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Abstract
Chocolate bar games are variants of the CHOMP game in which the goal is to make
your opponent eat a poisoned square of chocolate. The rectangular chocolate bar
is a thinly disguised form of the NIM game. In this paper, we investigate chocolate
bars whose widths are proportional to the distance from the poisoned square. We
find the nim-values when the constant of proportionality is even, and present some
conjectures for other cases.

1. Introduction

The original chocolate bar game [7] consists of a rectangular bar of chocolate with
one poisoned corner. Each player takes it in turn to break the bar in a straight
line along the grooves, and eats the piece that is broken o↵. The player who breaks
the chocolate bar so as to leave his opponent with the single poisoned block (black
block) is the winner. Since the horizontal and vertical grooves are independent, an
m ⇥ n bar (of squares) is equivalent to a game of NIM with up to four heap sizes
equal to the number of grooves above, below, to the left, and to the right of the
poisoned square.

In this paper, we consider bars of the shapes shown in Figures 1.2–1.4, where the
gray blocks are sweet chocolate that can be eaten and the black block is the poisoned
square. In these cases, a vertical break can reduce the number of horizontal breaks.
We can still think of the game as being played with heaps, but now a move may
change more than one heap.

There are other types of chocolate bar games, and one of the most well known
is CHOMP. CHOMP uses a rectangular chocolate bar. The players take turns to
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choose one block, and eat it together with those blocks below it and to its right.
The top left block is poisoned, and the players cannot eat this block. Although
many people have studied this game, the winning strategy is yet to be discovered.
For an overview of research on CHOMP, see [8].

Example 1.1. Examples of chocolate bar games.

Figure 1.1. Figure 1.2.

Figure 1.3. Figure 1.4.

For completeness, we briefly review some necessary concepts in game theory; see
[1] for more details. Since chocolate bar games are impartial games that cannot
end in a draw, there will only be two outcome classes: first player wins and second
player wins, also called N -positions and P-positions.

The disjunctive sum of two games, denoted G + H, is a super-game in which a
player may move either in G or in H, but not both. In Figures 1.2–1.4, each game
is the disjunctive sum of the chocolate bar to the left and the chocolate bar to the
right of the poisoned square.

For any game G, there is a set of states (games) that can be reached by making
precisely one move in G, which we will denote by move(G). The minimum excluded
value (mex) of a set S of non-negative integers is the least non-negative integer that
is not in S. Each impartial game G also has an associated nim-value, sometimes
called the Grundy value, denoted by G. The nim-value is found recursively: G(G) =
mex{G(H) : H 2 move(G)}.

Let x, y be non-negative integers, and write them in base 2, so that x =
Pn

i=0 xi2i

and y =
Pn

i=0 yi2i with xi, yi 2 {0, 1}. We define the nim-sum x� y =
Pn

i=0 zi2i,
where zi = xi + yi(mod 2). The power of the Sprague–Grundy theory for impartial
games is contained in the next result.

Theorem 1.1. Let G and H be impartial games. Then,

• G(G) = 0 if and only if G is a P-position;

• G(G + H) = G(G)� G(H).



INTEGERS: 15 (2015) 3

For a proof of this theorem, see [1].
In this paper, the authors present the nim-values of chocolate bar games. For a

general bar, the strategies seem complicated. We focus on bars that grow regularly
in height.

Definition 1.1. Fix a natural number k and a non-negative integer h. For non-
negative integers y and z such that y  b z+h

k c, the chocolate bar will consist of
z + 1 columns, where the 0-th column is the poisoned square and the height of the
i-th column is t(i) = min(y, b i+h

k c) + 1. We will denote these by CB(h, k, y, z).

Example 1.2. Examples of chocolate bar games CB(h, k, y, z).

CB(0, 4, 3, 13)

Figure 1.5.

CB(0, 2, 3, 13)

Figure 1.6.

CB(2, 4, 3, 10)

Figure 1.7.

CB(3, 4, 3, 12)

Figure 1.8.

CB(0, 4, 2, 12)

Figure 1.9.

CB(3, 4, 2, 11)

Figure 1.10.

In this paper, we derive the nim-values for CB(0, k, y, z) where k is an even
number in Theorem 2.1, and for CB(h, k, y, z) where k is an even number and
h 2 {0, 1, 2, ..., k � 1} or h = k2t + m2t+1 for non-negative integers t,m with
m < k/2 in Theorem 3.2. Finally, we give several conjectures for CB(0, 1, y, z)
based on computational results.

In our proofs, it will be useful to know the disjunctive sum of the chocolate to
the right of the poisoned square and a single strip of chocolate to the left, as in
Figures 1.2, 1.3, and 1.4. We will denote such a position by {x, y, z}, where x is the
number of possible moves in the strip, y is the number of vertical moves in the bar,
and z is the number of horizontal moves. Figures 1.11, 1.12, 1.13, 1.14, and 1.15
give some examples of the coordinate system.
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For the Chocolate Bar CB(0, k, y, z) in which k is an even number, we will show
that the P-positions are when x� y� z = 0, so that the nim-value of CB(0, k, y, z)
to the right is x = y� z. Similarly, for the Chocolate Bar CB(h, k, y, z) in which k
is an even number and h > 0, we will show that the P-positions are when (x+h)�
y�(z+h) = 0, so that the nim-value of CB(h, k, y, z) to the right is x = (x+h)�h
= (y � (z + h))� h.

