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Abstract
A set A ⇢ Fp is said to be reducible if it can be represented in the form A = B+ C
with B, C ⇢ Fp, |B| , |C| � 2. If there are no sets B, C with these properties then A
is said to be primitive. First three criteria are presented for primitivity of subsets
of Fp. Then the distance between a given set A ⇢ Fp and the closest primitive set
is studied.

–Dedicated to the memory of Paul Erdős on the occasion
of the 100th anniversary of his birthday.

1. Introduction

We will need

Definition 1. Let G be an additive semigroup and A,B1, . . . ,Bk subsets of G with

|Bi| � 2 for i = 1, 2, . . . , k. (1.1)

If
A = B1 + B2 + · · ·+ Bk,

then this is called an (additive) k-decomposition of A, while if a multiplication is
defined in G and (1.1) and

A = B1 · B2 · ... · Bk (1.2)
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hold, then (1.2) is called a multiplicative k-decomposition of A. (A decomposition
will always mean a non-trivial one, i.e., a decomposition satisfying (1.1).)

In 1948 H.H. Ostmann [16], [17] introduced some definitions on additive proper-
ties of sequences of non-negative integers and studied some related problems. The
most interesting definitions are:

Definition 2. A finite or infinite set C of non-negative integers is said to be re-
ducible if it has an (additive) 2-decomposition C = A + B with |A| � 2, |B| � 2.
If there are no sets A, B with these properties then C is said to be primitive (or
irreducible).

Definition 3. Two sets A, B of non-negative integers are said to be asymptotically
equal if there is a number K such that A \ [K,+1) = B \ [K,+1) and then we
write A ⇠ B.

Definition 4. An infinite set C of non-negative integers is said to be totally prim-
itive if every C0 with C0 ⇠ C is primitive.

Ostmann also formulated the following beautiful conjecture:

Conjecture 1. The set P of the primes is totally primitive.

If A is an infinite set of non-negative integers, then let A(n) denote its counting
function:

A(n) = |{a : a  n, a 2 A}| .
Inspired by Ostmann’s work, Turán asked the following question: is it true that if
A is any infinite set of non-negative integers then one can change at most o(A(n))
elements of it up to n so that the new set A0 should be totally primitive? Sárközy
[24] gave an a�rmative answer to this question (Theorems A, B and C will be
presented here in a slightly simplified form):

Theorem A There is a positive absolute constant c such that if A is an infinite set
of non-negative integers then one can change elements of it so that the number of
the elements changed in [0, n] is less than c A(n)

(log log A(n))1/2 for every n > n0 and the
new set A0 is totally primitive.

Answering a question of Erdős, Sárközy [25] also proved:

Theorem B There is a positive absolute constant c0 such that if A is an infinite
set of non-negative integers, and its complement A = {0, 1, 2, . . . } \ A satisfies

A(n) = |{a : 0  a  n, a /2 A}| < c0
 

n (log log n)2

(log n)4

!1/3

(1.3)

for n � 3, then A is reducible.
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Erdős also conjectured that if we change o(n1/2) elements of the set of squares
up to n, then the new set is always totally primitive. Sárközy and Szemerédi [27]
proved this conjecture in the following slightly weaker form:

Theorem C If " > 0 and we change o(n1/2�") elements of the set of the squares
up to n then we get a totally primitive set.

Volkmann [28], [29] Wirsing [30] and Sárközy [19], [20] estimated the Lebesgue
measure, resp. Hausdor↵ dimension of the point set assigned to reducible sets.

Hornfeck [15], Hofmann and Wolke [14], Elsholtz [5], [6], [7] and Puchta [18]
proved partial results toward Ostmann’s Conjecture 1 on the totally primitivity of
the set P of the primes. Elsholtz [8] also studied multiplicative decompositions of
shifted sets P 0 + {a} with P 0 ⇠ P.

So far we have surveyed the papers written on decompositions of sets of integers.
Sárközy [26] proposed to study analogous problems in finite fields. Observe that the
notions of additive and multiplicative decompositions, reducibility and primitivity
can be extended from integers to any semigroup, in particular, to the additive group
of Fp and multiplicative group of F⇤p for any prime p; in the rest of the paper we
will use these definitions in this extended sense.

First (inspired by Erdős’s problem and Theorem C on the set of squares) it
was conjectured in [26] that for every prime p the set of the modulo p quadratic
residues is primitive. (We will identify Fp with the set of the residue classes modulo
p and, as it is customary, we will not distinguish between residue classes and the
integers representing them.) This conjecture is still open but partial results have
been proved by Sárközy [26], Shkredov [22] and Shparlinski [23].

