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Abstract
In the paper, by several methods and approaches, the authors establish two explicit
formulas for the large and little Schréder numbers.

1. Introduction

In combinatorics and number theory, there are two kinds of Schroder numbers, the
large Schroder numbers S, and the little Schréder numbers s,,. They are named
after the German mathematician Ernst Schroder.

A large Schréoder number S,, describes the number of paths from the southwest
corner (0,0) of an n x n grid to the northeast corner (n,n), using only single steps
north, northeast, or east, that do not rise above the southwest-northeast diagonal.
The first eleven large Schroder numbers S, for 0 < n < 10 are

1 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718.

9 )

In [3, Theorem 8.5.7], it was proved that the large Schréder numbers S,, have the
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generating function

Yy oy S A
Gla) = - =3 st (L.1)
which can also be rearranged as
VeZ46br+1—1—2 & ne n
G(z) = G—a) = = = Cysan (2

The little Schroder numbers s, form an integer sequence that can be used to
count the number of plane trees with a given set of leaves, the number of ways
of inserting parentheses into a sequence, and the number of ways of dissecting a
convex polygon into smaller polygons by inserting diagonals. The first eleven little
Schroder numbers s, for 1 <n < 11 are

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859

They are also called the small Schréder numbers, the Schréder-Hipparchus numbers,
or the Schroder numbers, after Ernst Schroder and the ancient Greek mathemati-
cian Hipparchus who appears from evidence in Plutarch to have known of these
numbers. They are also called the super-Catalan numbers, after Eugéne Charles
Catalan, but are different from a generalization of the Catalan numbers [8, 18].
In [3, Theorem 8.5.6], it was proved that the little Schréoder numbers s,, have the
generating function

l+2—vVa?2—6z+1 > n
g(x) = 1 = anz . (1.3)
n=1

For more information on the large Schroder numbers S,, and the little Schroder
numbers s, please refer to [3, 13, 14, 15, 19, 20] and plenty of references therein.
Comparing (1.1) with (1.3), we can reveal

o0 o0
vVaZz—6x+1 :1+x—425nx"zl—x—QZSnx”H,

n=1 n=0

that is,
oo o0 oo
1-2 Z sz l=1-2 Z Spr1x” = — Z S,z™.
n=1 n=0 n=0

Accordingly, we acquire

Sn = 2Sn+1, n € N.
See also [3, Corollary 8.5.8]. This relation tells us that it is sufficient to analytically
study the large Schroder numbers S, .

The main aim of this paper is, by several methods and approaches, to establish
two explicit formulas for the large and little Schréder numbers S, and s,,.
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Theorem 1. Forn € N, the large and little Schroder numbers S,, and s,41 can be
computed by

B B (_]_),.Li n+1 @ 1 k
Sn =280 = o 2. '\2/, \n—k+1 (1.4)

k=[(n+1)/2]

and

n

' s n—r—1 )
Sn:25n+1:%%z Z Z Z Z (_1)Sq62(r+])<%>k<%_k>j

k=0r+4s=k l+m=n q=0 ;=0

o £—1\ (s j m+2q—1 1
r—1)\¢g/\n—r—7+1 2g—1 rlsljl’
(1.5)

where [z] stands for the ceiling function which gives the smallest integer not less
than x and (x), is the falling factorial defined by

<x>n:I:I(x_k):{510(58—1)...(:17—714-1), 23(1)7
k=0 ) —0.

2. Lemmas

In order to prove our main results, we need the following notions and lemmas.
In combinatorial mathematics, the Bell polynomials of the second kind B,, j are
defined by

' n—k+1 0.
n: T\
B k(21,22 Tpogeg1) = Z TR+, H (7)
£;€{0}UN [[= 4! ’
2 i ti=n
iy bi=k

for n > k > 0. See [4, p. 134, Theorem A]. In combinatorial analysis, the Faa di
Bruno formula plays an important role and can be described by

%[ foh(t)] = éo FE(RE) Bk (R (8), B (1), ..., A FHD @) (2.1)

in terms of the Bell polynomials of the second kind B, . See [4, p. 139, Theorem C].

