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Abstract
We prove that an infinite class of Copeland-Erdős numbers is not strongly normal
and provide the analogous result for Bugeaud’s Mahler-inspired extension of the
Copeland-Erdős numbers. After the presentation of our results, we o↵er several
open questions concerning normality and strong normality.

1. Introduction

Up to the year 1909, problems of probability were classified as either “discon-
tinuous” or “continuous” (also called “geometric”). Towards filling this gap, in
that year, Borel [2] introduced what he called countable probabilities (probabités
dénombrables). In this new type of problem, one asks probabilistic questions about
countable sets. As a (now very common) canonical example, Borel [2] consid-
ered properties of the frequency of digits in the digital expansions of real numbers.
Specifically, he defined the notions of simple normality and normality.
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A real number x is called simply normal to the base b (or b-simply normal) if each
of 0, 1, . . . , b� 1 occurs in the base-b expansion of x with equal frequency 1/b. This
number x is then called normal to the base b (or b-normal) provided it is bm-simply
normal for all positive integers m.

As part of his seminal work in the area, Borel [2] showed that almost all numbers
are normal to every positive integer base, but it was not until 1933 that Champer-
nowne [4] gave an explicit example; he showed that the number

⇠N,10 := 0.1234567891011121314151617 · · · ,

produced by concatenating the digits of the positive integers, is normal to the base
10. He also claimed that the number

0.46891012141516182021222425 · · · ,

produced by concatenating the digits of the composite integers, is normal to the base
10, though he did not provide a proof. Such a proof was provided by Copeland and
Erdős [5], who showed that if b > 2 is an integer and a1, a2, a3, . . . is an increasing
sequence of positive integers such that for every # < 1 the number of an up to N
exceeds N# for N su�ciently large, then the number

⇠A,b := 0.(a1)b(a2)b(a3)b · · ·

is b-normal, where (an)b denotes the base-b expansion of the integer an and A :=
{a1, a2, a3, . . .}.

In the present day, normality is a property that one presumes a “random” number
must have. But, of course, just because a number is normal to some base, does not
mean this number is in any way “random.” Champernowne’s number ⇠N,10 is by
no means “random.” In order to more formally (and quite simply) di↵erentiate
normal from “random,” Belshaw and Borwein [1] introduced a new asymptotic test
of pseudorandomness based on the law of the iterated logarithm, which they call
strong normality. Specifically, let ⇠ 2 (0, 1) and mk,b(⇠;n) denote the number of
times that k appears in the first n b-ary digits of the base-b expansion of ⇠. The
number ⇠ is called simply strongly normal to the base b (or b-simply strongly normal)
provided both

lim sup
n!1

mk,b(⇠;n)� n/bp
2n log log n

=
p

b� 1
b

and lim inf
n!1

mk,b(⇠;n)� n/bp
2n log log n

= �
p

b� 1
b

,

for every k 2 {0, 1, . . . , b � 1}. This number ⇠ is then called strongly normal to
the base b (or b-strongly normal) if it is bm-simply strongly normal for all positive
integers m.

To illustrate the value of their new asymptotic test of pseudorandomness, Belshaw
and Borwein [1] showed that a strongly normal (resp. simply strongly normal) num-
ber was also normal (resp. simply normal). They also showed that Champernowne’s
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number ⇠N,2, produced by concatenating the positive integers written in binary, is
not strongly normal to the base 2. They commented that this was true for every
base b, and a slight modification of their proof indeed gives this result.

In this paper, we show that an infinite class of Copeland-Erdős numbers is not
strongly normal. In fact, our result addresses Bugeaud’s Mahler-inspired generaliza-
tion of the Copeland-Erdős numbers. Recall that for a real number x, bxc denotes
the greatest integer which is less than or equal to x, and {x} denotes the fractional
part of x; that is, x� {x} = bxc. To ease the exposition, before stating our result,
we introduce a piece of notation in the following definition.

Definition 1. Let c > 1 be a real number, b > 2 be an integer, and a1, a2, a3, . . .
be an increasing sequence of positive integers. For each n > 1, let (an)b denote the
base-b expansion of the integer an. We define the real number

⇠A,b,c := 0.(a1)b · · · (a1)b(a2)b · · · (a2)b(a3)b · · · (a3)b · · · ,

where A := {a1, a2, a3, . . .} and each block of b-ary digits (an)b is repeated bc`b(an)c
times; here `b(an) is equal to the length of the integer an written in base b.

We prove the following theorem.

