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Abstract
Perhaps the most famous combinatorial game is Nim, which was completely ana-
lyzed by C.L. Bouton in 1902. Since then, the game of Nim has been the subject of
many research papers. In Guy and Nowakowski’s Unsolved Problems in Combinato-
rial Games, the following entry is found: “David Gale would like to see an analysis
of Nim played with the option of a single pass by either of the players, which may
be made at any time up to the penultimate move. It may not be made at the
end of the game. Once a player has passed, the game is as in ordinary Nim. The
game ends when all heaps have vanished.” In this paper, we analyze this particular
variant of Nim.

1. Introduction and Some Preliminaries

Having its humble beginnings in the context of recreational mathematics, combi-
natorial game theory has matured into an active area of research. Along with its
natural appeal, the subject has applications to complexity theory, logic, graph the-
ory and biology. For these reasons, combinatorial games have caught the attention
of many people and the large body of research literature on the subject contin-
ues to increase. The interested reader is directed to [1, 2, 3, 5, 7, 8, 10], and to
A. Fraenkel’s excellent bibliography [6].

A combinatorial game is one of complete information and no element of chance
is involved in gameplay. Each player is aware of the game position at any point in
the game. Under normal play, two players alternate taking turns and a player loses
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when he cannot make a move. An impartial combinatorial game is one where both
players have the same options from any position. In a short game, a position is
never repeated and there are only a finite number of other positions which can be
reached.

Perhaps the most famous short impartial combinatorial game is Nim, which is
played in the following manner:

• There are n heaps, each containing a finite number of stones. Two players
alternate turns, each time choosing a heap and removing any number (� 1)
of stones in that heap. The player who cannot make a move loses the game.

Notation. We introduce the following notation for a game position (initial or oth-
erwise) for Nim. Let k � 1 and ti � 1, for all 1  i  k, and ti not necessarily
distinct. Then, (t1, t2, . . . , tk) denotes the game position corresponding to k heaps
of sizes t1, t2, . . . , tk. When convenient, we will use additional subscripts on the ti
to indicate multiple heaps of size ti. Note that ti0 denotes zero heaps of size ti. For
example, (1, 23, 42) denotes the game position (in Nim) corresponding to heaps of
sizes 1, 2, 2, 2, 4, and 4.

In 1902, Bouton [4] gave a beautiful mathematical analysis and complete solution
for Nim. Since then, the game of Nim has been the subject of many mathematics
research papers. Within the literature, studies on Nim variants with modified rule
sets, Nim played on di↵erent configurations (circular, triangular and rectangular),
and Nim played on graphs can be found. As of this writing, a keyword search for
“Nim” yields 98 entries in the MathSciNet database.

In this paper, we will use some important ideas and standard notation from
combinatorial game theory in the analysis of ‘Nim with a Pass’. For a more complete
overview, the interested reader is directed to [2, 3, 5].

First, we recall a definition and some concepts from combinatorial game theory
(CGT).

Definition. A P-position is a position which is winning for the previous player
(who has just moved). An N-position is a position which is winning for the next
player (who is about to make a move).

In finite impartial combinatorial games (under normal play), P-positions and N-
positions have the following properties:

• All terminal positions are P-positions.

• From every N-position, there is a move leading to a P-position.

• From every P-position, every move leads to an N-position.
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• A game � equals 0 = {|}() � is a P-position.

For regular Nim (under normal play), Bouton [4] showed that the game played
on heaps of size x1, x2, . . . , xk is a P-position if and only if

P
xi = 02 (BitXor).

As an example, suppose an initial game position of Nim is comprised of two heaps
of sizes 1 and 2. Since 1 = 12 and 2 = 102, 1 + 2 = 112 6= 02. Hence, this is an
N-position. Of course, we can see this directly: On his first move, P1 removes one
stone from the heap of size 2. This leaves P2 to play on two heaps of size 1, which
is clearly a losing position for P2.

In this paper, Nim* will be used to denote David Gale’s ‘Nim with a Pass’ game.
Here is how it is played.

• Nim* is played like ordinary Nim, with the option of a single pass which can
be used by exactly one player. Once the pass option is used, it cannot be used
again and the game continues in ordinary Nim fashion. The pass option can
be used at any time, up to the penultimate move. It cannot be used at the
end of the game. The player who cannot make a move loses the game.