Dartyge and Sárközy [3] conjectured that the set of modulo p primitive roots is
primitive. This conjecture is also still open but partial results have been proved by
Dartyge and Sárközy [3] and Shparlinski [23].

Sárközy [21] also studied multiplicative decompositions of the shifted set of the
modulo p quadratic residues.

By Theorem B every infinite set A of non-negative integers satisfying (1.3) is
reducible, and by Theorem A, the upper bound in (1.3) for A(n) cannot be replaced
by O

⇣
n

(log log n)1/2

⌘
. In a recent paper Gyarmati, Konyagin and Sárközy [11] studied

the analogue of these results in finite fields: they estimated the cardinality f(p) of
the largest primitive subset of Fp. Note that earlier Green, Gowers and Green
[12], [13], and Alon [1] had studied a closely related problem: they estimated the
cardinality g(p) of the largest subset A of Fp which cannot be represented in form
B + B = A. Clearly f(p)  g(p). Improving on results of Gowers and Green, Alon
proved that

p� c1
p2/3

(log p)1/3
< g(p) < p� c2

p1/2

log p
.



INTEGERS: 15A (2015) 4

In [11] we proved that f(p) is much smaller than this: for p > p0 we have

p� c3
log log p

(log p)1/2
p < f(p) < p� c4

p

log p
. (1.4)

Alon, Granville and Ubis [2] estimated the number of distinct sumsets A+ B in
Fp under various assumptions on the cardinality of A and B. Among others they
proved that there are 2p/2+o(p) distinct sumsets A+B in Fp with |A| , |B|!1 as
p!1. They also proved

Theorem D There are less than (1.9602)p+o(p) reducible subsets of Fp.

(So that almost all of the 2p subsets of Fp are primitive.)
In this paper our goal is to continue the study of the reducible and primitive

subsets of Fp and the connection between them. First in Section 2 we will present
three criteria for primitivity of a subset A of Fp. Then in Section 3 we will show
that these criteria are independent: neither of them follows from any of the others.
In Section 4 we will show that any “small” subset of Fp can be made primitive by
adding just one element. Finally, in Section 5 we will discuss a problem on the finite
field analogue of Theorem A. (In the sequel of this paper we will extend the notions
of reducibility and primitivity, and we will study these extended notions.)

2. Three Criteria for Primitivity in Fp.

Ostmann and others have given several criteria for primitivity of sequences of inte-
gers, but no primitivity criteria are known in Fp. Thus we will present three criteria
of this type, then we will illustrate their applicability, and we will also study the
connection between them.

Theorem 1. Assume that A = {a1, a2, . . . , at} ⇢ Fp and there are i, j with 1 
i < j  t such that

ai + aj � ak /2 A for every k with 1  k  t, k 6= i, k 6= j (2.1)
and

ai � aj + ak /2 A for every k with 1  k  t, k 6= j. (2.2)

Then A is primitive.

Corollary 1. If p is a prime of form p = 4k + 1 and A ⇢ Fp is defined by

A = {0, 1} [ {a 2 Fp :
✓

a

p

◆
= 1,

✓
a� 1

p

◆
= �1, a 6= �1, a 6= 2},

then A is primitive.
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Corollary 2. If A = {a1, a2, . . . , at} ⇢ Fp is a Sidon set, then it is primitive.

(A set A = {a1, a2, . . . , at} is called Sidon set if the sums ai+aj with 1  i < j  t
are distinct.)
Proof of Theorem 1. Assume that contrary to the statement of the theorem A is a
set satisfying the assumptions, however, there are B ⇢ Fp, C ⇢ Fp with

A = B + C, |B| � 2, |C| � 2. (2.3)

It follows from ai 2 A, aj 2 A and (2.3) that there are bu 2 B, bv 2 B, cx 2 C and
cy 2 C with

ai = bu + cx (2.4)

and
aj = bv + cy. (2.5)

Now we have to distinguish two cases.

Case 1. Assume that bu 6= bv and cx 6= cy. Then by (2.3), (2.4) and (2.5) we have

ai + aj = (bu + cx) + (bv + cy) = (bu + cy) + (bv + cx) = ar + as (2.6)

with ar = bu + cy 2 A and as = bv + cx 2 A. Then

ai 6= ar (2.7)

by (2.4) and cx 6= cy, and
aj 6= ar (2.8)

by (2.5) and bu 6= bv. (2.6), (2.7) and (2.8) contradict (2.1) (with ar in place of ak).

Case 2. Assume that
bu = bv (2.9)

or cx = cy; we may assume that (2.9) holds. Then (2.5) can be rewritten as

aj = bu + cy.