Example 1.3. Here, we present some examples of the states of chocolate bars with
their coordinates.

{2, 2, 5}

Figure 1.11.

{2, 1, 3}

Figure 1.12.

{0, 2, 5}

Figure 1.13.

{2, 0, 5}

Figure 1.14.

{0, 1, 5}

Figure 1.15.

2. Nim-values of the Chocolate Bar CB(0,k,y,z) for an Even Number k

In this section, we analyze the Chocolate Bar CB(0, k, y, z) for a fixed even number
k.

Definition 2.1. Let Ak = {{x, y, z} : x, y, z 2 Z�0, y 
⌅

z
k

⇧
and x � y � z = 0},

Bk = {{x, y, z} : x, y, z 2 Z�0, y 
⌅

z
k

⇧
, and x� y � z 6= 0}.

Theorem 2.1. The nim-value of the Chocolate Bar CB(0, k, y, z) is y � z when k
is an even number.

We now prove Theorem 2.1 for an arbitrary even number k. First, we need several
facts about the relations between numbers in base 2, the nim-sum of numbers, and
the floor function.

Lemma 2.1. If k and h are even numbers, then b(h + 1)/kc = bh/kc.

Proof. Let h = k ⇥ p + q for integers p, q with 0  q < k. If k and h are even
numbers, then q is an even number. Therefore, q + 1 < k, and the conclusion of
this lemma follows directly from h + 1 = k ⇥ p + q + 1.
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Lemma 2.2. Suppose that x� y � z = 0. Then, we have the following:
(1) y = bz/kc if and only if xn = zn = 1, yn = 0 and, for i = 0, 1, 2, ..., n� 1,

yi = b
✓Xn�i

j=1
2jzi+j �

✓Xn�i�1

j=1
2jyi+j

◆
k

◆
/kc (1)

and
zi = xi + yi (mod 2). (2)

(2) y < bz/kc if and only if the following conditions hold:
(a) xn = zn = 1 and yn = 0.
(b) Equation (2) is true for i = 0, 1, 2, ..., n� 1.
(c) There exists some m such that Equation (1) is true for i = m+1,m+2, ..., n�1.
(d)

ym < b
✓Xn�m

j=1
2jzm+j �

✓Xn�m�1

j=1
2jym+j

◆
k

◆
/kc.

Proof. We first prove (1). Suppose that y = bz/kc. Then, we have

2nyn + 2n�1yn�1 + 2n�2yn�2 + ... + 20y0

= b2
nzn + 2n�1zn�1 + 2n�2zn�2 + ... + 20z0

k
c. (3)

By comparing 2nyn + ... and b2nzn+...
k c, we have yn = b zn

k c = 0. By compar-
ing 2nyn + 2n�1yn�1 + ... and b2nzn+2n�1zn�1+...

k c, we have yn�1 = 2yn + yn�1

= b2zn+zn�1
k c = b2zn

k c, where the last equation follows directly from Lemma 2.1.
By comparing 2nyn + 2n�1yn�1 + 2n�2yn�2 + ... and b2nzn+2n�1zn�1+2n�2zn�2+...

k c,
we have 2yn�1 + yn�2 = 22yn + 2yn�1 + yn�2 = b22zn+2zn�1+zn�2

k c, and hence we
have

yn�2 =
⌅
(22zn + 2zn�1 + zn�2 � 2kyn�1)/k

⇧
=

⌅
(22zn + 2zn�1 � 2kyn�1)/k

⇧
, (4)

where the last equation follows directly from Lemma 2.1. Similarly, we have

yn�3 = b(23zn + 22zn�1 + 2zn�2 + zn�3 � (22yn�1 + 2yn�2)k)/kc

=
⌅
(23zn + 22zn�1 + 2zn�2 � (22yn�1 + 2yn�2)k)/k

⇧
,

where the last equation follows directly from Lemma 2.1. In general, for i =
0, 1, 2, ..., n� 1,

yi =

6664(
n�iX
j=1

2jzi+j � (
n�i�1X

j=1

2jyi+j)k)/k

7775 .

Therefore, we have Equation (1) for i = 0, 1, 2, ..., n� 1.
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Conversely, if we have Equation (1) for i = 0, 1, 2, ..., n�1, then we have Equation
(3). This is equivalent to y = bz/kc. Equation (2) follows directly from x�y�z = 0.

Next, we prove statement (2) of this lemma. By the result of (1), Equation (1) is
true for i = 0, 1, ..., n� 1 if and only if y = bz/kc. Therefore, y < bz/kc if and only
if there exists some i such that 0  i < n and Equation (1) is not true for i. Let m
be the largest integer that does not satisfy Equation (1). Then, we have statement
(2).

Remark 2.1. Suppose that x�y� z = 0 and y = bz/kc. Then, by Lemma 2.2, we
have yn = 0, zn = xn = 1 and yn�1 = b2zn/kc, and hence yn�1 can be expressed
with k and xn. We express this fact as

yn�1 = f(k, xn). (5)

We have
zn = xn, zn�1 = xn�1 + yn�1 (mod 2),

and
yn�2 =

⌅
(22zn + 2zn�1 � 2kyn�1)/k

⇧
.