Theorem 1. Let c > 1 be a real number, b > 2 be an integer, A ✓ N, A(x) be the
number of elements in A that are at most x, and ↵ be a real number satisfying

↵ <

✓
1� 1

b
+

1
b(bc� 1)

◆
· log b

2
.

If for large enough x

A(x) 6 ↵ · x

log x
,

then ⇠N\A,b,c is not b-simply strongly normal.

Theorem 1 contains the result of Belshaw and Borwein [1] that each Champer-
nowne number ⇠N,b = ⇠N,b,1 is not b-strongly normal. It also yields the following
corollary.

Corollary 1. The number

0.46891012141516182021222425 · · · ,

produced by concatenating the digits of the composite integers, is not strongly normal
to the base 10.

Remark 1. Bugeaud, in his monograph, Distribution Modulo One and Diophan-
tine Approximation [3, p. 87, Theorem 4.10], was the first to prove the b-normality
of the generalized Copeland-Erdős numbers (with the multiplicities as given in Def-
inition 1); the special case of the b-normality of ⇠N,b was proved by Mahler [7].
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2. Non-strong Normality and Generalized Copeland-Erdős Numbers

In this section, we prove Theorem 1. Our proof is inspired by Belshaw and Borwein’s
proof [1] of the non-b-strong normality of the Chapernowne numbers ⇠N,b,1. The
main idea is to define an increasing sequence (in the index k) of positive integers
db,c,k, and consider the number of 1s in the number ⇠N\A,b,c up to the db,c,k-th b-ary
digit. We will show that there is an excess of 1s.

To this end, we start with some properties about the special sequence over which
we will eventually take limits.

Lemma 1. Let c > 1 be a real number. For the integers b > 2 and k > 1, let
db,c,k denote the number of b-ary digits in the non-decreasing concatenation of the
first 2bk�1 � 1 positive integers written in the base b, where each integer is repeated
bc`b(an)c times. Then

db,c,k = bckckbk�1 +
k�1X
n=1

bcncnbn�1(b� 1).

Moreover, we have

db,c,k =
cb + b� 2
b(cb� 1)

· k(cb)k ·
✓

1 + O

✓
1
k

◆◆
.

Proof. The first assertion of the lemma is immediate.
For the second, note that bcnc = cn � {cn}. Thus

db,c,k = ckkbk�1 +
k�1X
n=1

cnnbn�1(b� 1)�
 
{ck}kbk�1 +

k�1X
n=1

{cn}nbn�1(b� 1)

!
.

Now

c(b� 1)
k�1X
n=1

n(cb)n�1 = c(b� 1) · d

dx

(
k�1X
n=0

xn

)�����
x=cb

= c(b� 1) · d

dx

⇢
xk � 1
x� 1

�����
x=cb

= c(b� 1)
k(cb)k�1(cb� 1)� ((cb)k � 1)

(cb� 1)2

= c(b� 1)
k(cb)k � k(cb)k�1 � (cb)k + 1

(cb� 1)2

=
c(b� 1)
(cb� 1)2

· k(cb)k ·
✓

1� 1
cb
� 1

k
+

1
k(cb)k

◆

=
(b� 1)

b(cb� 1)
· k(cb)k ·

✓
1 + O

✓
1
k

◆◆
,
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so also,

{ck}kbk�1 +
k�1X
n=1

{cn}nbn�1(b� 1) = �cO(kbk),

where �c = 0 if c 2 N and 1 otherwise; this accounts for the fact that this term does
not appear if c is an integer.

Hence

db,c,k =
1
b
· k(cb)k +

(b� 1)
b(cb� 1)

· k(cb)k ·
✓

1 + O

✓
1
k

◆◆
+ �cO(kbk)

=
cb + b� 2
b(cb� 1)

· k(cb)k ·
✓

1 + O

✓
1
k

◆◆
.

As our proof will use the comparison of m1,b(⇠N\A,b,c; db,c,k) with m1,b(⇠N,b,c; db,c,k),
we now provide two lemmas. The first provides a way for us to compare these quan-
tities, and the second gives the value of m1,b(⇠N,b,c; db,c,k).

Lemma 2. If A ✓ N and A(x) is as defined in Proposition 1, then

m1,b(⇠N\A,b,c; db,c,k) > m1,b(⇠N,b,c;db,c,k)� bckck(A(2bk�1 � 1)�A(bk�1 � 1))

�
k�1X
n=1

bcncn(A(bn � 1)�A(bn�1 � 1)).