By |B| � 2 there is a b 2 B with
b 6= bu. (2.10)

Then by (2.3) we have
ap = b + cx 2 A (2.11)

and
aq = b + cy 2 A. (2.12)

It follows from (2.4), (2.5), (2.9), (2.11) and (2.12) that

ai � aj = (bu � bv) + (cx � cy) = cx � cy = ap � aq
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whence
ai � aj + aq = ap 2 A (2.13)

where by (2.5), (2.9), (2.10) and (2.12)

aq = b + cy 6= bu + cy = bv + cy = aj . (2.14)

(2.13) and (2.14) contradict (2.2) which completes the proof of Theorem 1.
Proof of Corollary 1. By the construction of the set A we have 0 2 A and 1 2 A.
We will show that (2.1) and (2.2) in Theorem 1 hold with ai = 0, aj = 1; in other
words, we have

1� ak /2 A for every ak 6= 0, 1 (2.15)
and

� 1 + ak /2 A for every ak 6= 1. (2.16)

Consider first (2.15). By the construction of A, it follows from ak 2 A, ak 6= 0,
ak 6= 1 that

⇣
ak
p

⌘
= 1 and

⇣
ak�1

p

⌘
= �1. Then by p = 4k + 1 we have

✓
1� ak

p

◆
=
✓
�1
p

◆✓
1� ak

p

◆
=
✓

ak � 1
p

◆
= �1.

This implies by the definition of A that 1� ak 2 A may hold only if 1� ak = 0 or
1 � ak = 1 whence ak = 1 or ak = 0. But it is assumed in (2.15) that ak 6= 0, 1,
thus, indeed, (2.15) holds.

Now consider (2.16). It follows from ak 2 A and ak 6= 1 that either
⇣

ak�1
p

⌘
= �1

whence �1+ak /2 A or we have ak = 0 whence �1+ak = �1 which again does not
belong to A so that (2.16) holds.
Proof of Corollary 2. If |A| = 1 or 2, then A is primitive trivially. If |A| = t > 2,
then ai, aj in the theorem can be chosen as any two distinct elements of A, e.g., we
may take ai = a1 and aj = a2. Also, (2.1) and (2.2) in Theorem 1 hold trivially by
the definition of Sidon sets which proves the primitivity of A.

Theorem 2. If A ⇢ Fp is of the form

A = {0} [A0 with A0 ⇢ (p/3, 2p/3), (2.17)

and
|A| > 4, (2.18)

then A is primitive.

Proof of Theorem 2. Assume that contrary to the statement of the theorem (2.17)
holds, however there are sets B ⇢ Fp, C ⇢ Fp with

A = B + C, |B| � 2, |C| � 2. (2.19)
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Since 0 2 A, thus it follows from (2.18) that there are b0 2 B, c0 2 C with

0 = b0 + c0.

Write B0 = B+ {�b0} and C0 = C + {�c0} so that 0 2 B0 and 0 2 C0 and, by (2.19),

B0 + C0 = B + C = A, |B0| = |B| � 2, |C0| = |C| � 2. (2.20)

Represent every non-zero element of B0 and C0 by an integer from the interval (0, p)
and let B0 = {0, b01, . . . , b0r} and C0 = {0, c01, . . . , c0s} with

0 < b01 < · · · < b0r < p and 0 < c01 < · · · < c0s < p (2.21)

where r � 1 and s � 1, and by (2.18) and (2.20),

(r + 1)(s + 1) = |B0| |C0| � |A| > 4.

It follows that
r � 2 (2.22)

or s � 2; we may assume that (2.22) holds. Then by (2.20) and (2.21) we have

b0i = b0i + 0 2 B0 + C0 = A, 0 < b0i < p (2.23)

for i = 1, 2, . . . , r and

c01 = c01 + 0 2 B0 + C0 = A, 0 < c01 < p. (2.24)

By the construction of A it follows from (2.23) and (2.24) that

2
p

3
< b0i + c01 <

4p
3

, (2.25)

and by (2.20) we have
b0i + c01 2 B0 + C0 = A. (2.26)

But it follows from the construction of A that it has only a single element in the
interval

�2p
3 , 4p

3

�
, namely p (= 0). Thus by (2.25) and (2.26) we have

b0i + c01 = 0 for i = 1, 2, . . . , r.

By (2.22) this holds for both i = 1 and i = 2 so that

b01 + c01 = 0 = b2 + c01

whence b01 = b02 which contradicts (2.21) and this completes the proof of Theorem
2.
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Theorem 3. Let A ⇢ Fp and for d 2 F⇤p denote the number of solutions of

a� a0 = d, a 2 A, a0 2 A

by f(A, d). If
max
d2F⇤p

f(A, d) < |A|1/2 , (2.27)

then A is primitive.