Hence, by Equation (5), we can express yn�2 in terms of k, xn, and xn�1. We
express this fact as

yn�2 = f(k, xn, xn�1). (6)

In this way, yi can be expressed in terms of k, xn, xn�1, ..., xi+1, and we express this
as

yi = f(k, xn, xn�1, ..., xi+1). (7)

If y < bz/kc, there exists m 2 Z>0 such that Equation (7) is true for i =
m + 1,m + 2,m + 3, ..., n� 1 and Equation (7) is not true for i = m.

If y = bz/kc, Equation (7) is true for i = 0, 1, 2, ..., n� 1.
The situation changes considerably when k is an odd number. In Equation (4),

we have
yn�2 =

⌅
(22zn + 2zn�1 + zn�2 � 2kyn�1)/k

⇧
=

⌅
(22zn + 2zn�1 � 2kyn�1)/k

⇧
,

but the last equation is not true if k is an odd number. Note that we cannot use
Lemma 2.1 for an odd number k.

Lemma 2.3. For any x 2 Z�0, there exist unique y, z such that x� y� z = 0 and
y = bz/kc.

Proof. By Lemma 2.2 x � y � z = 0 and y = bz/kc if and only if Equations (1)
and (2) are true for i = 0, 1, ..., n� 1, xn = zn = 1, and yn = 0. Therefore, for any
x 2 Z�0, there exist y, z such that x� y � z = 0 and y = bz/kc.
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Next, we prove that these y, z are uniquely determined by x. Suppose that
x� y� z = 0 and y = bz/kc. Then, from Remark 2.1, we have xn = zn = 1, yn = 0
and yi = f(k, xn, xn�1, ..., xi+1) for i = 0, 1, ..., n � 1. Therefore, y is determined
by x. Since x� y � z = 0, z is also determined by x. In this way y, z are uniquely
determined by x.

Example 2.1. Lemma 2.3 is not true when k is odd.
We present two counterexamples.
(1) Let k = 3 and x = 7. Then, there are no y, z that satisfy

7� y � z = 0 (8)

and
y = bz/3c . (9)

We prove this by contradiction. Suppose that there exist y, z that satisfy Equations

(8) and (9). Then, we have y, z  7. Let y =
2P

i=1
yi2i and z =

2P
i=1

zi2i. Since z  7,

Equation (9) implies that y = 2, 1, 0. If y = 2, then Equation (8) gives z = 5. If
y = 1, then Equation (8) gives z = 6. If y = 0, then Equation (8) gives z = 7. It is
clear that none of {y, z} = {2, 5}, {1, 6}, {0, 7} satisfy Equation (9), which leads to
a contradiction.
(2) Let k = 3 and x = 5. Then, there exist more than one pair of y, z that satisfy
Equations x � y � z = 0 and y = bz/kc. For example, {x, y, z} = {5, 2, 7} and
{x, y, z} = {5, 1, 4} satisfy these equations.

Lemma 2.4. For any x, y 2 Z�0, there exists some z that satisfies one of the
following two conditions:
(i) {x, y, z} satisfies x� y � z = 0 and y  bz/kc;
(ii) x� bz/kc � z = 0 and bz/kc < y.

Proof. Let ui = xi + yi (mod 2) for i = 0, 1, 2, ..., n. We consider two cases.

Case (1). Suppose that yn = 0. Here, we consider four subcases.

Subcase (1.1). We assume that, for i = 0, 1, 2, ..., n� 1,

yi = b
✓Xn�i

j=1
2jui+j �

✓Xn�i�1

j=1
2jyi+j

◆
k

◆
/kc. (10)

Then, let z = u =
nP

i=0
ui2i. By (1) of Lemma 2.2, we have y = bz/kc, and hence we

have statement (i) of this lemma.
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Subcase (1.2). Suppose that there exists some m such that Equation (10) is true
for i = m + 1,m + 2, ..., n� 1 and

ym < b
✓Xn�m

j=1
2jum+j �

✓Xn�m�1

j=1
2jym+j

◆
k

◆
/kc. (11)

Then, let z = u =
nP

i=0
ui2i. By (2) of Lemma 2.2, we have y < bz/kc, and hence we

have statement (i) of this lemma.

Subcase (1.3). Suppose that there exists some m such that Equation (10) is true
for i = m + 1,m + 2, ..., n� 1 and

ym = 1 > 0 = b
✓Xn�m

j=1
2jum+j �

✓Xn�m�1

j=1
2jym+j

◆
k

◆
/kc.

Let y0i = yi and zi = ui for i = m + 1,m + 2, ..., n. We let y0m = 0, zm = xm + y0m,
and we also let

y0i = b
✓Xn�i

j=1
2jzi+j �

✓Xn�i�1

j=1
2jy0i+j

◆
k

◆
/kc

and
zi = xi + y0i (mod 2)

for i = 0, 1, 2, ...,m� 1.