Notation. We introduce the following notation for a game position (initial or
otherwise) for Nim*, where the pass option has not yet been used. Let k � 1 and
ti � 1, for all 1  i  k, and ti not necessarily distinct. Then, [t1, t2, . . . , tk] denotes
the game position corresponding to k heaps of sizes t1, t2, . . . , tk. When convenient,
we will use additional subscripts on the ti to indicate multiple heaps of size ti. Note
that ti0 denotes zero heaps of size ti. For example, [1, 23, 42] denotes the game
position (in Nim*) corresponding to heaps of sizes 1, 2, 2, 2, 4, and 4, with the pass
option available.

2. The Relationship Between Nim and Nim*

Combinatorial game theory can be used e↵ectively in the analysis of a game which
is a disjoint sum of smaller games. For example, the Nim game (1, 32) can be viewed
as a disjoint sum of smaller Nim games (1) and (32). Unfortunately, Nim* cannot
be viewed (in the natural way, or possibly in any way) as a disjoint sum of smaller
Nim* games. When we have a collection of heaps in Nim*, the pass option can only
be used once during the entire game and not once on each heap. On a di↵erent
note, it is tempting to think that the Nim* game [1m1 , 2m2 , . . . , kmk ] is merely
equal to the Nim game (1m1+1, 2m2 , . . . , kmk). However, this is not the case since
the pass option cannot be used as a last move in Nim*. Because of these di�culties,
the powerful tools in combinatorial game theory cannot be directly applied to the
analysis of Nim*.
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In [9], Morrison, Friedman and Landsberg used a dynamical systems approach
to analyze Nim* on three heaps. Their findings indicate a deep and rich complexity
in 3-heap Nim* and suggest that obtaining a complete analytical solution (in the
spirit of Bouton) may be intractable.

Nevertheless, in this paper, we give a partial analysis of Nim*. We begin with a
simple Lemma.

Lemma 1. If [1m1 , 2m2 , . . . , kmk ] is a P-position in Nim*, then (1m1 , 2m2 , . . . , kmk)
is an N-position in Nim.

Proof. Let [1m1 , 2m2 , . . . , kmk ] be a P-position in Nim*. Then, any move made
from this position leads to an N-position in Nim*. In particular, a pass leads to
(1m1 , 2m2 , . . . , kmk), an N-position in Nim.

Note that the converse of Lemma 1 is not necessarily true. For example, (1, 2) is
an N-position in Nim and [1, 2] is a P-position (see Theorem 1) in Nim*, whereas
(1, 3) is an N-position in Nim and [1, 3] is an N-position (see Theorem 1) in Nim*.

3. Nim* Played on Two Heaps

Lemma 2. Let m � 1 and odd. Then, Nim* played on [m,m + 1] is a P-position.

Proof. (Induction on m � 1 and odd.)

• Let m = 1. Then, we have two heaps of sizes 1 and 2. If P1 passes, then
P2 removes one stone from the heap of size 2, which leaves a losing position
for P1. If P1 initially removes an entire heap (either of size 1 or 2), then P2
removes the other heap and wins. However, if P1 removes one stone from a
heap of size 2, then P2 passes and leaves P1 to move from a losing position.
Therefore, the claim is true for m = 1.

Now, assume claim is true for m = 1, 3, . . . , 2k � 1.

• Let us consider Nim* played on heaps of sizes 2k +1 and 2k +2. If P1 passes,
then P2 removes one stone from the heap of size 2k + 2, which leaves a losing
position for P1. If P1 initially removes an entire heap (either of size 2k +1 or
2k + 2), then P2 removes the other heap and wins. On the other hand, if P1
removes one stone from the heap of size 2k + 2, then P2 passes, leaving P1 to
play on the losing position (2k+1, 2k+1). However, if P1 removes stones (not
all of them) from a single heap and leaves j stones remaining in that heap,
then P2 removes the appropriate number of stones in the other heap, leaving
a losing position for P1 to play on. This can be accomplished (by Induction
Hypothesis). Thus, the claim is true for m = 2k + 1.
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Lemma 3. Let m � 1 and odd. Then, Nim* played on [m,n], where 1  m  n
and n 6= m + 1, is an N-position.

Proof. Suppose that we have two heaps of sizes m and n. If n = m, then this is
clearly an N-position (since P1 merely passes on his first turn). Now, let n � m+2.
Then, [m,n] is still an N-position (since P1 can remove stones from the heap of size
n, thus leaving [m,m + 1] for P2 to move from).