Note that Corollary 2 also follows from this criterion trivially. (In the sequel of
this paper we will also apply this criterion for proving a stronger result along these
lines.)
Proof of Theorem 3. Assume that contrary to the statement of the theorem there
are B ✓ Fp, C ✓ Fp with

A = B + C, |B| � 2, |C| � 2. (2.28)

We may assume that
|B| � |C| . (2.29)

By (2.28) and (2.29) we have

|A| = |B + C|  |{(b, c) : b 2 B, c 2 C}| = |B| |C|  |B|2

whence
|A|1/2  |B| . (2.30)

It follows from (2.27) and (2.30) that

max
d2F⇤p

f(A, d) < |B| . (2.31)

On the other hand, let c and c0 be two distinct elements of C. Then by (2.28), for
every B we have a = b + c 2 A and a0 = b + c0 2 A. For this pair (a, a0) we have

a� a0 = (b + c)� (b + c0) = c� c0,

and for di↵erent b values we get di↵erent solutions of

a� a0 = c� c0, a 2 A, a0 2 A. (2.32)

It follows that the number of solutions of (2.32) is at least as large as the number
of b’s:

f(A, c� c0) � |B| . (2.33)

Since c 6= c0 we have c� c0 6= 0 thus (2.32) contradicts (2.31) and this completes the
proof of Theorem 3.

Now we will prove that Theorem 3 is sharp in the range 0 < |A|⌧ p1/2 (and in
the next section we will also show that if a set A ⇢ Fp satisfies the assumptions in
Theorem 3 then we must have |A|⌧ p1/2):
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Theorem 4. If p is large enough and k is a positive integer with

k0 < k <
1
2
p1/4, (2.34)

then there is a set A ⇢ Fp such that

|A| = k2, (2.35)

max
d2F⇤p

f(A, d) = |A|1/2 (2.36)

and A is reducible.

Proof of Theorem 4. Write m = 2k2. By theorems of Erdős and Turán [9], [10] and
Chowla [4] the cardinality of the maximal Sidon set selected from {1, 2, . . . , N} is
(1 + o(1))N1/2. Thus for k large enough there is a Sidon set

B = {b1, b2, . . . , bk} ⇢ {1, 2, . . . ,m� 1} with |B| = k

✓
=
⇣m

2

⌘1/2
◆

. (2.37)

Let C = {c1, c2, . . . , ck} = (2m)⇥ B = {2mb1, 2mb2, . . . , 2mbk} and

A = B + C. (2.38)

Then clearly A is reducible. Moreover, every a 2 A can be written in the form

a = bi + cj = bi + 2mbj (2.39)

with some i, j 2 {1, 2, . . . , k}, and by (2.34) here we have

0 < bi < m, 0 < bj < m and

0 < bi + 2mbj < m + 2m(m� 1) < 2m2 = 8k4 <
p

2
. (2.40)

(2.39) and (2.40) determine bi and cj uniquely, thus we have

|A| = |B + C| = |B| |C| = k2 (2.41)

which proves (2.35).
Finally, consider a d 2 F⇤p with f(A, d) > 0 so that there are a, a0 with

a� a0 = d, a 2 A, a0 2 A.

Let a be of the form (2.39) and

a0 = bi0 + cj0 = bi0 + 2mbj0 .

Then we have

d = a� a0 = (bi � bi0) + 2m (bj � bj0) = u + 2mv (2.42)
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with
0  |bi � bi0 | = |u| < m (2.43)

0  |bj � bj0 | = |v| < m (2.44)

and, by (2.34),

|d|  |u|+ |2mv| = |bi � bi0 |+ 2m |bj � bj0 | < m + 2m(m� 1) < 2m2 = 8k4 <
p

2
.

(2.45)
By (2.43), (2.44) and (2.45), d determines u and v in (2.42) uniquely. If u = bi�bi0 6=
0 and v = bj � bj0 6= 0 then by the Sidon property of B the pair u, v determines
bi, bi0 , bj and bj0 , and thus also a and a0 uniquely so that we have f(A, d) = 1. If
u = bi � bi0 = 0 and v = bj � bj0 6= 0 then i = i0 can be chosen in k ways while v
determines j and j0 uniquely, thus, by (2.41),

f(A, d) = k = |A|1/2 . (2.46)

Similarly, if u = bi � bi0 6= 0 and v = bj � bj0 = 0 then j = j0 can be chosen in k
ways while i, i0 are uniquely determined thus again (2.46) holds and this also proves
(2.36).