Let z =
nP

i=0
zi2i and y0 =

nP
i=0

y0i2i. Clearly, y0 < y. By (1) of Lemma 2.2, we have

y0 = bz/kc, and hence we have statement (ii) of this lemma.

Subcase (1.4). Suppose that yn�1 = 1 > 0 = un. Then, by a similar method to
that used in Subcase (1.3), we get statement (ii) of this lemma.

Case (2). Suppose that yn = 1. Then, let y0n = 0, zn = xn + y0n (mod 2),

y0i = b
✓Xn�i

j=1
2jzi+j �

✓Xn�i�1

j=1
2jy0i+j

◆
k

◆
/kc,

and zi = y0i + xi for i = 0, 1, 2, ..., n� 1.

Let z =
nP

i=0
zi2i and y0 =

nP
i=0

y0i2i. Clearly, y0 = bz/kc and y0 < y. Then, we have

statement (ii) of this lemma.

Lemma 2.5. Suppose that

x� y � z = 0 and y = bz/kc . (12)

If there exist v, w 2 Z�0 such that x� v � w = 0 and v < bw/kc, then v < y.
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Proof. By Lemma 2.2, we have xn = zn = 1, yn = 0,

yi =

6664(
n�iX
j=1

2jzi+j � (
n�i�1X

j=1

2jyi+j)k)/k

7775 , (13)

and
zi = xi + yi (mod 2) (14)

for i = 0, 1, 2, ..., n� 1. Suppose that there exist v, w 2 Z�0 such that

x� v � w = 0 (15)

and
v < bw/kc . (16)

From Equations (15) and (16), and using Remark 2.1, there exists m 2 Z�0 such
that, for i = m + 1, ..., n� 1,
vi = f(k, xn, xn�1, ..., xi+1) and vm < f(k, xn, xn�1, ..., xm+1).
Using Equation (12) and Remark 2.1, yi = f(k, xn, xn�1, ..., xi+1) for i = 1, ..., n�1.
Therefore, we have that vi = yi for each i = m+1,m+2, ..., n and vm < ym. Hence,
v < y.

Theorem 2.2. If x� y � z = 0 and y  bz/kc, then the following hold:
(1) u� y � z 6= 0 for any u 2 Z�0 such that u < x.
(2) x� v � z 6= 0 for any v 2 Z�0 such that v < y.
(3) x� y � w 6= 0 for any w 2 Z�0 such that w < z.
(4) x� v � w 6= 0 for any v, w 2 Z�0 such that v < y,w < z and v = bw/kc.

Proof. Statements (1), (2), and (3) of this lemma follow directly from the definition
of the nim-sum. We now prove statement (4). Let x � v � w = 0 and v = bw/kc
for some w 2 Z�0 such that v < y,w < z. If y < bz/kc, then Lemma 2.5 implies
that y < v, which contradicts v < y. If y = bz/kc, then Lemma 2.3 implies y = v,
which contradicts v < y. Therefore, x� v � w 6= 0.

Theorem 2.3. Suppose that x� y � z 6= 0 and y  bz/kc.
Then, at least one of the following statements is true.
(1) u� y � z = 0 for some u 2 Z�0 such that u < x.
(2) x� v � z = 0 for some v 2 Z�0 such that v < y.
(3) x� y � w = 0 for some w 2 Z�0 such that w < z.
(4) x� v � w = 0 for some v, w 2 Z�0 such that v < y,w < z and v = bw/kc.

Proof. Suppose that xm + ym + zm 6= 0 (mod 2) and

xi + yi + zi = 0 (mod 2) (17)
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for i = m + 1,m + 2, ..., n. We consider three cases.

Case (1). If xm = 1, we define u =
nX

j=i+1

ui2i as ui = xi for i = m + 1,m +

2, ..., n, um = 0 < xm and ui = yi + zi for i = 0, 1, ...,m � 1. Then, we have
u� y � z = 0 and u < x. Therefore, we have statement (1) of this theorem.

Case (2). If ym = 1, then the method employed above for Case (1) can be used
to prove that x� v � z = 0 for some v 2 Z�0 such that v < y. Therefore, we have
statement (2) of this theorem.

Case (3). Next, we suppose that xm = ym = 0 and zm = 1. By Lemma 2.4, we
have either (18) or (19):

x� y � w = 0 and y  bw/kc, (18)

x� bw/kc � w = 0 and bw/kc < y. (19)

Here, we consider two subcases.

Subcase (3.1). Suppose that (18) holds. Then, we have wi = zi for i =
m + 1,m + 2, ..., n, since xi + yi + zi = 0 (mod 2) for i = m + 1,m + 2, ..., n.
Therefore, because wm = xm + ym = 0 < 1 = zm, we have w < z, which gives
statement (3) of this theorem.

Subcase (3.2). Suppose that (19) holds. Since xi + yi + zi = 0 (mod 2) for
i = m + 1,m + 2, ..., n, we have wi = zi for i = m + 1,m + 2, ..., n. By wm =
xm + ym = 0 < 1 = zm, we have w < z. Letting v = bw/kc gives statement (4) of
this theorem.