Lemma 4. Let m � 2 and even. Then, Nim* played on [m,n], where 2  m  n,
is an N-position.

Proof. Suppose that we have two heaps of sizes m and n. If n = m, then this is
clearly an N-position (since P1 merely passes on his first turn). Now, let n � m+1.
Then, [m,n] is still an N-position (since P1 can remove stones from the heap of size
n, thus leaving [m,m� 1] for P2 to move from).

Theorem 1. Suppose that Nim* is played on [m,n], where 1  m  n. If m is odd
and n = m + 1, then this is a P-position. Otherwise, it is an N-position.

Proof. This follows immediately from Lemmas 2, 3 and 4.

4. Nim* Played on Three Heaps

Lemma 5. Suppose that Nim* is played on [1, 2, n], where n � 2. Then, this is an
N-position.

Proof. Suppose that we have three heaps of sizes 1, 2 and n. Here, P1 removes
the entire heap of size n, which leaves [1, 2] (a losing position for P2; by Theorem
1).

Lemma 6. Suppose that Nim* is played on [1,m, n]. If m = n = 1, 3, 4, 5, . . . , then
this is a P-position.

Proof. Let m = n = 1. Then, we have three heaps of size 1. If P1 passes, then
P2 removes an entire heap, which leaves a losing position for P1. If P1 initially
removes an entire heap, then P2 passes and wins. Therefore, the claim is true for
m = n = 1.

• Let m = n = 3. Then, we have three heaps of sizes 1, 3 and 3. If P1 passes,
then P2 removes the heap of size 1, which leaves a losing position for P1.
If P1 removes the heap of size 1, then P2 passes (and eventually wins). If
P1 removes a stone from a heap of size 3, this leaves [1, 2, 3] (an N-position
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for P2, by Lemma 5). However, if P1 removes two stones from a heap, this
leaves [12, 3], (a winning position for P2, since he can then leave [13] for P1 to
move from). Finally, if P1 removes an entire heap of size 3, this leaves [1, 3]
(a winning position for P2, since he can then leave [1, 2] and for P1 to move
from). Therefore, the claim is true for m = n = 3.

Assume that the claim is true for m = 3, 4, 5, . . . , k. Now, consider m = n = k + 1.
Then, we have three heaps of sizes 1, k+1 and k+1. If P1 passes, then P2 removes
the heap of size 1 and wins. If P1 removes the heap of size 1, then P2 passes and
wins. If P1 removes stones from a heap of size k + 1, there are three possible types
of positions for P2 to move from:

• [1, k + 1]. Here, P2 should remove k � 1 stones from the heap of size k + 1.
This leaves [1, 2], a losing position for P1.

• [1, j, k + 1], where 1  j  k and j 6= 2. Here, P2 should remove stones from
the heap of size k + 1 so as to leave [1, j, j]. By the induction hypothesis, this
is a losing position for P1.

• [1, 2, k + 1]. Here, P2 should remove the entire heap of size k + 1. This leaves
[1, 2], a losing position for P1.

Thus by induction, the claim is established.

Corollary 1. Suppose that Nim* is played on [1,m, n], where 1  m < n. Then,
this is an N-position.

Proof. If m = 2, then this is an N-position (by Lemma 5). Now, let m 6= 2. On his
first move, P1 removes n�m stones from the heap of size n. This leaves [1,m,m],
a losing position for P2 to play on.

Theorem 2. Suppose that Nim* is played on [1,m, n], where 1  m  n. If
m = n = 1, 3, 4, 5, . . . , then this is a P-position. Otherwise, it is an N-position.

Proof. This follows immediately from Lemmas 5, 6 and Corollary 1.

The dynamics underlying Nim* appear to be very complex. A computer program
was prepared and used to compute the P-positions in Nim* on three heaps. For
three heaps of sizes s, m and n, where 2  s  m  n, the P-positions show some
order. However for s = 10, there is no obvious pattern for the P-positions. For the
convenience of the reader, we list the P-positions for 3-heap Nim* ([s,m, n], where
2  s  m  n and s 2 {2, 3, 4, . . . , 9}).