Lemma 1 ([4, p. 135]). Forn >k > 0, we have
Bk (abacl7 ab’zs, . .. 7ab”_k"rlxn,kﬁ) = akb”Bn’k(xl, To,y .y Tnki1), (2.2)

where a and b are any complex numbers.
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Lemma 2 ([5, Theoem 4.1], [12, Theorem 3.1], and [17, Lemma 2.5]). Forn >k >
0, the Bell polynomials of the second kind B,, i satisfy

B, x(2,1,0,...,0) = % (Z) (n f k) g2hn, (2.3)

Lemma 3 ([2, p. 40, Exercise 5)], [6, Section 2.2, p. 849], [9, p. 94], and [17,
Lemma 2.1]). Let u(z) and v(x) # 0 be two differentiable functions. Let U, 41)x1(2)
be an (n+ 1) x 1 matriz whose elements uy, 1 (z) = u*D(x) for 1 <k <n+1, let
Vint1)xn(x) be an (n + 1) x n matriz whose elements

1 —1 o
(i—3) i— >0
. v z), 1—7J=2
vij(x) = (Jl) (@)
0, i—j<0

for1<i<n+1and1l<j<n, andlet [Wi,i1)x 1) (7)| denote the determinant
of the (n+ 1) x (n+ 1) matrix

W) x (1) (@) = (Ung1)x1(2)  Ving1yxn(2)) -

Then the nth derivative of the ratio % can be computed by

d" [u(z)] _ n|W(n+1)><(n+1)(x)‘
dzxn L}(x)] = (=1 vl (x) '

Lemma 4 ([16, Theorem 2.1] and [21]). Let M be a square matriz of order n x n

and partitioned as
A B
M = (C D) .

Let K~' denote the inverse of an invertible matriz K.

1. If B is a k x k matriz and C nonsingular, then the determinant of M can be
computed by
(M| = (-1)"tY*|C||B — ACT'D|. (2.4)

2. If A, B, C, D are respectively p X p, p X q, ¢ X p, and q X q matrices and if
D is invertible, then the determinant of M can be computed by

|M|=|D||A-BD~'C|. (2.5)

Lemma 5 ([1, Example 2.6] and [4, p. 136, Eq. [3n]]). The Bell polynomials of the
second kind B,, i, satisfy

Bre(@i +y1,22 + Y2, - s Tkt + Yn—kt1)

n
= Z Z (€>BZ,T($1;x2a---7x€r+l)Bm,s(y1ay2a- --7ymfs+1)- (26)

r+s=k {+m=n
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Lemma 6. Forn >k > 0, we have

Bmaumwuxn—k+nn=(zﬂﬁiiyn—m! 2.7)
and

Boix(2,3,. .., (n—k+2)!) =

=) —
]~

) s

~
Il

0

Proof. The formula (2.7) can be found in [4, p. 135] or [7, Theorem 1].
In [4, p. 133], it was stated that

(& & "
7 (Z ﬂfmm) = Z B k(z1, 22, . .. axn—k—i-l)ﬁ (2.9)
" \m=1 ’ n=k ’

for k > 0. Hence, it follows from (2.9) that

I

and, by differentiating with respect to ¢,

1 [k C@tm-1 1
=2 (D €<£)(—1) ( (%1)!) G mzkz0

Further letting ¢ — 0 in the above equation yields the formula (2.8). O

3. Proofs of Theorem 1

We are now in a position to prove our main results.

First proof of the formula (1.4). It is clear that the generating function G(z) is
naturally defined on (—o00,0) U (0,3 —2v2] U [3+2v/2,00). It is easy to calculate
that lim, .o G(x) = lim,_,0 G(z) = 2. Therefore, at the point « = 0, both of the
functions G(z) and G(x) are removably discontinuous. Hence, the function G(x)
can be regarded to be defined on (—oo7 -3 — 2\/5] U [2\/5 —3,00). Since

\h¢+6x+1::§§(%?k@@+%Mﬂ le(z +6)] < 1, (3.1)
=0 :
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we obtain

+

N —
DN | =

G(r) = -

iﬂﬁkx’“‘l(x%)’% |z(z +6)] < 1. (3.2)
£ R

This implies that the function G(z) = G(—=x) is infinitely differentiable at x = 0.
Utilizing the expansion (3.2) and differentiating give

