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Abstract
We provide a generalization of a problem first considered by Sa↵ari and fully solved
by Sa↵ari, Erdős and Vaughan on direct factor pairs, to arbitrary finite families of
direct factors, and solve it using a method of Daboussi. We end with a few related
open problems.

1. Introduction

A common problem in analytic and combinatorial number theory is to determine
statistical information on the sizes of sets of products of integers from a given se-
quence. For instance, the Davenport-Erdős theorem states that given any sequence
A ✓ N, its set of multiples M(A) := {ma : a 2 A,m 2 N} has logarithmic density,
i.e., for C := M(A), the limit

�(C) := lim
x!1

1
log x

X
nx
n2C

1
n

exists (see Chapter 5 of [3]). Sa↵ari [4] considered an inverse problem in which the
set of products was found to dictate statistical information regarding the sequences
that formed these products, including a particular case in which the sequences were
well-behaved in the following sense:

Definition 1. Let A,B ✓ N such that 1 2 A \ B. Then A and B are said to be
direct factors of N if for each n 2 N there exists a unique pair (a, b) 2 A⇥ B such
that n = ab.

Recall that a sequence S is said to have natural density if limx!1 x�1
P

nx
n2S

1
exists. This limit is called the (natural) density of S and is denoted by dS. In his
1976 paper, Sa↵ari proved the following theorem:

Theorem 1. Let A,B ✓ N be a pair of direct factors of N. Then if H(S) :=
P

s2S
1
s

denotes the harmonic sum over a set S and H(A) <1, then A and B have natural
density. In particular, dA = 1/H(B) = 0 and dB = 1/H(A).
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In 1979, Sa↵ari, in a joint work with Erdős and Vaughan [2], subsequently proved
that, in the case when H(A) = 1 as well, the natural density of B is also zero.
Daboussi gave a simplified proof of both of these results shortly thereafter [1].
Motivated by this initial problem, we generalize the result in the following direction:

Definition 2. Let m � 2 and let Aj ✓ N for 1  j  m. Call {A1, . . . ,Am} an
m-family of direct factors for N if for each n 2 N there exists a unique m-tuple
(a1, . . . an) 2 A1 ⇥ · · ·⇥Am such that n = a1 · · · am.

It is natural to ask whether there is a similar relationship between the densities
of Ai, should they exist, in terms of the properties of the other n�1 sequences. We
answer this question in the a�rmative:

Theorem 2. With the notation above, dAi =
Qn

j=1
j 6=i

H(Aj)�1, where the right side
is interpreted as zero when H(Aj) =1 for some j.

The proof follows a similar thread of ideas as that of Daboussi, but with certain
necessary modifications. In any case, we provide supplementary elaboration where
needed.

We can construct examples of the families described in Definition 2:
i) Let m be any positive integer and let {r1, . . . , r�(m)} be an ordering of the �(m)
residue classes coprime to m. Let Aj := {n 2 N : p|n ) p ⌘ rj (mod m)}), the set
of all integers composed only of primes congruent to rj mod m.
ii) Let K/Q be a Galois extension and let Ad denote the set of integers divisible
only by rational primes such that the primes lying above them have relative degree
d, where d|[K : Q]. This partitions the primes and thus gives a family of direct
factors indexed by the divisors of the degree of the field extension.

In the remainder of the paper, we denote by P+(n) and P�(n) the largest and
smallest prime factors, respectively, of a positive integer n.

2. Proof of Theorem 2

Proof. First, fix y � 2. For each n 2 N set ny :=
Q

p⌫ ||n
py

p⌫ and let Ai,y := {n :
ny 2 Ai}. Also, for each i let ⇡i(n) = ai 2 Ai such that ai is the ith component of
the n-tuple into which n decomposes (this being well-defined by hypothesis). We
remark that P+(ab)  y if and only if P+(a), P+(b)  y, and hence

Y
py

(1� p�1)�1 =
X

P+(n)y

1
n

=
X

P+(a1···am)y
ai2Ai

1
a1 · · · am

=
mY

i=1

0
B@ X

P+(ai)y
ai2Ai

1
ai

1
CA ,
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whence for each i, we have (provided each Aj is nonempty and y is chosen large
enough to produce a non-empty sum)

X
P+(ai)y

1
ai

=
Y
py

(1� p�1)
mY

j=1
j 6=i

0
BB@

X
P+(aj)y

aj2Aj

1
aj

1
CCA
�1

.