• s = 2. [2, 2, 2], [2, 3, 5], [2, 4, 7], [2, 6, 8], [2, 4k+1, 4k+4] and [2, 4k+2, 4k+3],
where k = 2, 3, 4, . . .
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• s = 3. [3, 6, 7], [3, 8, 9], [3, 4k + 2, 4k + 4] and [3, 4k + 3, 4k + 5], where k =
2, 3, 4, . . .

• s = 4. [4, 5, 8], [4, 6, 9], [4, 8k + 2, 8k + 5], [4, 8k + 3, 8k + 6], [4, 8k + 4, 8k + 7]
and [4, 8k + 8, 8k + 9], where k = 1, 2, 3, 4, . . .

• s = 5. [5, 7, 9], [5, 10, 14], [5, 11, 15], [5, 12, 13], [5, 16, 18], [5, 17, 19], [5, 8k +
4, 8k + 5], [5, 8k + 6, 8k + 9], [5, 8k + 7, 8k + 10] and [5, 8k + 8, 8k + 11], where
k = 2, 3, 4, . . .

• s = 6. [6, 10, 15], [6, 11, 16], [6, 12, 14], [6, 8k +5, 8k +9], [6, 8k +10, 8k +14],
[6, 8k + 11, 8k + 15] and [6, 8k + 12, 8k + 16], where k = 1, 2, 3, 4, . . .

• s = 7. [7, 10, 16], [7, 11, 17], [7, 12, 18], [7, 13, 15], [7, 14, 19], [7, 4k, 4k + 2]
and [7, 4k + 1, 4k + 3], where k = 5, 6, 7, . . .

• s = 8. [8, 10, 17], [8, 11, 18], [8, 12, 16], [8, 13, 19], [8, 14, 20], [8, 15, 21],
[8, 8k+6, 8k+10], [8, 8k+7, 8k+11], [8, 8k+8, 8k+12] and [8, 8k+9, 8k+13],
where k = 2, 3, 4, . . .

• s = 9. [9, 11, 19], [9, 13, 18], [9, 14, 17], [9, 10k+5, 10k+10], [9, 10k+6, 10k+
11], [9, 10k + 12, 10k + 17], [9, 10k + 13, 10k + 18] and [9, 10k + 14, 10k + 19],
where k = 1, 2, 3, . . .

Note that this list can be verified by straight-forward (but tedious) induction and
case analysis.

5. Nim* Played on Heaps of Sizes 1 and 2

Theorem 3. Suppose that Nim* is played on [1m1 , 2m2 ]. If m1+2m2 � 7, then this
is a P-position when m1 is odd and m2 is even, and, otherwise, it is an N-position.

Proof. Let m1 and m2 be the numbers of heaps of size 1 and 2, respectively. It is
already known that m1 and m2 both even is a P-position of Nim. Hence, other-
wise, m1 and m2 not both even are N-positions of Nim. We list all of the N- and
P-positions for 1  m1 + 2m2  8 in Table 1. Note that our claim does not neces-
sarily hold for m1+2m2  6. Observe that our claim holds for m1+2m2 = 7, and 8.

We induct on m1 + 2m2. Let m1 + 2m2 � 9. If m1 is odd and m2 is even and

(i) P1 uses the pass option, then m0
1 = m1 (odd) and m0

2 = m2 (even);

(ii) P1 removes a heap of size 1, then m0
1 = m1 � 1 (even) and m0

2 = m2 (even);

(iii) P1 removes a heap of size 2, then m0
1 = m1 (odd) and m0

2 = m2 � 1 (odd);
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Table 1: N- and P-positions of Nim and Nim* for 1  m1 + 2m2  8
Game m1 + 2m2 m1 m2 Position m1 m2 Position

Nim even even even P even odd N
odd odd even N odd odd N

Nim*

1 1 0 N
2 2 0 N 0 1 N
3 3 0 P 1 1 P

4 4 0 N 2 1 N
0 2 N

5 5 0 P 3 1 N
1 2 N

6 6 0 N 4 1 N
2 2 N 0 3 P

7 7 0 P 5 1 N
3 2 P 1 3 N

8
8 0 N 6 1 N
4 2 N 2 3 N
0 4 N

(iv) P1 removes a stone from a heap of size 2, then m0
1 = m1 + 1 (even) and

m0
2 = m2 � 1 (odd);

This leaves an N-position of Nim for P2 in (i) while in each of (ii), (iii) and (iv),
since m1 + 2m2� 2  m0

1 + 2m0
2 < m1 + 2m2, this leaves an N-position of Nim* for

P2 to play on. Hence, it is a P-position when m1 is odd and m2 is even.