We now consider the disjunctive sum of the chocolate to the right of the poisoned
square and a single strip of chocolate to the left, as in Figures 1.2, 1.3, and 1.4.
Hence, we have the state of a chocolate bar with three coordinates {x, y, z}, where
x is the number of possible moves in the strip, y is the number of vertical moves in
the bar, and z is the number of horizontal moves. Figures 1.11–1.15 show examples
of these coordinates.

Next we define the function move({x, y, z}) for each state {x, y, z} whose coor-
dinates satisfy the inequality y  bz/kc. The function move({x, y, z}) is the set of
all states that can be reached directly (i.e., in one step) from state {x, y, z}.



INTEGERS: 15 (2015) 11

Definition 2.2. For x, y, z 2 Z�0, we define move({x, y, z}) = {{u, y, z} : u <
x} [ {{x, v, z} : v < y} [ {{x, y, w} : w < z} [ {{x,min(y, bw/kc), w} : w < z},
where u, v, w 2 Z�0.

Next, we prove that if we start with an element of Ak, then any move leads to
an element of Bk.

Lemma 2.6. For any {x, y, z} 2 Ak, we have move({x, y, z}) ⇢ Bk.

Proof. Let {x, y, z} 2 Ak. Then, we have x�y�z = 0 and y  bz/kc . Let {p, q, r} 2
move({x, y, z}). Next, we prove that {p, q, r} 2 Bk. Since move({x, y, z}) =
{{u, y, z} :u < x}[{{x, y, z} :v < y}}[{{x, y, w} :w < z} [{{x,min(y, bw/kc), w} :
w < z}, Theorem 2.2 gives that p�q�r 6= 0. Therefore, we have {p, q, r} 2 Bk.

Next, we prove that if we start with an element of Bk, then there is a proper
move that leads to an element of Ak.

Lemma 2.7. Let {x, y, z} 2 Bk. Then, move({x, y, z}) \Ak 6= �.

Proof. Let {x, y, z} 2 Bk. Then, we have x � y � z 6= 0 and y  bz/kc . Since
move({x, y, z}) = {{u, y, z} : u < x} [{{x, v, z} : v < y} [{{x, y, w} : w < z}
[{{x,min (y, bw/kc) , w} : w < z}, Theorem 2.3 implies that there exists {p, q, r}
in move ({x, y, z}) such that p� q � r = 0. Therefore, {p, q, r} 2 move({x, y, z}) \
Ak.

Lemma 2.8. Let Ak and Bk be the sets defined in Definition 2.1. Ak is the set of
P-positions and Bk is the set of N -positions.

Proof. If we start the game from a state {x, y, z} 2 Ak, then Lemma 2.6 indicates
that any option we take leads to a state {p, q, r} in Bk. From this state {p, q, r},
Lemma 2.7 implies that our opponent can choose a proper option that leads to a
state in Ak. Note that any option reduces some of the numbers in the coordinates.
In this way, our opponent can always reach a state in Ak, and will finally win by
reaching {0, 0, 0} 2 Ak. Therefore, Ak is the set of P-positions.

If we start the game from a state {x, y, z} 2 Bk, then Lemma 2.7 means we can
choose a proper option that leads to a state {p, q, r} in Ak. From {p, q, r}, any
option taken by our opponent leads to a state in Bk. In this way, we win the game
by reaching {0, 0, 0}. Therefore, Bk is the set of N -positions.

By Lemma 2.8, the state with coordinates {x, y, z} is a P-position when x�y�z =
0. Therefore, the nim-value of the chocolate bar to the right is x = y � z, which
completes the proof of Theorem 2.1.
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3. Nim-values of CB(h,k,y,z) When h is a Natural Number

In this section, we study the chocolate bar games CB(h, k, y, z) with h > 0. There
is some overlap with the proofs of the previous section, but h > 0 is more involved.

Throughout this section, we assume that k is an even number such that k � 2.
We also assume that p, q, r, h are non-negative integers.

Let p =
nP

i=0
pi2i, q =

nP
i=0

qi2i and r =
nP

i=0
ri2i such that pi, qi, ri 2 {0, 1}.

Lemma 3.1. If x� y � z = 0, then x + y � z, x + z � y, and y + z � x.

Proof. This follows directly from the definition of the nim-sum.

Lemma 3.2. Suppose that p� q � r = 0 such that q  br/kc and 0  h  k � 1.
Then, p � h if and only if r � h.

Proof. We consider two cases.

Case (1). If r < k, then q = 0. From p � 0 � r = 0, we have p = r. Therefore,
p � h if and only if r � h.

Case (2). If r � k > h, then Lemma 3.1 implies that r  p+q. Therefore, we have
kr  kp + kq  kp + r, and hence (k � 1)r  kp. It follows that k�1

k h < k�1
k r  p,

and hence h � h
k = k�1

k h < p. Since h  k � 1 and h, k, p are integers, we have
h  p. Therefore, we have completed the proof of this lemma.

Lemma 3.3. We assume that

p� q � r = 0, (20)

q  br/kc, and h = k2t + m2t+1 for non-negative integers t,m such that m =
0, 1, 2, ..., k

2 � 1.
Then,

p � h (21)

if and only if
r � h. (22)

Proof. We can assume that pn = rn = 1 and qn = 0. Let s = blog2 qc. We consider
two cases.

Case (1). We assume that the inequality in (21) holds. Here, we consider two
subcases.

