c represents all nonnegative
integers.

Remark 3

For fixed positive integers a, b, and c, set

fa,b
c (x, y, z) = ax2 + by2 + c(z2 + zw + w2),

for x, y, z, w 2 Z. In [9], we determined (a, b, c), where a  b, such that fa,b
c repre-

sents all nonnegative integers.

2. Notation and Preliminary Results

2.1. Notation

For fixed positive integers a, b, c, and d and each n 2 N0, we define

ra,b,c(n) =]{(x, y, z) 2 Z3 |n = ax2 + by2 + cz2},
ra,b,c,d(n) =]{(x, y, z, w) 2 Z3 |n = ax2 + by2 + cz2 + dw2},

ta,b,c(n) =]{(x, y, z) 2 N3
0 |n = atx + bty + ctz},

ta,b,c,d(n) =]{(x, y, z, w) 2 N4
0 |n = atx + bty + ctz + dtw},

ma-b,c(n) =]
�
(x, y, z) 2 Z⇥ N2

0 |n = ax2 + bty + ctz
 

,

ma,b-c(n) =]
�
(x, y, z) 2 Z2 ⇥ N0 |n = ax2 + by2 + ctz

 
,

Aa
c (n) =]

�
(x, y, z) 2 Z3 |n = ax2 + c(y2 + yz + z2)

 
,

Aa,b
c (n) =]

�
(x, y, z, w) 2 Z4 |n = ax2 + by2 + c(z2 + zw + w2)

 
,

Ba
c (n) =]

�
(x, y, z) 2 N0 ⇥ Z2 |n = atx + c(y2 + yz + z2)

 
,

Ba,b
c (n) =]

�
(x, y, z, w) 2 ⇥N2

0 ⇥ Z2 |n = atx + bty + c(z2 + zw + w2)
 

.
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2.2. Ramanujan’s Theory of Theta Functions

From Baruah, Cooper, and Hirschhorn [3], recall that

'(q) = '(q4) + 2q (q8), (2.1)
'(q)2 = '(q2)2 + 4q (q4)2, (2.2)

'(q) (q2) =  (q)2, (2.3)
'(q)'(q3) = a(q4) + 2q (q2) (q6), (2.4)

a(q) = '(q)'(q3) + 4q (q2) (q6), (2.5)
a(q) = a(q4) + 6q (q2) (q6). (2.6)

3. Proof of Theorem 1.2

3.1. Preliminary Results

Using Ramanujan’s theory of theta functions, Adiga, Cooper, and Han [1] proved
the following theorem:

Theorem 3.1. Let n 2 N0. Then,

r1,1,3(8n + 5) = 16t1,1,3(n).

Proof. For a detailed proof, see Barrucand et al. [2] and Adiga et al. [1].

Dickson [5, p. 112-113] proved the following result:

Theorem 3.2.

(1) A nonnegative integer n 2 N0 can be written as x2 + y2 + 3z2 for x, y, z 2 Z
if and only if n 6= 9k(9l + 6) for k, l 2 N0.

(2) Every n 2 N0 can be written as x2 + y2 + 3z2 + 3w2 for x, y, z, w 2 Z.

Using Theorems 3.1 and 3.2, the following theorem is obtained:

Theorem 3.3. A nonnegative integer n 2 N0 can be written as tx + ty + 3tz for
x, y, z 2 N0 if and only if n satisfies one of the following conditions:

(1) n 6⌘ 5, 8 (mod 9),

(2) n ⌘ 5 (mod 9), 8n + 5 = 9k(8N + 5), and N 6⌘ 5, 8 (mod 9) for k 2 N and
N 2 N0.

Proof. From Theorems 3.1 and 3.2, note that n = tx + ty + 3tz for x, y, z 2 N0 if
and only if 8n+5 6= 9k(9l +6) where k, l 2 N0. Moreover, 8n+5 ⌘ 0 (mod 9) if and
only if n ⌘ 5 (mod 9).
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First, consider the case when n 6⌘ 5 (mod 9). From Theorem 3.2, condition (1) is
obtained because 8n + 5 ⌘ 6 (mod 9) if and only if n ⌘ 8 (mod 9).

Next, we consider the case when n ⌘ 5 (mod 9) and n = 9N + 5 for N 2 N0,
which implies 8n + 5 = 9(8N + 5). Therefore, we set 8n + 5 = 9k(8N 0 + 5) for
k 2 N, N 0 2 N0, where N 0 6⌘ 5 (mod 9). From Theorem 3.2 and the discussion in the
first paragraph, we obtain condition (2).

3.2. Proof of Theorem 1.2 (1) for d = 3

3.2.1. Preliminary Results

Before proving Theorem 1.2 (1) for d = 3, we first obtain a useful number theoretic
property for t1,1,3,3(n).

Theorem 3.4. Let k 2 N and n,N 2 N0. Then,

t1,1,3,3(2kN + (2k � 1)) = 2kt1,1,3,3(N),

which implies t1,1,3,3(n) ⌘ 0(mod 2k) if n ⌘ �1 (mod 2k).