Otherwise, if

(i) m1 is even and m2 is even, P1 uses the pass option to leave m0
1 = m1 (even)

and m0
2 = m2 (even);

(ii) m1 is odd and m2 is odd, P1 removes a heap of size 2 to leave m0
1 = m1 (odd)

and m0
2 = m2 � 1 (even);

(iii) m1 is even and m2 is odd, P1 removes a stone from a heap of size 2 to leave
m0

1 = m1 + 1 (odd) and m0
2 = m2 � 1 (even);

This leaves a P-position of Nim for P2 in (i) while in each of (ii) and (iii), since
m1 + 2m2 � 2  m0

1 + 2m0
2 < m1 + 2m2, this leaves a P-position for P2 to play on.

Hence, it is an N-position when m1 is even or (m1 and m2 are both odd).
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6. Nim* Played on Heaps of Sizes 1, 2 and 3

Lemma 7. Suppose that [1m1 , 2m2 , . . . , kmk ] is a P-position in Nim*. Then, the
positions comprised of adding a heap of size r to [1m1 , 2m2 , . . . , kmk ] or adding
additional stones to a single heap in [1m1 , 2m2 , . . . , kmk ] are N-positions.

Proof. In the first instance, P1 removes the heap of size r, which leaves P2 to
move on [1m1 , 2m2 , . . . , kmk ] (a P-position). In the second instance, P1 removes
the appropriate number of stones and leaves P2 to move on [1m1 , 2m2 , . . . , kmk ] (a
P-position).

Lemma 8. Suppose that Nim* is played on [1m1 , 2m2 , . . . , kmk ], and m1 � 2. If
mj is even, for all 1  j  k, then this is an N-position.

Proof. P1 uses the pass option, which leaves a P-position of Nim for P2 to play
on.

Lemma 9. Suppose that Nim* is played on [1m1 , 2m2 , . . . , kmk ], and m1 � 3. If
m1 is odd and mj is even, for all 2  j  k, then this is a P-position.

Proof. If P1 first uses the pass option, then P2 removes a heap of size 1. This leaves
a P-position of Nim for P1 to play on. On the other hand, if P1 first removes a
heap of size 1, then P2 uses the pass option and leaves a P-position of Nim for P1
to play on.

Now, suppose that P1 first removes t (1  t  l) stones from a heap of size l.
Then, P2 should respond by removing t stones from another heap of size l. This
leaves the position where ml has been decreased by 2 and ml�t has been increased
by 2. Note that m1 is still odd and all of the other mi are even. The game continues
in the following manner: If at any time P1 uses the pass option, P2 responds by
removing a heap of size 1, leaving a P-position of Nim for P1 to play on. If at any
time P1 removes a heap of size 1, P2 responds by using the pass option, leaving a
P-position of Nim for P1 to play on. Each time P1 removes t0 stones from a heap of
size l0 (not of size 1), P2 responds (via symmetric play) by removing t0 stones from
another heap of size l0.

Note that m1 � 3 and odd (m1 6= 1) is necessary. This prevents the possibility
of P1 removing the heap of size 1 (in a game position [1]), where P2 would have no
move since the pass option cannot be used as the last move.

Corollary 2. Suppose that Nim* is played on [1m1 , 2m2 , . . . , kmk ], and m1 � 2.
This is an N-position, if

(a) exactly one of mj, 2  j  k, is odd, or

(b) m1 and exactly two of mj, 2  j  k, are odd.
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Proof. (a) Suppose mi is odd, and mj is even if i 6= j, for 2  i, j  k.

• If m1 is even, P1 removes i�1 stones from a heap of size i to make m0
i = mi�1

(even), m0
1 = m1 + 1 � 3 (odd), and all m0

j = mj (even), 2  i 6= j  k.

• If m1 is odd, P1 removes a heap of size i to make m0
i = mi�1 (even), m0

1 = m1

(odd) and all m0
j = mj (even), 2  i 6= j  k.

(b) Suppose m1 (� 3), mi and mj (i < j) are odd, and all ml, 2  i 6= l 6= j  k,
are even. P1 removes j� i stones from a heap of size j to make m0

j = mj�1 (even),
m0

i = mi +1 (even), m0
1 = m1 � 3 (odd) and all m0

l = ml (even), 2  i 6= l 6= j  k.