26 (0) = i (1/2) Hr%[xk—l(x + 6)k](m)
k=

k=1 -
= <122'>k 2 (75) Jig (o* ) )ilin (2 +6)1] ™7

k=1 —o

m+1
_ (1/2% [ m o
—k:1 k!k(k_1>(k—1)lhm[( +6)] +

k=[(m+1)/2]

for m > 1. From (1.2), it follows that
Gm(0) = (=1)™m!S,,, m>1. (3.3)

Consequently,

gm) 1(-1ym ’”Z“ <1/2>k<m
k

B 1) <k>m_k+162k7m71

k=[(m+1)/2]

for m > 1, which can be rewritten as the formula (1.4). The first proof of the
formula (1.4) is complete. O

Second proof of the formula (1.4). By Faa di Bruno’s formula (2.1), the mth deriva-
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tive of the function vz2 + 6x + 1 can be computed by

(\/:U2 + 62 + 1)(m)

(\/ﬂ)(k)Bm,;g(Zc +6,2,0,...,0)

<
>

_>Z<> B,.x(6,2,0,...,0)

=0

1M

> u/*7*B,, 1 (22 4 6,2,0,...,0)

N~

1/2—k

ngsimﬁ

> T +6x+1) Bm.k(22 4+ 6,2,0,...,0)

|~

as z — 0, where u = u(x) = 22 + 62 + 1 and m > 0. By (2.2) and (2.3), we obtain

(Va2 +6x+1)" = i<1>k(x2 +62+1)"* " (m — k).

2
k=0

x (7:) (m’“_ k) 2(x + 3)2F (3.4)

SOLSURIRNES

as x — 0 for m > 0. The equation (1.2) can be rewritten as
oo
Va4 6z +1 —1—x=2>» (=1)"Sa""!
n=0

which implies that

2(=1)"(n + 1)1, = lim (Va? + 62+ 1 —1 2) " >0,

xTr—

Consequently, we obtain

S'n,: L (D" lm(\/x2+6x+ )(nH)

<n+ 11 5%
n+1 (3.5)
)" n+1 k
_ 1)! 2k—n—1
n+1' <> " k+)( k ><n—k+1>6
for n > 1. The formula (1.4) is thus proved again. O

Third proof of the formula (1.4). Applying Lemma 3 to the functions

u(z) =va?2+6zx+1—-1—=x
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and v(z) = x yields

gow(x):

(_1)n+(n+2)n

2gn+1 u™ (z)
u'(x)
’U,N(l‘)
1 ul® ()
u(n) AN IR
(2) PN
u(n—2) (LL')
u(n_l)(x)
z 0 0
1 « 0
0 2 =z
1 0 0 3
2zn+1
0 0 O
0 0 O
0 0 O
1

an-&-l

(0 0 0

8
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
(3.6)
-3 x 0 0
0 n—2 T 0
0 0 n—1 =z
0 0 0 n
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
n—3 T 0 0
0 n—2 T 0
0 0 n—1 z
00 0 n)
0 —nu(x)
0 —nu/(z)
0 —nu'(x)
0 —nu® (z)
0 —nu(™=3)(z)
x nu™=2)(z)
n—1 zu™(z)—nuV(z)
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z 0 0 0 (=)™ (n)mu(x)

1 =z 0 0 (=1)™(n)mu/(x)

0 2 = 0 (=)™ (n)mu” (x)

0 0 3 0 (=1)™(n)mu® (z)

.0. e 0 ..... e x ........ (71)m<n> u(nfmfl)x .....

00 0 -+ n—m Y o(=DFn)amru=h(z)
_ 1 z (—1)”71<n>n_1u(1})
= opntl |1 ZZ;;(_1)k<n>k$n_k_1u(n_k) (z)

= 2:5%"‘1 [2(1)k<n>kxnku(”k)(z) _ (1)n1<n>n_1u($)]

k=0

n (n+1)
1 . _1\k n—k, (n—k)
RECES] m[’;)( 1) ) e~ Fu ) ()
I T R
BPICES] ilﬁ%)k:o( 1" () [2Fu® (@)]

_ # " —_1)"*n n+1 n+1 im [ (2% (é)u(n+k—€+1) .
~ 2(n+1)! kz:%( D" (n)n—k ; ( ' > ;%0[( ) (@)
- m g(_l)n_k@ﬁnfk <n N 1) Fut+) (0)

1 . = . n+1
::ifﬁfﬁijfﬁ +1x0)2§%(,1) k<n>n_k< ' )k!