Proof. Multiplying both sides of (2.6) by  (q2) (q6) yields

 (q2) (q6)a(q) =  (q2) (q6)a(q4) + 6q (q2)2 (q6)2,

which implies

1X
n=0

B2,6
1 (n)qn =

1X
N=0

B1,3
2 (N)q2N + 6

1X
N=0

t1,1,3,3(N)q2N+1. (3.1)

Multiplying both sides of (2.5) by  (q2) (q6) yields

 (q2) (q6)a(q) = '(q)'(q3) (q2) (q6) + 4q (q2)2 (q6)2.

From (2.3), we obtain

 (q2) (q6)a(q) =  (q)2 (q3)2 + 4q (q2)2 (q6)2,

which implies

1X
n=0

B2,6
1 (n)qn =

1X
n=0

t1,1,3,3(n)qn + 4
1X

N=0

t1,1,3,3(N)q2N+1. (3.2)

From (3.1) and (3.2), note that

B2,6
1 (2N + 1) = 6t1,1,3,3(N) = t1,1,3,3(2N + 1) + 4t1,1,3,3(N),
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which implies
t1,1,3,3(2N + 1) = 2t1,1,3,3(N). (3.3)

Using induction, we complete the proof of the theorem. Clearly, for k = 1, the
theorem holds. Now, suppose the theorem holds for k. In this case,

t1,1,3,3(2k+1N + (2k+1 � 1)) = t1,1,3,3

�
2k · (2N + 1) + (2k � 1)

�
=2kt1,1,3,3(2N + 1)
=2k+1t1,1,3,3(N).

From Baruah, Cooper, and Hirschhorn [3], recall the following result:

Theorem 3.5. (Baruah,Cooper and Hirschhorn) For every n 2 N0,

t1,1,3,3(n) =

8><
>:

1
4
r1,1,3,3(n + 1) if n is even,

1
8
{r1,1,3,3(2n + 2)� r1,1,3,3(n + 1)} if n is odd .

3.2.2. Proof of Theorem 1.2 (1) for d = 3

Proof. From Theorem 3.2, first note that for every N 2 N0, r1,1,3,3(N) > 0. If
n 2 N0 is even and n = 2N for N 2 N0, by Theorem 3.5, we obtain

t1,1,3,3(n) = t1,1,3,3(2N) =
1
4
r1,1,3,3(2N + 1) > 0.

Suppose that n 2 N0 is odd and n + 1 = 2k(2N + 1) for k 2 N and N 2 N0.
Then,

n = 2k · (2N) + (2k � 1).

From Theorems 3.4 and 3.5, it follows that

t1,1,3,3(n) = t1,1,3,3

�
2k · (2N) + (2k � 1)

�
= 2kt1,1,3,3(2N) =

2k

4
r1,1,3,3(2N+1) > 0.

From the proof of Theorem 1.2 (1) for d = 3, we can improve Theorem 3.5 of
Baruah, Cooper, and Hirschhorn [3] when n is an odd number.

Corollary 3.1.

(1) Suppose that n 2 N0 is even and n = 2N for N 2 N0. Then,

t1,1,3,3(n) =
1
4
r1,1,3,3(2N + 1).
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(2) Suppose that n 2 N0 is odd and n + 1 = 2k(2N + 1) for k 2 N and N 2 N0.
Then,

t1,1,3,3(n) =
2k

4
r1,1,3,3(2N + 1).

Corollary 3.2. For k 2 N and N 2 N0,

r1,1,3,3(2k(2N + 1)) = r1,1,3,3(2(2N + 1)) + 4(2k�1 � 1)r1,1,3,3(2N + 1).

Proof. For k, n 2 N and N 2 N0, set

n + 1 = 2k(2N + 1),

which implies n = 2k · (2N) + 2k � 1.
By Theorem 3.5 and Corollary 3.1 (2), it follows that

t1,1,3,3(n) =
1
8
{r1,1,3,3(2n + 2)� r1,1,3,3(n + 1)}

=
1
8
{r1,1,3,3(2k+1(2N + 1))� r1,1,3,3(2k(2N + 1))}

=
2k

4
r1,1,3,3(2N + 1),

which implies

r1,1,3,3(2k+1(2N + 1)) = r1,1,3,3(2k(2N + 1)) + 2k+1r1,1,3,3(2N + 1).

Solving this recurrence relation with respect to k completes the proof.

3.3. Proof of Theorem 1.2 (1) for d = 6

Proof. From Theorem 3.3, we only need to prove that n 2 N0 can be written as
tx + ty + 3tz + 6tw for x, y, z, w 2 N0 if n ⌘ 5 or 8(mod 9).

When n ⌘ 8(mod 9), taking w = 1 yields

n� 6t1 ⌘ 8� 6 · 1 ⌘ 2(mod 9),

which implies from Theorem 3.3 that n� 6t1 can be expressed as tx + ty + 3tz for
x, y, z 2 N0.

