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Abstract
A connected partition of a graph G is a partition of its vertex set such that each
induced subgraph is connected. In earlier research it was called a connected com-
position of a graph. We find a polynomial, the defect polynomial of the graph, that
decribes the number of connected partitions of complements of graphs with respect
to any complete graph. The defect polynomial is calculated for several classes of
graphs as cycles or matchings.

1. Introduction

Connected partitions of graphs were introduced in [1] (as graph compositions),
with the motivation to find a natural generalization of compositions of integers and
partitions of finite sets.

Let G = (V (G), E(G)) be an undirected, labeled graph with edge set E(G) and
vertex set V (G). A connected partition of G is a partition of V (G) into vertex sets
of connected induced subgraphs of G. The connected subgraphs {G1, G2, . . . , Gt}
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provided by the composition of G are the parts of a given composition, with the
properties that [t

i=1V (Gi) = V (G), and for i 6= j, V (Gi) \ V (Gj) = ;. The earlier
name composition is a bit misleading, as one can think of compositions of graphs
as some kind of operation involving two graphs. The notion connected partition is
more descriptive.

Throughout this paper let Kn denote the complete graph on n vertices, Pn the
path on n vertices, Cn the cycle on n vertices, and Kn,m the bipartite graph on n
and m vertices.

It is not di�cult to see that connected partitions of the complete graph Kn are
in one-to-one correspondence with the partitions of its vertex set [1]. Every subset
of the vertices of Kn induces a connected subgraph of Kn (which is also a complete
graph), and hence each partition gives a connected partition.

Connected partitions of Pn are obtained in the following way [1]. Any connected
subgraph of Pn is also a path on some consecutive vertices of Pn, and the components
of a connected partition of Pn consist of paths of cardinality ai so that

Pm
i=1 ai = n.

Therefore, the path lengths provide a connected partition of the positive integer n,
in other words, the representation of n as an ordered sum of positive integers and
vice-versa.

An alternative characterization of connected partitions was given in [2]. For a
graph G = (V (G), E(G)) the components of the connected partition defined by
E0(G) ✓ E(G) are the connected components of the subgraph G0 = (V (G), E0(G)).

Let ⇧c(G) denote the set of connected partitions of a given graph G. The set
of connected partitions ⇧c(G) is a subposet of the partition lattice of V (G), where
the ordering is the usual ordering of partitions by inclusion, and ⇧c(G) is a lattice.
The connected partition number of G is the number of connected partitions of G,
and is denoted by C(G). With these notations, C(G) = |⇧c(G)|.

The connected partition number of Kn is equal to the number of partitions of
its vertex set thus C(Kn) = B(n), where B(n) denotes the nth Bell-number. For
the path Pn we have C(Pn) = 2n�1. Indeed, by omitting an arbitrary subset of the
edges of Pn we obtain a connected partition.

Connected partitions of complete bipartite graphs are considered in [3]. The
connected partition numbers are found via generating functions. Relationships be-
tween flats of matroids and connected partitions are investigated in [4]. A closer
relationship between compositions of integers and graphs is analyzed in [5].

In this paper we investigate the connected partition number of complements of
graphs. Complements are considered in a more general sense: for a graph G on k
vertices we take the complement of G in a complete graph Kn for n � k. Investiga-
tions towards this direction were done in [7]. There, among others, complements of
families of graphs, as paths, cycles or stars are considered. We find the connected
partition number of complements of several graphs and families of graphs. We also
reprove a few of the results of [7].
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We introduce the defect polynomial to find the connected partition number of
the complement of a graph for every n � k. A few properties of these polynomials
are introduced, and the polynomials are found for some classes of sparse graphs.
Furthermore, we give a characterization of the complement of graphs with girth at
least five.

2. Complements and Partitions

Throughout the paper complements and relative complements of graphs are inves-
tigated. We shall always distinguish the graph from its set of vertices. If no other
notation is introduced, the vertices of a graph G are denoted by V (G) and the edges
by E(G). Let us introduce the following notation.

Definition 2.1. Let G = (V (G), E(G)), and let H  K  G be subgraphs of G.
Then let H

G denote the complement of H relative to G, namely V (HG) = V (G)
and E(HG) = E(G) \ E(H). For a subset of vertices S, where V (H) ✓ S ✓ V (G),
let H

S denote the complement of H with respect to the complete graph on S. Thus
V (HS) = S and E(HS) =

�S
2

�
\E(H). For a subset of vertices S ✓ V (H) we denote

by H|S the subgraph of H induced on the vertex set S.