3. Comparison of Three Criteria

Let F1,F2 and F3 denote the family of the subsets A of Fp that satisfy the as-
sumptions in Theorems 1, 2 and 3, respectively, and let L1, L2 and L3 denote the
cardinality of the largest subset belonging to F1, F2 and F3, respectively. First we
will estimate |F1|, |F2|, |F3|, L1, L2 and L3.

Theorem 5. We have
(i)

|F1| � 2p/2�O(1) (3.1)

and
L1 =

p

2
+ O(1). (3.2)

(ii)
|F2| = 2p/3+O(1) (3.3)

and
L2 =

p

3
+ O(1). (3.4)

(iii)
|F3|  exp

⇣
(1 + o(1)) p2/3 log p

⌘
(3.5)

and
L3  (1 + o(1)) p2/3. (3.6)
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Proof of Theorem 5. (i) Write

B =
⇢

b : �p� 3
2

 b  p� 3
2

, 2 | b, b 6= 0, 2
�

.

We will show that if A0 ⇢ B then

A = {0, 1} [A0 2 F1. (3.7)

It su�ces to prove that such a set A satisfies (2.1) and (2.2) in Theorem 1 with
ai = 1, aj = 0. For these values of ai and aj conditions (2.1) and (2.2) become

1� a /2 A for a 2 A, a 6= 0, 1 (3.8)

and
1 + a /2 A for a 2 A, a 6= 0. (3.9)

Indeed, if a 2 A, a 6= 0, 1 then by a 2 A0 ⇢ B we have

�p� 1
2

 1� a, 1 + a  p� 1
2

and a 2 A0 ⇢ B is even so that 1 � a and 1 + a are odd; thus 1 � a, 1 + a /2 A0

whence (3.8) and (3.9) follow; if a = 1 then 1+ a = 1+1 = 2 /2 A0 thus again (3.9)
holds.

Since clearly |B| = p
2 �O(1), it follows that A0 ⇢ B (and also A in (3.7)) can be

chosen in 2p/2�O(1) ways, which proves (3.1).
Taking A0 = B in (3.7) we get that A = {0, 1} [ B 2 F1. Thus, clearly we have

L1 � |{0, 1} [ B| � |B| = p

2
�O(1). (3.10)

In order to give an upper bound for L1 consider a set A which satisfies the assump-
tions in Theorem 1 with some fixed ai, aj . Then by (2.1), for any pair a, a0 2 Fp

with
ai + aj � a = a0

only at most one of a and a0 may belong to A. There are at most p+1
2 such pairs

(including the pair (a, a0) with a = a0), and every element of Fp belongs to one of
these pairs. Thus |A| is at most p+1

2 (=the number of pairs) + 2 (to also count ai

and aj) = p
2 + O(1), so that

L2 
p

2
+ O(1)

which, together with (3.10), proves (3.2).
(ii) The number of the sets A of form (2.17) is equal to the number of the sets

A0 ⇢ Fp with A0 ⇢ (p/3, 2p/3) which is clearly

22p/3�p/3+O(1) = 2p/3+O(1)
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which proves (3.3).
The maximal cardinality of a set A of form (2.17) is at most

|A|  |{0}|+ |A0|  1 + |{a : p/3  a < 2p/3}| = p

3
+ O(1)

which proves (3.4).
(iii) If A 2 F3 then (2.27) holds so thatX

d2F⇤p

f(A, d) <
X
d2F⇤p

|A|1/2 = (p� 1) |A|1/2 . (3.11)

On the other hand, clearly we haveX
d2F⇤p

f(A, d) =
X
d2F⇤p

|{(a, a0) : a, a0 2 A, a� a0 = d}|

= |{(a, a0) : a, a0 2 A, a 6= a0| = |A| (|A|� 1) . (3.12)

It follows from (3.11) and (3.12) that

|A|1/2 (|A|� 1) < p� 1. (3.13)

Now assume that contrary to (3.6) there is an " > 0 such that for infinitely many
primes p there is an A 2 F3 with

|A| > (1 + ")p2/3. (3.14)

It follows from (3.13) and (3.14) that

(1 + ")1/2 p1/3
⇣
(1 + ")p2/3 � 1

⌘
< p� 1

whence

(1 + ")3/2 � (1 + ")1/2

p2/3
< 1� 1

p
.

But for p !1 the limit of the left hand side is (1 + ")3/2 (> 1) while the limit of
the right hand side is 1, thus for p large enough this inequality cannot hold, and
this contradiction proves (3.6).