Proof. The number db,c,k was defined to be the number of b-ary digits in the con-
catenation of the first 2bk�1 � 1 positive integers written in the base b, where
each integer is repeated bc`b(an)c times. For n = 1, . . . , k � 1, there are exactly
A(bn�1)�A(bn�1�1) integers in A of length n and there are a total of A(2bk�1�
1)�A(bk�1 � 1) of length k. The maximal contribution these numbers could have
is if each of the numbers in A had all of its b-ary digits equal to 1. The inequality
in the lemma follows immediately from this observation.

Lemma 3. Let db,c,k be as defined in Lemma 1. Then for large enough k

m1,b(⇠N,b,c; db,c,k)� db,c,k

b
= (cb)k

✓
b� 1
b2

+
1

b2(cb� 1)
+ �cO

✓
1
ck

◆◆
,

where �c = 0 if c 2 N and 1 otherwise.

Proof. Recall that the number db,c,k denotes the number of b-ary digits in the non-
decreasing concatenation of the first 2bk�1�1 positive integers written in the base b,
where each integer is repeated bc`b(an)c times. Note also, that in the set of numbers
of length n with any single leading b-ary digit, the frequency in the non-leading
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digits of any specific b-ary digit is exactly 1/b. Thus

m1,b(⇠N,b,c; db,c,k) =
k�1X
n=1

bcnc
 

(n� 1)bn�1(b� 1)
b| {z }

the number of non-leading 1s
from length n numbers

+ bn�1|{z}
the number of leading 1s
from length n numbers

!

+bckc
 

(k � 1)bk�1

b| {z }
the number of non-leading 1s

from numbers in [bk�1, 2bk�1 � 1]

+ bk�1|{z}
the number of leading 1s

from numbers in [bk�1, 2bk�1 � 1]

!

=
bckckbk�1 +

Pk�1
n=1bcncnbn�1(b� 1)

b

� bckcbk�1 +
Pk�1

n=1bcncbn�1(b� 1)
b

+
kX

n=1

bcncbn�1.

Applying the first assertion of Lemma 1, we have

m1,b(⇠N,b,c; db,c,k)� db,c,k

b
= �bc

kcbk�1 +
Pk�1

n=1bcncbn�1(b� 1)
b

+
kX

n=1

bcncbn�1

= bckcbk�1

✓
1� 1

b

◆
+

1
b

k�1X
n=1

bcncbn�1

= bckcbk�1

✓
1� 1

b

◆
+

c

b

k�1X
n=1

(cb)n�1 +
1
b

k�1X
n=1

{cn}bn�1

= ckbk�1

✓
1� 1

b

◆
+

c

b

✓
(cb)k�1 � 1

cb� 1

◆
+ �cO(bk)

= (cb)k

✓
b� 1
b2

◆
+

1
b2

✓
(cb)k

cb� 1
� cb

cb� 1

◆
+ �cO(bk)

= (cb)k

✓
b� 1
b2

+
1

b2(cb� 1)
+ �cO

✓
1
ck

◆◆
,

which proves the lemma.

The next lemma provides a su�cient (but not necessary) condition for the non-
b-simple strong normality of the number ⇠N\A,b,c.

Lemma 4. Let c > 1 be a real number, A ✓ N, db,c,k be as defined in Lemma 1,
and suppose that for large enough k, we have

m1,b(⇠N\A,b,c; db,c,k)� db,c,k

b
> r(cb)k

for some positive constant r. Then ⇠N\A,b,c is not b-simply strongly normal. In
particular, ⇠N\A,b,c is not b-strongly normal.
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Proof. Using the assumptions of the lemma, we have

m1,b(⇠N\A,b,c; db,c,k)� db,c,k/bp
2db,c,k log log db,c,k

>
r(cb)kp

2db,c,k log log db,c,k
.

Now using the second assertion of Lemma 1, for any " > 0 and large enough k,

p
2db,c,k log log db,c,k 6

✓
db,c,k

2
· b(bc� 1)
cb + b� 2

◆1/2+"

6
�
k(cb)k

�1/2+"
.

Thus

lim
k!1

m1,b(⇠N\A,b,c; db,c,k)� db,c,k/bp
2db,c,k log log db,c,k

> lim
k!1

r(cb)k

(k(cb)k)1/2+"
= 1,

whence the bound on the limit supremum in the definition of b-simple strong nor-
mality cannot hold for the number ⇠N\A,b,c.

In addition to the above results, we will need the following classical result, which
is an easy exercise for the curious reader.

Lemma 5 (Abel Summation). If an, bn 2 C for all n 2 N, then for all k > 1

kX
n=1

an(bn+1 � bn) = ak+1bk+1 � a1b1 �
kX

n=1

bn+1(an+1 � an).