In preparation for the remainder of the proof, we prove the following

Lemma 1. The density dAi,y exists, and is equal to
Qm

j=1
j 6=i

✓P
P+(a)y

a2Aj

1
a

◆�1

. More-

over, if x > 0 and Ai(x) :=
P

aix
ai2Ai

1, then Ai(x)  Ai,y(x).

Proof of Lemma 1. This is an elaboration of the proof of Daboussi. We have

x�1
X
nx

ny2Ai

1 = x�1
X
ax

P+(a)y,a2Ai

X
mx

a
P�(m)>y

1 =
X
ax

P+(a)y,a2Ai

1
a
·

0
BB@a

x

X
mx

a
P�(m)>y

1

1
CCA .

Note that d{n : P�(n) > y} =
Q

py(1�p�1) by the inclusion-exclusion principle, so
the inner sum, normalized by a

x , is convergent, while the outer sum also converges (it
is increasing and bounded by the product

Q
py(1�p�1)�1 for fixed y). Applying a

discrete version of the dominated convergence theorem (say, defined by the sequence
of functions {gx(t)}x with gx(t) := f(x

t )1(1,x)(t)) with Stieltjes integrals
Z x

1
gx(t)d{

X
at

1
a
}

we arrive at the existence of the limit

dAi,y = lim
x!1

x�1
X
nx

ny2Ai

1 =
Y
py

(1� p�1)
X

P+(a)y
a2Ai

1
a
,

which shows the first part of the claim.
Now for each i, define �i : Ai ! Ai,y to be the mapping a 7! ⇡i(ay) a

ay
. Note that

this is well-defined because a
ay

has no prime factors less than y, and ⇡i(ay) 2 Ai

with P+(ay)  y by definition, so the y-smooth part of �(a) is in Ai,y, as required.
We claim that �i is injective and in that case

Ai,y(x) =
X
nx

ny2Ai

1 �
X
nx

ny2Ai

|��1(a)| =
X
ax

a2Ai

1 = Ai(x)
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which is the claim of the statement. Indeed, if a, a0 2 Ai such that �(a) = �(a0)
then since ay

⇡i(ay) =
Q

j 6=i ⇡j(ay), we have a
Q

j 6=i ⇡j(a0y) = a0
Q

j 6=i ⇡j(ay). Since
the decompositions of integers into products of elements from Aj are unique, and
a, a0 2 Ai while ⇡j(ay),⇡j(a0y) 2 Aj for each j 6= i, it follows that a = a0 as Ai part,
and we’re done.

Lemma 1 allows us to immediately deduce that

dAi  dAi,y =
mY

j=1
j 6=i

0
BB@

X
P+(a)y

a2Aj

1
a

1
CCA
�1

.

This tells us, in particular, that if any of the sums H(Aj) =1 then dAi exists and
is equal to zero (by taking y !1).

We are left to check the case when all of H(Aj) < 1. We need a lower bound
to match the upper bound in the lemma to finish the proof. In this direction, we
establish the following

Lemma 2. For each 1  i  m, the following lower bound holds:

dAi � dAi,y + 1� dAi,y

mY
j=1
j 6=i

0
@ X

aj2Aj

1
aj

1
A .

Proof. In what follows, let 1i denote the characteristic function of Ai for each i.
Remark that a 2 Ai if, and only if, the n-tuple representing a consists of 1 at every
component except for the ith component. It follows that a 2 Ai is representable
as a = a1 · · · an if, and only if, (1j � �)(n) = 0 for each j 6= i, where �(n) is 1 or 0
according to whether n = 1 or not.

For each k /2 Ai there exists a set Sk ✓ {1, . . . , n}\{i} such that ⇡j(k) 6= 1 if and
only if j 2 Sk, and by construction the converse that any such set corresponds to
an element in the complement of Ai also holds. Thus, we can form a partition of
N\Ai. Write fSk to be its characteristic function. For each S ⇢ {1, . . . , n}\{i} let
VS denote the set of integers k /2 Ai such that Sk = S by the notation above. Then
{VS : S ⇢ {1, . . . , n}\{i}, |S| > 0} forms a partition of N\Ai, whence

x�1
X
kx

1i(k)

= 1� x�1
X

S✓{1,...,n}\{i}
|S|>0

X
k2VS

fS(k) = 1�
X

S✓{1,...,n}\{i}
|S|>0

X
kx

⇡j(k)6=1$j2S

1
k
· k

x

X
mx

k

1i(m)

� 1�
X

S✓{1,...,n}\{i}
|S|>0

X
kx

⇡j(k)6=1$j2S

1
k
· k

x
Ai,y

⇣x

k

⌘
.
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Appealing once again to the Dominated Convergence Theorem, we have

dAi � 1� dAi,y

X
S✓{1,...,n}\{i}

|S|>0

X
k:⇡j(k)6=1$j2S

1
k

.