It follows from (3.6) that

|F3|  |{A : A ⇢ Fp, |A|  L3}| =
L3X

k=1

✓
p

L3

◆
 p

✓
p

L3

◆
= pL3+1

= exp
⇣
(1 + o(1))p2/3 log p

⌘

which proves (3.5) and this completes the proof of Theorem 5. (We remark that
with a little work it could be also shown that (3.5) and (3.6) hold with equality sign
but we do not need this here.)
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Note that comparing (3.1), (3.3) and (3.5) we can see that Theorem 1 covers
more primitive sets than Theorem 2 and Theorem 3, and both Theorem 1 and
Theorem 2 cover much more primitive sets than Theorem 3. Moreover, by (3.2),
(3.4) and (3.6) there are much larger primitive sets covered by Theorems 1 and 2
than by Theorem 3. In spite of this Theorem 3 seems to be at least as useful and
applicable as the other two theorems since it covers almost all the thin subsets A
of Fp (almost all the subsets A with |A| ⌧ p2/3); on the other hand, e.g. a set A
satisfying Theorem 2 must have a very special structure: apart from 0 2 A, it must
lie completely in the interval (p/3, 2p/3).

Now we will show that Theorems 1, 2 and 3 are independent.

Proposition 1. For p large enough Theorems 1, 2 and 3 are independent: for
either of the three criteria there is an A 2 Fp which satisfies the conditions in it but
which does not satisfy the conditions in the other two theorems.

Proof of Proposition 1. By (3.1), (3.3) and (3.5) in Theorem 1 for p large enough
there are much more subsets A ⇢ Fp satisfying the assumptions in Theorem 1 than
the ones in Theorems 2 and 3, and there are much more subsets satisfying the
assumptions in Theorem 2 than the ones in Theorem 3.

There are (many) Sidon sets A with A ⇢ (0, p/3) and |A| > 1; these sets A
satisfies the assumptions in Theorem 3 but not (2.17) in Theorem 2.

With a little work it could be shown that almost all the subsets A ⇢ Fp with
|A| =

⇥
1
2n2/3

⇤
satisfy the inequality

2  f(A, d) < |A|1/2 for every d 2 F⇤p;

such a subset A satisfies the assumptions in Theorem 3 but not (2.2) in Theorem 1.
Finally, consider the set

A = {0} [ {a : p/3 < a < 2p/3}.

For p large enough this set satisfies the assumptions in Theorem 2. On the other
hand, for any ai, aj 2 A we also have �ai 2 A since A also contains the negative
of every element of it; take ak = �ai in (2.2). Then

ai � aj + ak = ai � aj � ai = �aj 2 A

(since the negative of aj also belongs to A) so that (2.2) in Theorem 1 does not
hold.

4. Making Primitive Set From a “Small” Subset of Fp by Adding a Single
Element

By Theorem D almost all the subsets of Fp are primitive. But how are the “few”
reducible subsets distributed in the space formed by the subsets of Fp? Are there
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“balls” of “not very small radius” in this space such that every subset belonging to
them is reducible or the opposite of this is true: for any fixed subset A ⇢ Fp there
is a primitive subset “very close” to it? First we will show that for “small” subsets
of Fp this is so in a very strong sense (while for any subset A the problem will be
studied in Section 5).

Theorem 6. Let p be a prime with

p > 3 (4.1)

and let A ⇢ Fp,

0 < |A| <
✓

2
3
p

◆1/2

� 1. (4.2)

Then there is an x 2 Fp \ A such that the set A [ {x} is primitive.

Proof of Theorem 6. Fix some a 2 A. If there is an

x 2 Fp \ A (4.3)

such that the assumptions (2.1) and (2.2) in Theorem 1 hold with the set Ax =
A [ {x} in place of A and with a and x in place of ai and aj , respectively, then by
Theorem 1 this set Ax is primitive, which proves our claim. Thus, if contrary to the
statement of the theorem there is no x satisfying (4.3) for which Ax is primitive,
then for all these x values either (2.1) and (2.2) fails with a = ai, aj = x, i.e., there
is either an ak with

a + x� ak 2 A

or an a0k with
a� x + a0k 2 A

so that either
x 2 A+A+ {�a} (4.4)

or
x 2 A�A+ {a} (4.5)

must hold. But by (4.1) and (4.2) the total number of x values satisfying (4.4) and
(4.5) is at most

|A+A|+ |A�A|  1
2
|A| (|A|+ 1) + |A| (|A|� 1) + 1

=
1
2
|A| (3 |A|� 1) + 1 =

1
2
|A| (3 |A|+ 1) + 1� |A|

<
1
2
|A|
⇣p

6p� 2
⌘

+ 1� |A|  1
2
|A|
p

6p� |A|

< p� |A| = |Fp \ A|
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which contradicts the fact that every x satisfying (4.3) must also satisfy one of (4.4)
and (4.5), and this completes the proof of Theorem 6.