From Lemma 9, each of the cases above leaves a P-position of Nim* for P2 to play
on.

Lemma 10. Suppose that Nim* is played on [1m1 , 2m2 , 3m3 ] and m1+2m2+3m3 �
10. If m1 � 4 is even and m2,m3 are odd, then this is a P-position.

Proof. Let m1 � 4 be even and m2,m3 both odd. Here are the possible first moves
for P1:

(i) If P1 uses the pass option, then m0
1 = m1 (even), m0

2 = m2 (odd) and m0
3 = m3

(odd). This leaves an N-position of Nim for P2.

(ii) If P1 removes one stone from a heap of size 3, then m0
1 = m1 (even), m0

2 =
m2 + 1 (even) and m0

3 = m3 � 1 (even). This leaves an N-position for P2, as
he simply uses the pass option.

(iii) If P1 removes two stones from a heap of size 3, then m0
1 = m1 + 1 (odd),

m0
2 = m2 (odd) and m0

3 = m3 � 1 (even). By Corollary 2, this leaves an
N-position for P2.

(iv) If P1 removes a heap of size 3, then m0
1 = m1 (even), m0

2 = m2 (odd) and
m0

3 = m3 � 1 (even). By Corollary 2, this leaves an N-position for P2.

(v) If P1 removes one stone from a heap of size 2, then m0
1 = m1 + 1 (odd),

m0
2 = m2 � 1 (even) and m0

3 = m3 (odd). By Corollary 2, this leaves an
N-position for P2.

(vi) If P1 removes a heap of size 2, then m0
1 = m1 (even), m0

2 = m2�1 (even) and
m0

3 = m3 (odd). By Corollary 2, this leaves an N-position for P2.

(vii) If P1 removes a heap of size 1, then m0
1 = m1 � 1 (odd), m0

2 = m2 (odd) and
m0

3 = m3 (odd). By Corollary 2, this leaves an N-position for P2.

In all instances, P1 loses after making his first move, thus establishing the claim.
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Theorem 4. Suppose that Nim* is played on [1m1 , 2m2 , 3m3 ], and m1+2m2+3m3 �
10. If m1 is odd, m2 and m3 are even, or m1 is even, m2 and m3 are odd, then
this is a P-position; otherwise, it is an N-position.

Proof. Suppose that m1 � 3. If m1 is odd and m2,m3 are both odd, then this is
an N -position by Corollary 2. If m1 is even and m2,m3 are both odd, then this is
a P-position by Lemma 10. If m1 is even (or odd) and exactly one of the m2,m3

is odd, then this an N -position by Corollary 2. If m1 is even and m2,m3 are both
even, then this is an N-position by Lemma 8. If m1 is odd and m2,m3 are both
even, then this is a P-position by Lemma 9. Hence, the claim is established for
m1 � 3.

Now, suppose that m1 = 2. In this case, if m2,m3 are both even, then this is
an N-position by Lemma 8. If exactly one of the m2,m3 is odd, then this is an
N-position by Corollary 2. Hence, the claim is established for m1 = 2 (except for
the case where m2,m3 are both odd).

If m1 = 0 and m2,m3 are both even (not all zero), then this is an N-position
(since P1 uses the pass option, leaving a P-position of Nim for P2 to play on).
Hence, the claim is established for this particular case.

We now induct on n = m1 + 2m2 + 3m3 for the remaining cases, (1) m1 = 0 or
2, and m2,m3 are both odd, (2) m1 = 1, m2,m3 are both even or both odd, and
(3) m1 = 0 or 1, and m2 and m3 are of di↵erent parities. We show the results in
these cases, for 1  n  12, in Table 2. Note that the claim does not necessarily
hold for n  9. Observe that the claim holds for n = 10, 11, and 12.