Subcase (1.1). Suppose that s � t + 1. Then, we have r � kq � k2s � k2t+1 >
k2t + m2t+1 =h, where m = 0, 1, ..., k

2 � 1.

Subcase (1.2). Assume that
s  t. (23)
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Since k is even, (21) implies that

nX
i=t+1

pi2i � k2t + m2t+1. (24)

Inequality (23) means that qi = 0 for i = t + 1, t + 2, ..., n, and hence, by Equation
(20), ri = pi for i = t + 1, t + 2, ..., n. Therefore, the inequality in (24) implies that

r �
nP

i=t+1
ri2i =

nP
i=t+1

pi2i � k2t + m2t+1 = h.

Case (2). Assume that the inequality in (22) is true. Here, we consider two
subcases.

Subcase (2.1). Suppose that s � t + 1. Then,
r � kq � k2s = k

22s+1. Note that k is an even number. Therefore, we have

nX
i=s+1

ri2i � k

2
2s+1. (25)

By the definition of s, we have qi = 0 for i = s + 1, s + 2, ..., n, and hence Equation
(20) gives that pi = ri for i = s + 1, s + 2, ..., n. Therefore, under the inequality in

(25), p �
nP

i=s+1
pi2i =

nP
i=s+1

ri2i � k
22s+1 = k2s � k2t+1 > k2t + m2t+1 = h.

Subcase (2.2). Suppose that s  t. Then, we have qi = 0 for i = t + 1, ..., n,
and hence pi = ri for i = t + 1, ..., n. Therefore, from the inequality in (22),

p �
nP

i=t+1
pi2i =

nP
i=t+1

ri2i � k2t + m2t+1 = h.

Lemmas 3.3 and 3.2 are not true if h does not satisfy their respective conditions.
We now present a counterexample.

Example 3.1. Let k be an even number, and let h = k2t+(2s+1)2t, p = k2t+s2t+1,
q = 2t, and r = k2t + (2s + 1)2t for some non-negative integers t, s such that
(2s + 1) < k. Then, we have that p� q � r = 0 , q  br/kc and r � h, but we also
have p < h.

It is useful to know the disjunctive sum of the chocolate to the right of the
poisoned square and for a single strip of chocolate to the left. For example, if
we make a disjunctive sum of a single strip of chocolate and the chocolate bar in
Figure 1.6, then we have the chocolate in Figure 1.4. We denote the state of the
disjunctive sum as {x, y, z}, where x is the number of possible moves in the strip, y
is the number of vertical moves in the bar, and z is the number of horizontal moves.

We define the function moveh({x, y, z}) for each state {x, y, z} whose coordinates
satisfy y  b(z + h)/kc. The function moveh({x, y, z}) is the set of states that can
be reached directly from {x, y, z}.
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Definition 3.1. For x, y, z 2 Z�0, we define moveh({x, y, z}) = {{u, y, z} : u <
x}[ {{x, v, z} : v < y} [{{x, y, w} : w < z} [{{x,min(y, b(z + h)/kc), w} : w < z},
where u, v, w 2 Z�0.

Definition 3.2. Let Ak,h = {{x, y, z} : x, y, z 2 Z�0, y  b(z + h)/kc and (x +
h) � y � (z + h) = 0}, Bk,h = {{x, y, z} : x, y, z 2 Z�0, y  b(z + h)/kc, and
(x + h)� y � (z + h) 6= 0}.
Lemma 3.4. For any y, z 2 Z�0, we have

y  dz/ke if and only if y  b(z + k � 1)/kc

and
y = dz/ke if and only if y = b(z + k � 1)/kc,

where d e is the ceiling function.

Proof. This result follows directly from the definitions of the floor function and the
ceiling function.

Lemma 3.5. For x, y, z 2 Z�0, we have:
(1) {x, y, z} 2 Ak,h if and only if {x + h, y, z + h} 2 Ak.
(2) {x, y, z} 2 Bk,h if and only if {x + h, y, z + h} 2 Bk.

Proof. These results follow directly from Definition 3.2.

Lemma 3.6. We have moveh({x, y, z}) ⇢ Bk,h for any {x, y, z} 2 Ak,h.

Proof. Let {x, y, z} 2 Ak,h. Then, by Lemma 3.5, we have

{x + h, y, z + h} 2 Ak. (26)

We consider two cases.

Case (1). Let {u, y, z}, {x, v, z}, {x, y, w} 2 moveh({x, y, z}) such that u < x,
v < y, and w < z. Then, using Definitions 2.2 and 3.1 with Lemma 3.5, we have

{u + h, y, z + h}, {x + h, v, z + h}, {x + h, y, w + h} 2 move({x + h, y, z + h}). (27)

From relations (26), (27), and Lemma 2.6, we have that {u+h, y, z+h}, {x+h, v, z+
h}, {x+h, y, w+h} 2 Bk. Hence, by Lemma 3.5, we have {u, y, z},{x, v, z},{x, y, w}
2 Bk,h.