1

_ (n+1) 0
s W

as ¢ — 0, where 3 < m <n — 2. This means, by considering (3.3), that

1 (1" (i1
Fihu( 1 (0)

)

which is same as the first line in (3.5). Combining this with (3.4) recovers the

formula (1.4).

O
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Fourth proof of the formula (1.4). Employing (2.5) to compute (3.6) gives

1 z 0 0 0 0 0
2 =z 0 0 0 0
0 0 3 0 0 0 0
_1)"
G (z) TR
n+1
2z 0 0 0 n—2 =z 0
0 0 0 0 0 =n-1 =z
0 0 0 0 0 0 =n
z\" /1 z 0 0 0 0\ ' u'(z)
0 2z 0 0 0 u” ()
0 0 0 3 0 0 0 u® (x)
x| u@ =1 00 0 x 0 0 w3 (z)
0 0 0 0 n-2 x 0 w2 ()
0 0 0 0 0 n-1 = w1V ()
0 0 0 0 0 0 n u™ ()
u'(z)
u//(x)
u(3)(x)
-y ., |
:(2%“ u@z)—(x 0 0 --- 0 0 0 O)P " =3) ()
u(n72)(x)
u<”71>(x
u(n)(m)
u' (x)
UN(.Z')
_ (=D . I cyntan) [ u@ (@)
opntl “(“)_(ml @ (s (nym ) .........
U(n_l)(l’)
u(")(ac)

k=1

‘%[ - (-1 ’““m "“()]

n+1 1 k+ ) (n+1)
S = N

k:O Tr—
n n+1
(—1)n+1 (=nF n+1 ky(0)  (n—t4k+1)
= 1
2n+1) &= Kl 200 2\ e () u (@)

_ (=)t z": (—1)k+! (n;cf— 1) Kl (0)

2(n+1) &= K

7(_1) n+1 = 1 n+1
_2(n+1 "0 Z H( )

k=0

_ 1 (n+1)
“2mrp” O
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as x — 0, where K7 stands for the transpose of a matrix K and

PN G O A o O it o O s
(1) 22 (33 (n—2),_2 n—1)n_1 (n)n
O L oz o (71)n74xn74 (71)7L73rn—3 (71)n—2xn72
<2>1 <3>2 <n_2>5n73 s (77/ 1>7172 <n> —1
0 0 1 (_1)n7 n— (_1)71,74‘Ln—4 ( 1)71.73]/n73
(3)1 (n—2)n—4 (n—1)n—3 (n)n—2
P I A AL AL R R R N R LI I I A 3. “ ..
xr T X
000 O T ~ T
0 0 0 (n—2)1 (nf1>2 <n>:v3
0 0 0 0 =10 ~ Tl
0 0 0 0 0 L
(n)1
Similar to the above argument, we verify the formula (1.4) once again. O

Fifth proof of the formula (1.4). Combining the equation (1.2) with (3.1) leads to

f: {1/2) [2(z+6))F —1—z=2 i(—l)kskm’““.
k=0

k=1 =0 k=1
o k >
1/2 k
N N
k=1 £=0 k=1
oo 2k 1/2> k e
ZZ k 2km( >xm—x=22( D182k
k=1m=k k! m—k k=1
> (12 k -
Z Z < 2'>k62kim <m_k>l’m —r=2 Z(i]‘)milsm—lmma
m=1k=[m/2] " m=t

i %62’“’"( g >:2(—1)m15m_1,

m—k
k=[m/2]
CEDm S 2k k(K
Sm-1= "5 > W0 m—k)’
k=[m/2]
pm /2 k
— A AN/ 2/k p2k—m—1 >
Sm =" 2. RO (mk+1)’ m2 1.

k=[(m+1)/2]