When n ⌘ 5(mod 9), by Theorem 3.3, we assume that

8n + 5 = 9k(8N + 5), k,N 2 N, N ⌘ 8(mod 9).

Taking w = 2, note that n� 6t2 = n� 6 · 3 ⌘ 5(mod 9) and

8(n� 6t2) + 5 =8n + 5� 8 · 2 · 9
=9k(8N + 5)� 8 · 2 · 9
=9

�
9k�1(8N + 5)� 8 · 2

 
=9

⇢
8
✓

9k�1N +
9k�1 · 5� 5

8
� 2

◆
+ 5

�
.
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When k = 1,

9k�1N +
9k�1 · 5� 5

8
� 2 = N � 2 ⌘ 8� 2 ⌘ 6(mod 9),

which implies n� 6t2 can be expressed as tx + ty + 3tz for x, y, z 2 N0.

When k � 2, we obtain

9k�1N +
9k�1 · 5� 5

8
� 2 ⌘ �8 · 5� 2 ⌘ 3(mod 9),

which implies n� 6t2 can be expressed as tx + ty + 3tz for x, y, z 2 N0.

3.4. Proof of Theorem 1.2 (1) for d = 7, 8

Proof. By Theorem 3.3, we are reduced to proving that n 2 N0 can be written as
tx + ty + 3tz + dtw for x, y, z, w 2 N0 if n ⌘ 5 or 8(mod 9).

Taking w = 1, we have

n� d · t1 6⌘ 5, 8(mod 9),

which implies n� d · t1 can be expressed as tx + ty + 3tz for x, y, z 2 N0.

3.5. Proof of Theorem 1.2 (2)

Proof. Suppose that every n 2 N0 can be expressed as atx + bty + ctz + dtw for
x, y, z, w 2 N0. Taking n = 1, 2 yields

(a, b) = (1, 1), (1, 2).

First, we consider the case when (a, b) = (1, 2). Choosing n = 4 implies

(a, b, c, d) = (1, 2, 2, d), (1, 2, 3, d), (1, 2, 4, d).

Next, we consider the case when (a, b) = (1, 1). If n = 5, then c = 1, 2, 3, 4, 5,
which implies

(a, b, c, d) = (1, 1, 1, d), (1, 1, 2, d), (1, 1, 3, d), (1, 1, 4, d), (1, 1, 5, d).

When (a, b, c, d) = (1, 1, 3, d), taking n = 8 yields

(a, b, c, d) = (1, 1, 3, 3), (1, 1, 3, 4), (1, 1, 3, 5), (1, 1, 3, 6), (1, 1, 3, 7), (1, 1, 3, 8).

Thus, the necessary conditions are obtained; su�ciency follows from Theorems 1.1
and 1.2 (1).
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4. Proof of Theorem 1.3

4.1. Preliminary Results

First, note that for each positive integer n 2 N,

]{(x, y) 2 Z2|n = x2 + xy + y2} = 6(d1,3(n)� d2,3(n)). (4.1)

To prove this formula, we refer to Berndt [4, p. 79]. Formula (4.1) implies n =
2, 5, 6, 8 cannot be expressed as x2 + xy + y2 for x, y, z 2 Z.

Next, note that every n 2 N0 can be expressed as x2 + 3y2 + tz for (x, y, z) 2
Z2 ⇥ N0, which was proven by Guo, Pan, and Sun [6].

Finally, consider the following formula from Baruah, Cooper, and Hirschhorn [3]:

a(q) = '(q)'(q3) + 4q (q2) (q6), (4.2)

where

'(q) =
X
n2Z

qn2
,  (q) =

1X
n=0

qn(n+1)/2, a(q) =
X

m,n2Z
qm2+mn+n2

.

4.2. Proof of Theorem 1.3

Proof. If n = 1, then a = 1 or c = 1. Taking n = 2, we obtain

(a, c) = (1, 1), (1, 2), (2, 1).

Choosing n = 4 implies (a, c) 6= (1, 2); choosing n = 8 implies (a, c) 6= (2, 1).
From (4.2), we have

 (q)a(q) = '(q)'(q3) (q) + 4q (q) (q2) (q6),

which implies
1X

n=0

B1
1(n)qn =

1X
n=0

m1,3-1(n)qn + 4
1X

N=0

t1,2,6(N)qN+1.

From a result of Guo, Pan, and Sun [6], it follows that m1,3-1(n) > 0. Therefore,
B1

1(n) > 0, which means that every n 2 N0 can be expressed as tx + (y2 + yz + z2)
for (x, y, z) 2 N0 ⇥ Z2; thus, Theorem 1.3 (1) holds.

Theorem 1.3 (2) follows from the above discussion.

5. Applications of Theorem 1.2

Theorem 1.2 is used to prove the following theorems; in particular, to prove Theorem
5.1, we use the fact that every n 2 N0 can be written as tx + ty + 3(tz + tw) for
x, y, z, w 2 N0.
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Theorem 5.1. Let b 2 N and 2  b  8. Then every n 2 N0 can be expressed as
2tx + bty + (z2 + zw + w2) for (x, y, z, w) 2 N2

0 ⇥ Z2.