Case (2). Let {x,min(y, b(w + h)/kc), w} 2 moveh({x, y, z}) such that w < z.
Then, by Definitions 2.2 and 3.1 with Lemma 3.5, we have

{x + h,min(y, b(w + h)/kc), w + h} 2 move({x + h, y, z + h}). (28)

From relations (26), (28), and Lemma 2.6, we have that {x + h,min(y, b(w +
h)/kc), w+h} 2 Bk, and hence Lemma 3.5 implies that {x,min(y, b(w+h)/kc), w}
2 Bk,h.
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Lemma 3.7. Let h satisfy one of the following conditions:
(1) h can be written in the form h = k2t + m2t+1 for non-negative integers t,m
such that m = 0, 1, 2, ..., k

2 � 1.
(2) h 2 {1, 2, ..., k � 1}.
Then, for each {x, y, z} 2 Bk,h, we have moveh({x, y, z}) \Ak,h 6= �.

Proof. Let {x, y, z} 2 Bk,h. Then, by Lemma 3.5, we have {x + h, y, z + h} 2 Bk,
and hence

y  b(z + h)/kc. (29)

By Theorem 2.3, Lemma 2.7, and Definition 2.2, at least one of the following cases
holds:

Case (1). There exists u < x + h such that {u, y, z + h} 2 Ak, and hence u� y �
(z + h) = 0.
Since z + h � h, the inequality in (29) and Lemmas 3.3 and 3.2 gives u � h.
Let u0 +h = u. Then, 0  u0 < x. {u0 +h, y, z +h}= {u, y, z +h} 2 Ak, and hence,
by Lemma 3.5, we have {u0, y, z} 2 Ak,h. Clearly, {u0, y, z} 2 moveh({x, y, z}).

Case (2). There exists v < y such that {x + h, v, z + h} 2 Ak, and hence, by
Lemma 3.5, we have {x, v, z} 2 Ak,h. Clearly, {x, v, z} 2 moveh({x, y, z}).

Case (3). There exists w < z + h such that {x + h, y, w} 2 Ak, and hence
(x + h)� y � w = 0 and

y  bw/kc. (30)

Since x + h � h, the inequality in (30) can be combined with Lemmas 3.3 and 3.2
to give h  w.
Let w0+h = w. Then, 0  w0 < z, {x+h, y, w0+h}= {x+h, y, w} 2 Ak, and hence,
by Lemma 3.5, we have {x, y, w0} 2 Ak,h. Clearly, {x, y, w0} 2 moveh({x, y, z}).

Case (4). There exists w < z + h such that

v = bw/kc (31)

and {x + h, v, w} 2 Ak. Hence, (x + h) � v � w = 0. Since x + h � h, Equation
(31) with Lemmas 3.3 and 3.2 imply that w � h. Let w0 + h = w. Then, 0 
w0 < z, {x + h, v, w0 + h}= {x + h, v, w} 2 Ak, and hence, by Lemma 3.5, we have
{x, v, w0} 2 Ak,h. Clearly, {x, v, w0} 2 moveh({x, y, z}).

Theorem 3.1. Let h satisfy condition (1) or (2) in Lemma 3.7. Then,
Ak,h is the set of P-positions and Bk,h is the set of N -positions of the game. (Note
that, throughout this section, we assume that k is an even number.)

Proof. Using the same method as in Lemma 2.8, this is clear from Lemmas 3.6 and
3.7.
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Theorem 3.2. Let h satisfy one of the following conditions:
(1) h can be written in the form h = k2t + m2t+1 for non-negative integers t,m
such that m = 0, 1, 2, ..., k

2 � 1, or
(2) h 2 {1, 2, ..., k � 1}.
Then, the nim-value of CB(h, k, y, z) is (y � (z + h))� h. (We again assume that
k is an even number.)

Proof. By Theorem 3.1, a state {x, y, z} of the disjunctive sum of the chocolate
to the right of the poisoned square and a single strip of chocolate to the left is a
P-position when (x+h)�y� (z +h) = 0. Thus, the nim-value of the chocolate bar
to the right is x = (x + h)� h = (y � (z + h))� h. Therefore, we have completed
the proof.

Lemma 3.7 and Theorem 3.1 do not hold if h satisfies neither (1) nor (2) of
Lemma 3.7.

Example 3.2. Suppose that h does not satisfy (1) or (2) of Lemma 3.7. Then,
h = k2t + (2s + 1)2t for some non-negative integers t, s such that (2s + 1) < k. We
have {k2t+1, 2t, 0} 2 Bk,h, since 2t  b(0 + h)/kc and (k2t+1 + h) � 2t � h 6= 0.
For {k2t+1, 2t, 0}, there is no option that leads to an element of Ak,h. Note that
{k2t+1 +h, 2t, h} 2 Bk and {k2t +s2t+1, 2t, h} 2 Ak \move({k2t+1 +h, 2t, h}), but
because k2t + s2t+1 < h, we have moveh({k2t+1, 2t, 0}) \Ak,h = ;.

4. Chocolates Without Simple Formulas for P-positions

In this section, we study the nim-values of the Chocolate Bar CB(0, 1, y, z). Figure
4.1 is an example of such a bar. The mathematical structure of this chocolate bar
is interesting when compared to that of CB(0, k, y, z) for an even number k. The
nim-value of this chocolate bar has a complicated mathematical structure.