The explicit formula (1.4) is thus proved once again. O
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Proof of the formula (1.5). The generating function (1.1) can be rearranged as

1 6 1

Then, by virtue of the formulas (2.1) and (2.6), we see that the nth derivative of
G(z) for n € N equals

1)l
QG(")(m) _ ($n)+1n —Z(\/ﬂ)(k)Bmk(u'(x),u”(x),-~-,U(n_k+1)(3@))
k=0
n /2—k
(=)l 1 6 1\
= 2 As) (2t
k=0 k
6 2 12 6 k6 — K+ 1)
XBn,k(P_Fa_F Evuw(_l) — ki
n—k+1 (n_k+2)'
)T s
n —k
(=)l 1 6 1\
= 203) ot
k=0 k

n 6 12 o 6(0 =7 +1)!
X Z Z <E>B€,r<ﬁa_ﬁa-“7(_1) s

r+s=k l+m=n

2 6 m—sq1(m—s+2)!
X Bm,s(_ﬁ,ya"'a(_l) o _et2 |

where u(z) = 1 — % + % Further making use of the formulas (2.2), (2.7), and (2.8)
results in
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n n 1/2—k
oy (="l 1 6.1
2G ("E) - nt+l Z 2 X 1 T + x2

k=0

X Z Z <Z>6T(_1)f+r o Ber (142, (C—r+1))

1

~Bm,s(25,3!,...,(m—s+2)})

SO, (-5E) T 3 (e
l

k=0 r+s=k {+m=n

-1 1 o s—qfs) (m+2¢—1)
1)(@—"‘)!52(_1) <q>( (2qi]1)!)

q=0

-GG () F 2 ()

r+s=k {+m=n

1
2
IR s—q 8\ (m+2g—1)!

9=0

L {m_z %> (2> — 6o+ 1) % @6%—1)

k r+s=k {+m=n

-1 1O s—qf s\ (m+2q—1)!
(T_1>(€—7")'yzo(_l) (q>( (;q_ql)l):|

q

i), 2 2 (e ()0

s (n+1)
o (¢ ;!r)! Z(_l)s_q (s) (m(;;?_ql—)'l) ($2 —6n 4 1)1/2k$k_3:|

q=0 q

(= 1n+1 u e\ [(e=1)(—r)
-EE). 2,2 (e () (5) S

° o s\ (m+4+2¢-1) . 9 1/2-k ks (n+1)
XZ ’1(>W hm+[(x —6x—|—1) ]

q £—0

n+1 n

B N(e-1\ - oy
-G, 22 (e () S e
s\ (m+2¢—1)! .. = n+1 2 1/2—k7(n—p+1) / k—s\(p)

+
z—0 p=0

n+1 n

S 22 (e ) (m) 5

z—0t
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as t — 07. By the formulas (2.1), (2.2), and (2.3), we have

lim [(x2 — 6z + 1) 1/2_k] (n=ktst1)

z—0t
n—k+s—1 )
= lim > (W YB (22 - 6,2,0...,0)

o+
T— =0

n—k+s—1
1 .
= lim Z <2 — k> u1/27k7jBn—k+s+l,j(2$ —-6,2,0...,0)

o+
T— = j

n—k+s—1 1
Z <§ _k> Bn7k+s+1,j(_67270”'70)
§=0 '

J
n—k+s—1 .
- (_1)2jn+ksl<1 —k> (n—k—j+s+1)

(]

2 6n7k72j+s+1
J=0

o n—k+s+1 j
J n—k—j+s+1)

where u = u(z) = 2% — 62 + 1. As a result, from the generating function (1.1), it
follows that

1
— )
S = —G™(0)

s (), 2,2 (o ()

kE rts=k t+m=n

S o n n—k+s—1 A
X Z(fl)sfq (2) (m(;qQ_ql)'l)'(k —s)! (k: t i) Z (71)2.]77’77‘1’](37371

q=0 7=0
" l—k m—k—j+s+D)!/n—k+s+1 J
2 i 6n7k72j+s+1 ] n,kfj+s+1

which can be simplified as the formula (1.5). The proof of Theorem 1 is complete.
O

Remark 1. This paper is a slightly revised version of the preprint [11] and a
companion of the preprint [10].
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