Theorem 5.2. Let b 2 N and 1  b  4. Then every n 2 N0 can be expressed as
tx + bty + 2(z2 + zw + w2) for (x, y, z, w) 2 N2

0 ⇥ Z2.

Theorem 5.3. Every n 2 N0 can be expressed as tx + 2ty + 3(z2 + zw + w2) for
(x, y, z, w) 2 N2

0 ⇥ Z2.

Theorem 5.4. Let b = 1, 2. Then every n 2 N0 can be expressed as tx + bty +
4(z2 + zw + w2) for (x, y, z, w) 2 N2

0 ⇥ Z2.

Theorem 5.5. Every n 2 N0 can be expressed as tx + ty + 5(z2 + zw + w2) for
(x, y, z, w) 2 N2

0 ⇥ Z2.

5.1. Proof of Theorem 5.1

5.1.1. Preliminary Results

Consider the following result by Dickson [5, p. 112-113]:

Lemma 5.1. A nonnegative integer n 2 N0 can be written as x2 + 4y2 + 12z2 for
x, y, z 2 Z if and only if n 6= 4l + 2, 4l + 3, 9k(9l + 6), where k, l 2 N0.

Lemma 5.1 gives rise to the following proposition:

Proposition 5.1. A nonnegative integer n 2 N0 can be written as x2+4(y2+yz+z2)
for x, y, z 2 Z if and only if n 6= 4l + 2, 4l + 3, 9k(9l + 6), where k, l 2 N0.

Proof. Replacing q by q4 in (2.6) and (2.5) yields

a(q4) =a(q16) + 6q4 (q8) (q24),
'(q4)'(q12) =a(q16) + 2q4 (q8) (q24).

Multiplying both sides of these equations by '(q) results in

'(q)a(q4) ='(q)a(q16) + 6q4'(q) (q8) (q24), (5.1)
'(q)'(q4)'(q12) ='(q)a(q16) + 2q4'(q) (q8) (q24), (5.2)

which implies
1X

n=0

A1
4(n)qn =

1X
n=0

A1
16(n)qn + 6q4

1X
N=0

m1-8,24(N)qN ,

1X
n=0

r1,4,12(n)qn =
1X

n=0

A1
16(n)qn + 2q4

1X
N=0

m1-8,24(N)qN .

Therefore, it follows that n 6= 4l + 2, 4l + 3, 9k(9l + 6) , where k, l 2 N0, if and only
if r1,4,12(n) > 0, if and only if A1

16(n) > 0 or m1-8,24(n� 4) > 0, and if and only if
A1

4(n) > 0, which proves the proposition.
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Using Proposition 5.1, we can prove the following proposition:

Proposition 5.2. A nonnegative integer N 2 N0 can be written as 2tx +(y2 +yz +
z2) for (x, y, z) 2 N0 ⇥ Z2 if and only if either of the following occurs:

(1) N 6⌘ 2, 8 (mod 9),

(2) N ⌘ 2 ( mod 9) and 4N+1 = 9k(4N 0+1), N 0 6⌘ 2, 8( mod 9), k 2 N, N 0 2 N0.

Proof. Multiplying both sides of (2.1) by a(q4) yields

'(q)a(q4) = '(q4)a(q4) + 2q (q8)a(q4),

which implies

1X
n=0

A1
4(n)qn =

1X
N=0

A1
1(N)q4N + 2

1X
N=0

B2
1(N)q4N+1.

We then obtain
B2

1(N) > 0 if and only if A1
4(4N + 1) > 0.

Therefore, the proposition follows from Proposition 5.1 and the facts that

4N + 1 ⌘ 0 (mod 9) if and only if N ⌘ 2 (mod 9)

and
4N + 1 ⌘ 6 (mod 9) if and only if N ⌘ 8 (mod 9).

5.1.2. Proof of Theorem 5.1 for b 6= 3, 6

Proof. Because of Proposition 5.2, we are reduced to proving that N 2 N0 can be
written as 2tx +bty +(z2 +zw+w2) for (x, y, z, w) 2 N2

0⇥Z2 if N ⌘ 2 or 8 (mod 9).
Suppose b = 2. When N ⌘ 2(mod9), taking y = 2 results in N � 2 · 3 ⌘

5(mod 9), which implies B2
1(N � 2 · t2) > 0. When N ⌘ 8(mod 9), taking y = 1

results in N � 2 · 1 ⌘ 6(mod 9), which implies B2
1(N � 2 · t1) > 0.

Next, suppose b = 4, 5, 7. Taking y = 1 yields N � b · 1 6⌘ 2, 8(mod9), which
implies B2

1(N � b · t1) > 0.
Suppose b = 8. When N ⌘ 2(mod9), taking y = 1 results in N � 8 · 1 ⌘

3(mod 9), which implies B2
1(N � 8 · t1) > 0. When N = 8, 17, 26, 35, 44, we take

(x, y, z, w) = (0, 1, 0, 0), (0, 1, 3, 0), (1, 1, 4, 0), (0, 1, 3, 3), (0, 1, 6, 0).