Let n � 13. If m1 = 0 or 2, and m2 and m3 are both odd and

(i) P1 uses the pass option, then m0
1 = 0 or 2, and m0

2 = m2 (odd) and m0
3 = m3

(odd);

(ii) P1 removes one stone from a heap of size 3, then m0
1 = 0 or 2, m0

2 = m2 + 1
(even) and m0

3 = m3 � 1 (even);

(iii) P1 removes two stones from a heap of size 3, then m0
1 = 1 or 3, m0

2 = m2

(odd), m0
3 = m3 � 1 (even);

(iv) P1 removes a heap of size 3, then m0
1 = 0 or 2, m0

2 = m2 (odd), m0
3 = m3 � 1

(even);

(v) P1 removes one stone from a heap of size 2, then m0
1 = 1 or 3, m0

2 = m2 � 1
(even), m0

3 = m3 (odd);

(vi) P1 removes a heap of size 2, then m0
1 = 0 or 2, m0

2 = m2� 1 (even), m0
3 = m3

(odd);

(vii) P1 removes a heap of size 1, then m0
1 = 1, m0

2 = m2 (odd), m0
3 = m3 (odd).
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This leaves an N-position of Nim for P2 in (i) while in each of (ii) to (vii), since
n�3  n0 < n, this leaves an N-position for P2 to play on. Hence, it is a P-position
when m1 = 0 or 2, and m2 and m3 are both odd.

If m1 = 1 and m2,m3 are both even and

(i) P1 uses the pass option, then m0
1 = 1, m0

2 = m2 (even) and m0
3 = m3 (even);

(ii) P1 removes one stone from a heap of size 3, then m0
1 = 1, m0

2 = m2 + 1 (odd)
and m0

3 = m3 � 1 (odd);

(iii) P1 removes two stones from a heap of size 3, then m0
1 = 2, m0

2 = m2 (even),
m0

3 = m3 � 1 (odd);

(iv) P1 removes a heap of size 3, then m0
1 = 1, m0

2 = m2 (even), m0
3 = m3 � 1

(odd);

(v) P1 removes one stone from a heap of size 2, then m0
1 = 2, m0

2 = m2�1 (odd),
m0

3 = m3 (even);

(vi) P1 removes a heap of size 2, then m0
1 = 1, m0

2 = m2 � 1 (odd), m0
3 = m3

(even);

(vii) P1 removes a heap of size 1, then m0
1 = 0, m0

2 = m2 (even), m0
3 = m3 (even).

This leaves an N-position of Nim for P2 in (i) while in each of (ii) to (vii), since
n�3  n0 < n, this leaves an N-position for P2 to play on. Hence, it is a P-position
when m1 = 1, and m2 and m3 are both even.

Finally, we show that the remaining cases are N-positions.

(i) If m1 = 1, and m2 and m3 are odd, P1 removes one stone from a heap of size
3 to leave m0

1 = 1, m0
2 = m2 + 1 (even) and m0

3 = m3 � 1 (even).

(ii) If m1 = 1, m2 is odd and m3 is even, P1 removes a heap of size 2 to leave
m0

1 = 1, m0
2 = m2 � 1 (even) and m0

3 = m3 (even).

(iii) If m1 = 1, m2 is even and m3 is odd, P1 removes a heap of size 3 to leave
m0

1 = 1, m0
2 = m2 (even) and m0

3 = m3 � 1 (even).

(iv) If m1 = 0, m2 is even and m3 is odd, P1 removes two stones from a heap of
size 3 to leave m0

1 = 1, m0
2 = m2 (even) and m0

3 = m3 � 1 (even).

(v) If m1 = 0, m2 is odd and m3 is even, P1 removes one stone from a heap of
size 2 to leave m0

1 = 1, m0
2 = m2 � 1 (even) and m0

3 = m3 (even).
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In each of (i) to (v), since n � 3  n0 < n, this leaves a P-position for P2 to play
on. Hence, these last five cases are N-positions.

Thus, the claim is established.

Table 2: N- and P-positions of Nim and Nim* for 1  n = m1 + 2m2 + 3m3  12
with (1) m1 = 0 or 2, and m2 and m3 are odd, (2) m1 = 1, m2 and m3 are both
even or both odd, and (3) m1 = 0 or 1, and m2 and m3 are of di↵erent parities.

Game n m1 m2 m3 Position m1 m2 m3 Position

Nim even even even even P Otherwise Nodd odd odd odd P

Nim*

The results for m3 = 0 are shown in Table 1.
3 0 0 1 N
4 1 0 1 N
5 0 1 1 N
6 1 1 1 N

7 2 1 1 P 1 0 2 P
0 2 1 N

8 1 2 1 N 0 1 2 N

9 1 1 2 N 0 3 1 N
0 0 3 N

10 1 3 1 N 1 0 3 N
0 2 2 N

11 2 3 1 P 1 2 2 P
0 4 1 N 0 1 3 P

12 1 4 1 N 1 1 3 N
0 3 2 N
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