Figure 4.1.

4.1. Structure of Each Row of the chart of Nim-values

If we let G1,0({y, z}) be the nim-value for the Chocolate Bar CB(0, 1, y, z), we can
form a chart of the nim-values. In this section, we present some conjectures about
the nim-value G1,0 using the computer algebra system Mathematica.
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Figure 4.2 shows the nim-values G1,0({y, z}). Note that, in this figure, the hor-
izontal direction shows the y-coordinate, and the vertical direction gives the z-
coordinate. For example, G1,0({2, 3}) = 1 and G1,0({5, 9}) = 12.

Example 4.1. The following Mathematica program calculates G1,0({y, z}) for any
y, z 2 Z�0 such that y  z. In this program, “allcases” is the set of all states {a, b}
of the chocolate for a, b = 0, 1, 2, ..., 30 and a  b. Gr({a, b}) is the nim-value.

k = 1;
ss=30;al = Flatten[Table[{a,b},{a,0,ss},{b,0,ss}],1];
allcases = Select[al,(1/k)(#[[2]]) >= #[[1]]&];
move[z_]:= Block[{p},p = z;
Union[Table[{Min[Floor[(1/k)(t2)],p[[1]]],t2},
{t2,0,p[[2]] - 1}],
Table[{t1,p[[2]]},{t1,0,p[[1]]-1}]]];
Mex[L_]:= Min[Complement[Range[0,Length[L]],L]];
Gr[pos_]:= Gr[pos] = Mex[Map[Gr,move[pos]]];
pposition = Select[allcases,Gr[#] == 0 &];

Z Y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0
1 1 2
2 2 1 3
3 3 4 1 5
4 4 3 5 1 6
5 5 6 4 7 1 8
6 6 5 7 4 8 1 9
7 7 8 6 9 4 10 1 11
8 8 7 9 6 10 4 11 1 12
9 9 10 8 11 7 12 4 13 1 14
10 10 9 11 8 12 7 13 4 14 1 15
11 11 12 10 13 9 14 7 15 4 16 1 17
12 12 11 13 10 14 9 15 7 16 4 17 1 18
13 13 14 12 15 11 16 10 17 7 18 4 19 1 20
14 14 13 15 12 16 11 17 10 18 7 19 4 20 1 21
15 15 16 14 17 13 18 12 19 10 20 7 21 4 22 1 23

Figure 4.2.

9 9 10 8 11 7 12 4 13 1 14

Figure 4.3.

From Figure 4.3, we arrive at Conjecture 4.1.

Conjecture 4.1. Suppose that z = 4m+1 for some non-negative integer m. Then,
(1) G1,0({2i� 1, 4m + 1}) = 4m + 1 + i for i = 1, 2, ..., 2m + 1.
(2) G1,0({2i, 4m + 1}) = 4m + 1� i for i = 0, 1, 2, ...,m.
(3) G1,0({2i, 4m + 1}) = 6m + 1� 3i for i = m + 1,m + 2, ..., 2m.
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10 10 9 11 8 12 7 13 4 14 1 15

Figure 4.4.

Figure 4.4 then leads to Conjecture 4.2.

Conjecture 4.2. Suppose that z = 4m+2 for some non-negative integer m. Then,
(1) G1,0({2i, 4m + 2}) = 4m + 2 + i for i = 0, 1, 2, ..., 2m + 1.
(2) G1,0({2i� 1, 4m + 2}) = 4m + 2� i for i = 1, 2, ...,m + 1.
(3) G1,0({2i� 1, 4m + 2}) = 6m + 4� 3i for i = m + 2,m + 2, ..., 2m + 1.

11 11 12 10 13 9 14 7 15 4 16 1 17

Figure 4.5.

From Figure 4.5, we have Conjecture 4.3.

Conjecture 4.3. Suppose that z = 4m+3 for some non-negative integer m. Then,
(1) G1,0({2i� 1, 4m + 3}) = 4m + 3 + i for i = 1, 2, ..., 2m + 2.
(2) G1,0({2i, 4m + 3}) = 4m + 3� i for i = 0, 1, 2, ...,m.
(3) G1,0({2i, 4m + 3}) = 6m + 4� 3i for i = m + 1,m + 2, ..., 2m + 1.

12 12 11 13 10 14 9 15 7 16 4 17 1 18

Figure 4.6.

Finally, from Figure 4.6, we can state Conjecture 4.4.

Conjecture 4.4. Suppose that z = 4m+4 for some non-negative integer m. Then,
(1) G1,0({2i, 4m + 4}) = 4m + 4 + i for i = 0, 1, 2, ..., 2m + 2.
(2) G1,0({2i� 1, 4m + 4}) = 4m + 4� i for i = 1, 2, ...,m + 1.
(3) G1,0({2i� 1, 4m + 4}) = 6m + 7� 3i for i = m + 2, ..., 2m + 2.

The authors have attempted to prove these conjectures using mathematical in-
duction, but have not thus far succeeded. The di�culty lies in the fact that, using
mathematical induction, there are too many cases to cover.

Although these conjectures have not been proved, the patterns of nim-values
show that the mathematical structure of this chocolate game is very di↵erent from
that of the chocolate games treated in previous sections.
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