When N ⌘ 8(mod 9) and N > 44, taking y = 3 yields N � 8 · 6 ⌘ 5(mod 9), which
implies B2

1(N � 8 · t3) > 0.
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5.1.3. Proof of Theorem 5.1 for b = 3

Proof. By Proposition 5.2, it su�ces to show that N 2 N0 can be written as 2tx +
3ty + (z2 + zw + w2) for (x, y, z, w) 2 N2

0 ⇥ Z2 if N ⌘ 2 or 8 (mod 9).
First, consider the case when N ⌘ 2( mod 9). By Proposition 5.2, we assume that

4N + 1 = 9k(4N 0 + 1), where k 2 N, N 0 2 N0, and N 0 ⌘ 8(mod 9). Taking y = 2
results in

N � 3 · t2 = N � 3 · 3 ⌘ 2(mod 9).

We then obtain

4(N � 3 · t2) + 1 =4(N � 3 · 3) + 1
=4N + 1� 36
=9k(4N 0 + 1)� 36

=9
⇢

4
✓

9k�1N 0 +
9k�1 � 1

4
� 1

◆
+ 1

�
.

When k = 1,

9k�1N 0 +
9k�1 � 1

4
� 1 ⌘ 8� 1 ⌘ 7(mod 9),

which implies B2
1(N � 3 · t2) > 0.

When k � 2, we obtain

9k�1N 0 +
9k�1 � 1

4
� 1 ⌘ 2� 1 ⌘ 1(mod 9),

which implies B2
1(N � 3 · t2) > 0.

Next, we consider the case when N ⌘ 8(mod 9). Taking y = 1 yields

N � 3 · t1 = N � 3 ⌘ 5(mod 9),

which implies B2
1(N � 3 · t1) > 0.

5.1.4. Proof of Theorem 5.1 for b = 6

Proof. Multiplying both sides of (2.5) by  (q2) (q6) results in

 (q2) (q6)a(q) = '(q)'(q3) (q2) (q6) + 4q (q2)2 (q6)2.

Using (2.3) we obtain

 (q2) (q6)a(q) =  (q)2 (q3)2 + 4q (q2)2 (q6)2,

which implies
1X

n=0

B2,6
1 (n)qn =

1X
n=0

t1,1,3,3(n)qn + 4
1X

N=0

t1,1,3,3(N)q2N+1. (5.3)

Theorem 1.2 implies t1,1,3,3(n) > 0, which proves Theorem 5.1 for b = 6.
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5.2. Proof of Theorem 5.2

5.2.1. Preliminary Results

Consider the following result by Dickson [5, p. 112]:

Lemma 5.2. A nonnegative integer n 2 N0 can be written as x2 + 16y2 + 48z2 for
x, y, z 2 Z if and only if n 6= 4l + 2, 4l + 3, 8l + 5, 16l + 8, 16l + 12, 9k(9l + 6), where
k, l 2 N0.

Proposition 5.3. A nonnegative integer n 2 N0 can be written as x2+16(y2+yz+
z2) for x, y, z 2 Z if and only if n 6= 4l +2, 4l +3, 8l +5, 16l +8, 16l +12, 9k(9l +6),
where k, l 2 N0.

Proof. Replacing q by q16 in (2.6) and (2.4) results in

a(q16) =a(q64) + 6q16 (q32) (q96),
'(q16)'(q48) =a(q64) + 2q16 (q32) (q96).

Multiplying both sides of these equations by '(q) yields

'(q)a(q16) ='(q)a(q64) + 6q16'(q) (q32) (q96), (5.4)
'(q)'(q16)'(q48) ='(q)a(q64) + 2q16'(q) (q32) (q96), (5.5)

which implies

1X
n=0

A1
16(n)qn =

1X
n=0

A1
64(n)qn + 6q16

1X
N=0

m1-32,96(N)qN ,

1X
n=0

r1,16,48(n)qn =
1X

n=0

A1
64(n)qn + 2q16

1X
N=0

m1-32,96(N)qN .

Therefore, it follows that

r1,16,48(n) > 0 if and only if A1
64(n) > 0 orm1-32,96(n� 16) > 0,

if and only if A1
16(n) > 0,

which proves the proposition.

Proposition 5.4. A nonnegative integer N 2 N0 can be written as tx +2(y2 +yz +
z2) for (x, y, z) 2 N0 ⇥ Z2 if and only if either of the following occurs:

(1) N 6⌘ 1, 4 (mod 9),

(2) N ⌘ 1 (mod9) and 8N + 1 = 9k(8N 0 + 1), k 2 N, N 0 2 N0, and N 0 6⌘
1, 4(mod 9).
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Proof. Multiplying both sides of (2.1) by a(q16) yields

'(q)a(q16) = '(q4)a(q16) + 2q (q8)a(q16),

which implies

1X
n=0

A1
16(n)qn =

1X
N=0

A1
4(N)q4N + 2

1X
N=0

B1
2(N)q8N+1.