It is a natural question to ask: what can one say from the opposite side? More
precisely, let h(p) denote the greatest integer h such that for every A ⇢ Fp with
|A|  h one can find an x 2 Fp \A for which the set A[ {x} is primitive. Then by
Theorem 6 for p > 3 we have

"✓
2
3
p

◆1/2
#
� 1  h(p). (4.6)

On the other hand, it follows trivially from our result [11] in (1.4) that

h(p) <


p� c4

p

log p

�
.

This upper bound can be improved easily to

h(p) <
1
2
p + O(1). (4.7)

Proposition 2. Let p � 5 and define A ⇢ Fp by

A =
[ p�1

4 ][
k=0

{4k, 4k + 1}.

Then any set B ⇢ Fp with A ✓ B is reducible.

Proof of Proposition 2. Clearly, if p � 5, B ⇢ Fp and A ✓ B then B has a
representation

B = {0, 1}+ C with |C| � 2

so that, indeed, B is reducible.
It follows from this proposition that for this set A we have

h(p) < |A|  2

p� 1

4

�

which proves (4.7).
There is a large gap between the lower bound (4.6) and the upper bound (4.7);

it is not clear which one is closer to h(p). Of course, the set A constructed in
Proposition 2 possesses a much stronger property than the one needed for h(p) < |A|
so that probably the upper bound (4.7) obtained in this way is far from the value
of h(p), but the lower bound (4.6) also seems to be far from h(p).



INTEGERS: 15A (2015) 16

5. Making Primitive Set From Any Subset of Fp by Changing Relatively
Few Elements

By Theorem D above (the result of Alon, Granville and Ubis [2]) there are only a
“few” reducible subsets in Fp. Moreover, our results and methods point to direction
that the reducible sets are not well-distributed in the sense that there are less
reducible sets among the small subsets of Fp than the large ones. This explains
that we have been able to show that from any small subset of Fp one can make a
primitive set by adding a single element but, on the other hand, we have not been
able to prove such a result for larger subsets. Now we will prove that if instead of
adding just one element we may change more (but still relatively few) elements of
the given subset then we may make a primitive set also from larger subsets.

Theorem 7. Let p � 3 be a prime and A a subset of Fp. Then by removing at
most

h
3+

p
5

2 · |A|
2

p

i
elements of A and adding at most two elements of Fp \ A one

can form a set B which is primitive.

Corollary 3. If p � 3 is a prime and A is a subset of Fp with

|A| <
p

5� 1
2

p1/2,

then by adding at most two elements of Fp \ A one can form a set B which is
primitive.

(We remark that it follows already from Theorem 6 with a constant factor c
slightly smaller than the one in the upper bound here that if |A| < cp1/2 then by
adding just one element of Fp \ A to A we can get a primitive set B.)

In order to formulate another consequence of Theorem 7 we need one more defi-
nition:

Definition 5. If A,B are subsets of Fp then their distance d(A,B) is defined as the
cardinality of their symmetric di↵erence (in other words, d(A,B) is the Hamming
distance between A and B).

It follows trivially from Theorem 7 that

Corollary 4. If p � 3 is a prime and A is a subset of Fp then there is a primitive
set B ⇢ Fp such that

d(A,B) 
"

3 +
p

5
2

· |A|
2

p

#
+ 2.

Proof of Theorem 7. We will use the following lemma.



INTEGERS: 15A (2015) 17

Lemma 1. Let p � 3 be a prime, A ⇢ Fp. Suppose that there are u, v 2 Fp for
which

u /2 A+A, v /2 A�A,
3v + u

2
/2 A. (5.1)

Then adding at most two elements of Fp \ A to A one can form a set B which is
primitive.

Proof of Lemma 1. Let A = {a1, a2, . . . , as}. For some fixed u, v satisfying (5.1)
define as+1 and as+2 by

as+1 =
u + v

2
, as+2 =

u� v

2
.

Then by (5.1)

as+1 + as+2 = u /2 A+A,

as+1 � as+2 = v /2 A�A,

as+1 � as+2 + as+1 =
u + 3v

2
/2 A.

In other words

as+1 + as+2 � ak /2 A for 1  k  s,

as+1 � as+2 + ak /2 A for 1  k  s + 1.

Using Theorem 1 with i = s+1, j = s+2 we get that A[{as+1, as+2} is primitive,
and this completes the proof of the lemma.