We make use of Abel summation in the following way.

Corollary 2. If an, bn > 0 for all n and {an}n>0 is non-decreasing, then

kX
n=1

an(bn+1 � bn) 6 ak+1bk+1.

With all of the above preliminaries finished, we are now able to present the proof
of Theorem 1.

Proof of Theorem 1. Applying Lemmas 2 and 3 along with Corollary 2 and the
removal of some positive terms, we have

m1,b(⇠N\A,b,c; db,c,k) > m1,b(⇠N,b,c; db,c,k)�
k�1X
n=1

cnn(A(bn � 1)�A(bn�1 � 1))

� ckk(A(2bk�1 � 1)�A(bk�1 � 1))

>
db,c,k

b
+ (cb)k

✓
b� 1
b2

+
1

b2(cb� 1)
+ �cO

✓
1
ck

◆◆

� ckkA(bk�1 � 1)� ckk
�
A(2bk�1 � 1)�A(bk�1 � 1)

�
.
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Thus

m1,b(⇠N\A,b,c; db,c,k)� db,c,k

b
>

(cb)k

b2

✓
b� 1 +

1
cb� 1

+ �cO

✓
1
ck

◆◆
� ckkA(2bk�1).

Supposing that A(x) 6 ↵x/ log x, we have

m1,b(⇠N\A,b,c; db,c,k)� db,c,k

b
>

(cb)k

b2

✓
b� 1 +

1
cb� 1

+ �cO

✓
1
ck

◆◆

� ck↵
k

k � 1
· 2bk�1

log b

 
1

1 + log 2
(k�1) log b

!

>
(cb)k

b2

✓
b� 1 +

1
cb� 1

� ↵ · 2b
log b

+ O

✓
1
k

◆◆
.

Applying Lemma 4 to this last inequality, we have for any subset A ✓ N such that

↵ <

✓
b� 1 +

1
cb� 1

◆
log b

2b
=
✓

1� 1
b

+
1

b(bc� 1)

◆
· log b

2
,

the number ⇠N\A,b,c is not b-simply strongly normal.

3. Some Open Questions and Thoughts for the Future

In this paper, we showed that a large class of Copeland-Erdős numbers is not
strongly normal. The main thrust of our argument was the comparison of our class
with the Champernowne (or generalized Champernowne) number. This argument
yielded nice results, but there is a lot left to explore here. Indeed, it would be
reasonable to suppose that the decimal formed by the sequence of prime numbers
is also not strongly normal to the scale of ten, but of this we have no proof.

The following few avenues and questions may lead to some new understanding
of both normality and strong normality as well as their relationship.

First, our argument addresses ⇠N\A,b,c where A ✓ N is a su�ciently thin set.
For example, if A is the set of primes our method works, but if A is larger than
that in any real asymptotic sense, then our argument fails. In contrast to this, the
Copeland-Erdős normality result holds for a much larger class of numbers.

Question 1. Do there exist strongly normal Copeland-Erdős numbers?

Second, Davenport and Erdős [6] proved that if f(x) is a (non-constant) polyno-
mial in x, such that f(n) 2 N for all n 2 N, then the real number

0.(f(1))b(f(2))b(f(3))b · · ·

is normal to the base b. Their result was later generalized in many ways by Nakai
and Shiokawa [8, 9, 10, 11]. This begs the following question.
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Question 2. Let f(x) be a (non-constant) polynomial in x, such that f(n) 2 N for
all n 2 N. Can the number 0.(f(1))b(f(2))b(f(3))b · · · be b-strongly normal?

Nakai and Shiokawa [11] showed that if f(x) is a (non-constant) polynomial in
x, such that f(n) 2 N for all n 2 N, then the real number

↵(f, b) := 0.(f(2))b(f(3))b(f(5))b · · · (f(p))b · · · ,

where p runs through the prime numbers, is b-normal.

Question 3. Is the number ↵(f, b) strongly normal for any choice of f and b?

Finally, the following question, while not specifically about strong normality, is
certainly evident given the existing literature, though it has not explicitly been
formulated before.

Question 4. Let b > 2 be an integer and a1, a2, a3, . . . be an increasing sequence
of positive integers such that the number 0.(a1)b(a2)b(a3)b · · · is b-normal. If f(x)
is a (non-constant) polynomial in x, such that f(n) 2 N for all n 2 N, then is the
number 0.(f(a1))b(f(a2))b(f(a3))b · · · b-normal?
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