We then obtain
B1

2(N) > 0 if and only if A1
16(8N + 1) > 0.

Therefore, the proposition follows from Proposition 5.3 and the facts that

8N + 1 ⌘ 0 (mod 9) if and only if N ⌘ 1 (mod 9)

and
8N + 1 ⌘ 6 (mod 9) if and only if N ⌘ 4 (mod 9).

5.2.2. Proof of Theorem 5.2 for b 6= 3

Proof. From Proposition 5.4, it su�ces to show that if N ⌘ 1 or 4 ( mod 9), N 2 N0

can be expressed as tx + bty + 2(z2 + zw + w2) for (x, y, z, w) 2 N2
0 ⇥ Z2. Assume

that N ⌘ 1 or 4 (mod 9).
For b = 1, 2, or 4, taking y = 1 yields N � b · t1 6⌘ 1, 4(mod 9), which implies

B1
2(N � b · t1) > 0.

5.2.3. Proof of Theorem 5.2 for b = 3

Proof. Multiplying both sides of (2.6) by  (q2) (q6) results in

 (q2) (q6)a(q) =  (q2) (q6)a(q4) + 6q (q2)2 (q6)2,

which implies

1X
n=0

B2,6
1 (n)qn =

1X
N=0

B1,3
2 (N)q2N + 6

1X
N=0

t1,1,3,3(N)q2N+1. (5.6)

Theorem 5.1 implies B2,6
1 (n) > 0, which allows us to conclude that B1,3

2 (N) > 0.
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5.3. Proof of Theorem 5.3

5.3.1. Preliminary Results

Consider the following result by Dickson [5, p. 113]:

Lemma 5.3. A nonnegative integer n 2 N0 can be written as x2 + 24y2 + 72z2 for
x, y, z 2 Z if and only if n 6= 3l + 2, 4l + 2, 4l + 3, 9l + 3, 4k(8l + 5), where k, l 2 N0.

Proposition 5.5. A nonnegative integer n 2 N0 can be written as x2 + 24(y2 +
yz + z2) for x, y, z 2 Z if and only if n 6= 3l + 2, 4l + 2, 4l + 3, 9l + 3, 4k(8l + 5),
where k, l 2 N0.

Proof. Replacing q by q24 in (2.6) and (2.4) implies

a(q24) =a(q96) + 6q24 (q48) (q144),
'(q24)'(q72) =a(q96) + 2q24 (q48) (q144).

Multiplying both sides of these equations by '(q) results in

'(q)a(q24) ='(q)a(q96) + 6q24'(q) (q48) (q144), (5.7)
'(q)'(q24)'(q72) ='(q)a(q96) + 2q24'(q) (q48) (q144), (5.8)

which implies

1X
n=0

A1
24(n)qn =

1X
n=0

A1
96(n)qn + 6q24

1X
N=0

m1-48,144(N)qN ,

1X
n=0

r1,24,72(n)qn =
1X

n=0

A1
96(n)qn + 2q24

1X
N=0

m1-48,144(N)qN .

Therefore, it follows that

r1,24,72(n) > 0 if and only if A1
96(n) > 0 orm1-48,144(n� 24) > 0,

if and only if A1
24(n) > 0,

which proves the proposition.

Proposition 5.5 gives rise to the following proposition:

Proposition 5.6. A nonnegative integer n 2 N0 can be written as tx+3(y2+yz+z2)
for (x, y, z) 2 N0 ⇥ Z2 if and only if n 6⌘ 2, 5, 7, 8 (mod 9).

Proof. Multiplying both sides of (2.1) by a(q24) results in

'(q)a(q24) = '(q4)a(q24) + 2q (q8)a(q24),
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which implies

1X
n=0

A1
24(n)qn =

1X
N=0

A1
6(N)q4N + 2

1X
N=0

B1
3(N)q8N+1.

We then obtain
B1

3(N) > 0 if and only if A1
24(8N + 1) > 0.

Therefore, the proposition follows from Proposition 5.5 and the facts that

8N + 1 ⌘ 2 (mod 3) if and only if N ⌘ 2 (mod 3),

and
8N + 1 ⌘ 3 (mod 9) if and only if N ⌘ 7 (mod 9).

5.3.2. Proof of Theorem 5.3

Proof. From Proposition 5.6, it su�ces to show that N 2 N0 can be expressed as
tx + 2ty + 3(z2 + zw + w2) for (x, y, z, w) 2 N2

0 ⇥ Z2 if N ⌘ 2, 5, 7 or 8(mod 9).
When N ⌘ 2, 5 or 8 (mod 9), taking y = 1 yields

N � 2 · t1 ⌘ 0, 3, or 6(mod 9),

which implies B1
3(N � 2 · t1) > 0.

When N ⌘ 7(mod 9), taking y = 2 yields

N � 2 · t2 ⌘ 1(mod 9),

which implies B1
3(N � 2 · t2) > 0.