Now we return to the proof of the theorem. Clearly Theorem 7 is trivial for
|A| � 3�

p
5

2 p (in this case
h

3+
p

5
2 · |A|

2

p

i
� |A|, and then removing |A|� 1 elements

from A we get a set which contains only one element, and thus it is reducible), thus
we may assume

|A| < 3�
p

5
2

p. (5.2)

First we prove that there exist a set A0 ⇢ A and an element u 2 Fp such that

u /2 A0 +A0 and |A0| � |A|� |A|2

p
. (5.3)

Indeed, for d 2 Fp let

h(A, d) def= |{(a, a0) : a + a0 = d, a, a0 2 A}| .

Clearly, X
d2Fp

h(A, d) =
X
d2Fp

X
a,a02A
a+a0=d

1 =
X

a,a02A
1 = |A|2 .
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On the other hand, we have

p min
d2Fp

h(A, d) 
X
d2Fp

h(A, d) = |A|2

whence

min
d2Fp

h(A, d)  |A|2

p
. (5.4)

Let u 2 Fp be an element with

h(A, u) = min
d2Fp

h(A, d) def= t, (5.5)

and (a1, a01), (a2, a02), . . . , (at, a0t) the solutions of the equation

a + a0 = u with a, a0 2 A.

By (5.4) and (5.5) we have

t = h(A, u)  |A|2

p
.

For A0 = A \ {a1, a2, . . . , at} the equation

a + a0 = u, a, a0 2 A0 (⇢ A)

cannot be solved; thus
u /2 A0 +A0.

This proves (5.3).
Consider a set A0 and an element u 2 Fp for which (5.3) holds. We will prove

that there exists a set A00 ⇢ A0 and an element v 2 Fp with

v /2 A00 �A00,

u + 3v
2

/2 A00 (5.6)

and

|A00| � |A0|� 1 +
p

5
2

· |A|
2

p

� |A|� 3 +
p

5
2

· |A|
2

p
. (5.7)

Since A00 ⇢ A0 by (5.3)
u /2 A00 +A00 (5.8)

trivially holds.
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Again, for d 2 Fp we define

f(A0, d) def= |{(a, a0) : a� a0 = d, a, a0 2 A0}| .

Let G = {v 2 Fp : u+3v
2 2 A0}. Since u is fixed (see (5.3)), we have

|G|  |A0|  |A| . (5.9)

Clearly,
X

d2Fp\G
f(A0, d) =

X
d2Fp\G

X
a,a02A
a�a0=d

1 
X
d2Fp

X
a,a02A
a�a0=d

1 =
X

a,a02A
1 = |A0|2  |A|2 . (5.10)

On the other hand, by (5.9) and (5.10) we have

(p� |A|) min
d2Fp\G

f(A0, d)  (p� |G|) min
d2Fp\G

f(A0, d) 
X

d2Fp\G
f(A0, d)  |A|2 .

(5.11)

It follows from this and (5.2) that

min
d2Fp\G

f(A0, d)  |A|2

p� |A| 
|A|2

p� 3�
p

5
2 p

 1 +
p

5
2

· |A|
2

p
. (5.12)

Let v 2 Fp \ G be an element with

f(A0, v) = min
d2Fp\G

f(A0, d) def= s, (5.13)

and (b1, b01), (b2, b02), . . . , (bs, b0s) the solutions of the equation

b� b0 = v with b, b0 2 A0.

By (5.12) and (5.13) we have

s = f(A0, v)  1 +
p

5
2

· |A|
2

p
. (5.14)

For
A00 = A0 \ {b1, b2, . . . , bs}, (5.15)

the equation
b� b0 = v, b, b0 2 A00 (⇢ A)

cannot be solved, thus
v /2 A00 �A00. (5.16)
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By v 2 Fp \ G and the definition of G we have u+3v
2 /2 A0. Since A00 ✓ A0 we have

u + 3v
2

/2 A00. (5.17)

(5.6) and (5.7) follow from (5.14), (5.15), (5.16) and (5.17). Thus we have con-
structed a set A00 ⇢ A and u, v 2 Fp for which

u /2 A00 +A00, v /2 A00 �A00,
u + 3v

2
/2 A00, |A00| � |A|� 3 +

p
5

2
· |A|

2

p
.

Using Lemma 1 wee see that it is possible to add at most two elements of Fp \A00

to A00 so that we get a primitive set B. This completes the proof of Theorem 7.

6. Generalizations

In order to keep our presentation more transparent and the discussions simpler, we
have decided to stick to Fp in this paper. However, we remark that all but one of
our results can be generalized easily: Theorems 1, 3, 6, 7 and Corollaries 2, 3, 4
can be extended to any Abelian groups, Theorems 2, 4, 5 and Propositions 1, 2 to
cyclic groups (and Corollary 1 is the only result whose proof goes through only in
Fp).

Acknowledgement. We would like to thank tha anonymous referee for suggesting
us an idea to sharpen Theorem 6 and also to shorten its proof.
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