As a result of the partition created, we have

X
k:⇡j(k)6=1$j2S

1
k

=
Y
j2S

0
@ X

aj2Aj

1
a
� 1

1
A ,

and so the sum above becomes, after introducing the contribution for S = ;,

dAi � 1� dAi,y

X
S✓{1,...,n}\{i}

Y
j2S

0
@ X

aj2Aj

1
a
� 1

1
A + dAi,y

= dAi,y + 1� dAi,y

nY
j=1
j 6=i

0
@1 +

0
@ X

aj2Aj

1
aj
� 1

1
A

1
A

= dAi,y + 1� dAi,y

nY
j=1
j 6=i

0
@ X

aj2Aj

1
aj

1
A ,

which proves the lemma.

To finish the proof, we write
P

aj2Aj

1
aj

=
P

aj2Aj

P+(aj)y

1
aj

+
P

aj2Aj

P+(aj)>y

1
aj

, noting

that the second sum vanishes as y !1. We have by the first lemma that

dAi � dAi,y � dAi,y

0
B@

nY
j=1
j 6=i

(H (Aj,y) + H (Ai\Aj,y))�
nY

j=1
j 6=i

H (Aj,y)

1
CA .

We remark that in the bracketed term, the product
Qn

j=1
j 6=i

H(Aj,y) is cancelled o↵,
and each remaining term is multiplied by some factor H(Aj\Aj,y) for j 6= i. As
all H(Aj) are assumed finite, the former terms go to zero as y ! 1, and hence,
for any ✏ > 0 we can choose y (depending only on ✏ and n) large enough such
that dAi � dAi,y � ✏. Thus, dAi exists and is equal to limy!1 dAi,y, implying the
theorem.

3. Open Problems and Other Generalizations

Instead of considering collections of integer sequences representing all positive inte-
gers uniquely, we could restrict to respresentations of some subsequence of N.
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Definition 3. Let S ✓ N. Call A1,A2 a pair of direct factors for S if for each
s 2 S there exists a unique pair (a1, a2) 2 A1 ⇥A2 such that s = a1a2.

Note that it may be that S ( {a1a2 : (a1, a2) 2 A1 ⇥ A2}. All we require is
that the map (a, b) 7! ab be an injection on the preimage of S. We seek to know
whether any analogous relationship will exist between A1 and A2 according to the
properties of S (which, for instance, might require S to possess natural density).

Another natural question is to classify the set of direct factors of N, and more
generally, of sequences S of the type considered in answering the above problem. We
may remark, for example, that there is no A such that (A,A) is a direct factor pair
even if we do not distinguish between (a, a0) and (a0, a). Indeed, A must contain
every prime factor and 1, implying that it cannot contain any squares of primes and
hence must contain all cubes of primes. In this case, however, it will not contain
any fourth powers of primes since otherwise one should have p4 = p · p3 = p4 · 1. As
a result, A · A cannot contain any fifth powers of primes, as the only smaller such
powers are cubes and the primes themselves.

Conversely, it is possible that a sequence have infinitely many direct factor pairs.
Indeed, let S ⇢ N be a primitive sequence, i.e., such that for any two s0, s 2 S
with s0 < s then s0 - s. Let {S1, S2} be a partition of S and set S0 := S [ {1}
and S0j := Sj [ {1} for j = 1, 2. Then clearly each s 2 S0 has the form s = s · 1
for s 2 S01 or s 2 S02, and moreover if s = s1s2 then one of s1 and s2 must be 1,
otherwise sj |s, contradicting primitivity. If S is an infinite such sequence (these do
exist, an example furnished by the set {pi

i : i � 1}, where pi denotes the ith prime)
then there are infinitely many such partitions providing distinct direct factor pairs.
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