5.4. Proof of Theorem 5.4

5.4.1. Proof of Theorem 5.4 for b = 1

Proof. Multiplying both sides of (2.3) by a(q4) results in

 (q)2a(q4) ='(q) (q2)a(q4)
=('(q4) + 2q (q8)) (q2)a(q4), by (2.1),
='(q4) (q2)a(q4) + 2q (q2) (q8)a(q4),

which implies

1X
n=0

B1,1
4 (n)qn =

1X
N=0

M2-1
2 (N)q2N + 2

1X
N=0

B1,4
2 (N)q2N+1, (5.9)
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where

M2-1
2 (N) = ]

�
(x, y, z, w) 2 Z⇥ N0 ⇥ Z2 |N = 2x2 + ty + 2(z2 + zw + w2)

 
.

If n is odd and n = 2N + 1, by Theorem 5.2,

B1,1
4 (2N + 1) = 2B1,4

2 (N) > 0.

Consider the case when n is even. By (5.9),

B1,1
4 (2N) = M2-1

2 (N).

If N 6⌘ 1, 4(mod9), using Proposition 5.4, we obtain M2-1
2 (N) > 0. If N ⌘

1 or 4(mod 9), taking x = 1 yields

N � 2x2 ⌘ 8 or 2(mod 9), giving B1
2(N � 2 · 12) > 0, which implies M2-1

2 (N) > 0.

5.4.2. Proof of Theorem 5.4 for b = 2

Proof. Replacing q by q4 in (2.5) yields

a(q4) = '(q4)'(q12) + 4q4 (q8) (q24).

Multiplying both sides of this equation by  (q) (q2) results in

 (q) (q2)a(q4) = '(q4)'(q12) (q) (q2) + 4q4 (q) (q2) (q8) (q24),

which implies

1X
n=0

B1,2
4 (n)qn =

1X
n=0

m4,12-1,2(n)qn + 4q4
1X

N=0

t1,2,8,24(N)qN ,

where

m4,12-1,2(n) = ]
�
(x, y, z, w) 2 Z2 ⇥ N2

0 |n = 4x2 + 12y2 + tz + 2tw
 

.

From Guo, Pan, and Sun [6], recall that every n 2 N0 can be expressed as
4x2 + 2ty + tz for (x, y, z) 2 Z⇥ N2

0, which implies that

m4,12-1,2(n) > 0, which gives B1,2
4 (n) > 0.
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5.5. Proof of Theorem 5.5

5.5.1. Preliminary Results

Consider the following result by Dickson [5, p. 113]:

Lemma 5.4. A nonnegative integer n 2 N0 can be written as x2 +40y2 +120z2 for
x, y, z 2 Z if and only if n 6= 4l + 2, 4l + 3, 9k(9l + 6), 25k(5l ± 2), 4k(8l + 5), where
k, l 2 N0.

Using Lemma 5.4, we obtain the following proposition:

Proposition 5.7. A nonnegative integer n 2 N0 can be written as x2+40(y2+yz+
z2) for x, y, z 2 Z if and only if n 6= 4l + 2, 4l + 3, 9k(9l + 6), 25k(5l ± 2), 4k(8l + 5),
where k, l 2 N0.

Proof. Replacing q by q40 in (2.6) and (2.4) results in

a(q40) =a(q160) + 6q40 (q80) (q240),
'(q40)'(q120) =a(q160) + 2q40 (q80) (q240).

Multiplying both sides of these equations by '(q) yields

'(q)a(q40) ='(q)a(q160) + 6q40'(q) (q80) (q240), (5.10)
'(q)'(q40)'(q120) ='(q)a(q160) + 2q40'(q) (q80) (q240), (5.11)

which implies

1X
n=0

A1
40(n)qn =

1X
n=0

A1
160(n)qn + 6q40

1X
N=0

m1-80,240(N)qN ,

1X
n=0

r1,40,120(n)qn =
1X

n=0

A1
160(n)qn + 2q40

1X
N=0

m1-80,240(N)qN .

Therefore, it follows that

r1,40,120(n) > 0 if and only if A1
160(n) > 0 orm1-80,240(n� 40) > 0,

if and only if A1
40(n) > 0,

which proves the proposition.

Proposition 5.5 gives rise to the following proposition:

Proposition 5.8. A nonnegative integer N 2 N0 can be written as tx + 5(y2 +
yz + z2) for (x, y, z) 2 N0 ⇥ Z2 if and only if 8N + 1 6= 9k(9l + 6), 25k(5l ± 2),
where k, l 2 N0; in particular, N 2 N0 can be written as tx + 5(y2 + yz + z2) for
(x, y, z) 2 N0 ⇥ Z2 if N 6⌘ 1, 4(mod 9), N 6⌘ 2, 4(mod 5), and N 6⌘ 3(mod 25).
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Proof. Multiplying both sides of (2.1) by a(q40) yields

'(q)a(q40) = '(q4)a(q40) + 2q (q8)a(q40),

which implies
1X

n=0

A1
40(n)qn =

1X
N=0

A1
10(N)q4N + 2

1X
N=0

B1
5(N)q8N+1.

We then obtain
B1

5(N) > 0 if and only if A1
40(8N + 1) > 0.

The second statement follows from the facts that

8N + 1 ⌘ 0 or 6(mod 9) if and only if N ⌘ 1or 4(mod 9),

8N + 1 ⌘ ±2(mod 5) if and only if N ⌘ 2 or 4(mod 5),

and
8N + 1 ⌘ 0(mod 25) if and only if N ⌘ 3(mod 25).

5.5.2. Proof of Theorem 5.5

Proof. By Proposition 5.8, it su�ces to show that n 2 N0 can be expressed as
tx + ty + 5(z2 + zw + w2) for (x, y, z, w) 2 N2

0⇥Z2 if n satisfies one of the following
conditions:

(i) n ⌘ 1 or 4(mod 9),
(ii) n ⌘ 2 or 4(mod 5),
(iii) n ⌘ 3(mod 25).
First, suppose that n ⌘ 1(mod 9) and n = 9N + 1 for N 2 N0. If N 6⌘ 1, 3(mod

5) and N 6⌘ 17(mod 25), taking x = 1 yields

n� t1 = 9N ⌘ 0(mod 9), 6⌘ 2, 4(mod 5), 6⌘ 3(mod 25),

which implies n� t1 can be written as ty + 5(z2 + zw + w2) for (y, z, w) 2 N0 ⇥Z2.

If N ⌘ 1(mod 5), taking x = 4 yields

n� t4 = 9N � 9 ⌘ 0(mod 9),⌘ 0(mod 5),

which implies n� t4 can be written as ty + 5(z2 + zw + w2) for (y, z, w) 2 N0 ⇥Z2.

If N ⌘ 3(mod 5), taking x = 2 results in

n� t2 = 9N � 2 ⌘ 7(mod 9), ⌘ 0(mod 5),

which implies n� t2 can be written as ty + 5(z2 + zw + w2) for (y, z, w) 2 N0 ⇥Z2.
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If N ⌘ 17(mod 25), taking x = 2 results in

n� t2 = 9N � 2 ⌘ 7(mod 9), ⌘ 1(mod 5),

which implies n� t2 can be written as ty + 5(z2 + zw + w2) for (y, z, w) 2 N0 ⇥Z2.

Now, suppose n ⌘ 4(mod 9) and n = 9N + 4 for N 2 N0. In the same way, we
prove that n can be written as tx + ty + 5(z2 + zw + w2) for (x, y, z, w) 2 N2

0 ⇥ Z2.
If N 6⌘ 1, 4(mod 5) and N 6⌘ 0(mod 25), we take x = 1. If N ⌘ 1(mod 5), we take
x = 7. If N ⌘ 4(mod 5), we take x = 4. Finally, if N ⌘ 0(mod 25), we take x = 3.

Suppose n ⌘ 2(mod 5) and n = 5N + 2 for N 2 N0. If N 6⌘ 0, 6(mod 9), we take
x = 1. If N ⌘ 0 or 6(mod 9), we take x = 3.

Next, assume n ⌘ 4(mod 5) and n = 5N +4 for N 2 N0. If N 6⌘ 0, 6(mod 9), we
take x = 3. If N ⌘ 0 or 6(mod 9), we take x = 7.

Finally, suppose n ⌘ 3(mod 25) and n = 25N + 3 for N 2 N0. If N 6⌘ 4, 7(mod
9), we take x = 2. If N ⌘ 4 or 7(mod 9), we take x = 4.

6. Proof of Theorem 1.4

6.1. Proof of Necessary Conditions

Proof. For fixed positive integers a, b, and c with a  b, suppose every n 2 N can
be written as atx + bty + c(z2 + zw + w2) for (x, y, z, w) 2 N2

0 ⇥ Z2.

First, assume that c = 1. Taking n = 2 yields a = 1 or 2. If a = 1, by Theorem
1.3, we see that b is arbitrary. If a = 2, taking n = 8 yields 2  b  8.

Suppose c = 2. Taking n = 1 results in a = 1. The choice of n = 4 implies
1  b  4.

Next, assume that c = 3. Taking n = 1 results in a = 1. Choosing n = 2 implies
b = 1 or 2. Taking n = 8 implies b = 2.

Suppose c = 4. Taking n = 1, we have a = 1. Choosing n = 2 implies b = 1 or 2.
Assume c = 5. Taking n = 1 yields a = 1. Choosing n = 2 implies b = 1 or 2,

and taking n = 4 implies b = 1.
Finally, suppose c � 6. Taking n = 1 results in a = 1. Choosing n = 2 implies

b = 1 or 2; taking n = 4 implies b = 1. On the other hand, n = 5 cannot be expressed
as tx + ty + c(z2 + zw + w2) for (x, y, z, w) 2 N2

0 ⇥Z2, which is a contradiction.

6.2. Proof of Su�cient Conditions

Proof. Su�ciency follows from Theorems 5.1, 5.2, 5.3, 5.4, and 5.5. Note that
Theorem 1.4 (2) follows from the proof of the necessary conditions.
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