The following observation will be used often throughout the paper in inclusion-
exclusion principle arguments. The essence of this lemma is implicitly used several
times in [7].

Lemma 2.2. Let G = (V (G), E(G)) and H  G, and let P = {G1, . . . , Gk} be
a connected partition of G. The partition P does not induce a connected partition
on H

G if and only if there is a component Gi 2 P such that the complement
H|V (Gi)

V (Gi) is not connected.

Proof. By definition, an arbitary partition Q of V (G) induces a connected partition
on H

G if and only if for every component Qi 2 Q the complement H|Qi

Qi is
connected. If we assume that the partition Q is a connected partition, we obtain
the statement.

Definition 2.3. Let G = (V (G), E(G)), and let P be a partition of G, P =
{P1, P2, . . . Pk}, such that Pi ✓ V (G) and

S
Pi = V (G). The subsets Pi will be

called parts or classes of the partition P. A subset Pi is called an obstacle of
the graph G if it satisfies the conditions of Lemma 2.2, namely that G|Pi

Pi is not
connected. Denote the set of obstacles of G by A(G).

Observe that an obstacle contains at least two vertices. The obstacles on exactly
two vertices are the edges.
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A partition P of V (G) is a connected partition of G if and only if P does not
contain an obstacle. This obviously implies that

C(GKn) = B(n)� |{Q |Q 2 ⇧c(Kn) and Q \A(G) 6= ;}|.

Recall that B(n) stands for the nth Bell-number. Note that this is just a refor-
mulation of the definitions.

In order to obtain a useful way to find C(GKn), we take a closer look at the
partitions with obstacles.

Definition 2.4. Let ⇥(G) be the set of antichains of the obstacles of G:

⇥(G) = {K ✓ A(G) | for all K1,K2 2 K, if K1 6= K2 then K1 \K2 = ;}.

Definition 2.4 describes the subsets of the power set of the obstacles that can be
subsets of partitions.

Theorem 2.5. Let G  Kn. Then

C(GKn) =
X

K2⇥(G)

(�1)|K|B(n� | [K|).

Proof. By Lemma 2.2 we get that C(GKn) is equal to the number of P connected
partitions of Kn such that P \ A(G) = ;. The number of connected partitions
of Kn is equal to the nth Bell-number, C(Kn) = B(n). We have to subtract the
number of connected partitions that contain an obstacle as a part.

An element K 2 ⇥(G) can be extended to a connected partition of Kn by joining
a connected partition of V (Kn) \ [K. The spanned subgraph is always a complete
graph, hence K can be extended exactly on B(n � | [ K|) ways to a connected
partition of Kn.

The inclusion-exclusion principle leads to the statement.

For the complement of a subgraph H  G a similar, but more complicated
statement can be formulated.

Definition 2.6. Let G = (V (G), E(G)) and H  G. Let P = {G1, G2, . . . Gk} be
a connected partition of G. The subgraph Gi is called an obstacle of H relative to
G if H|V (Gi)

V (Gi) is not connected. Observe that G|V (Gi) is connected.
Let AG(H) denote the set of relative obstacles of H with respect to G. Let

⇥G(H) = {K ✓ AG(H) |8K1,K2 2 K,K1 6= K2 ) K1 \K2 = ;}.



INTEGERS: 16 (2016) 5

Theorem 2.7. Let H  G. Then

C(HG) =
X

K2⇥G(H)

(�1)|K|C(G� [K).

Proof. The proof is similar to the proof of Theorem 2.5. By Lemma 2.2, we have
to subtract the number of compostitions that contain an element from AG(H) as
a part. However, an element K 2 ⇥G(H) can be extended to a connected partition
of G by joining a connected partition of G \ [K.

The inclusion-exclusion principle leads to the statement.

Example 2.8. Let Q3 be the graph corresponding to the vertices and edges of the
3-dimensional cube. Then C(Q3) = 958.

Proof. Observe that Q3 = H
K4,4 , where H is a matching of K4,4; that is, H is

composed of four independent edges of K4,4. Now, AK4,4(H) is the set of all stars
in K4,4 that have at least one common edge with H and all K2,2 subgraphs of K4,4

which have exactly two common edges with H. By Theorem 2.7 we obtain

C(Q3) = C(K4,4)� 4C(K3,3)� 24C(K2,3)� 24C(K1,3)� 8C(K0,4)

+48C(K1,2) + 48C(K0,2) + 56C(K1,1) + 48C(K0,1)� 14C(K0,0).

The symbol K0,0 denotes the empty graph, and by definition, C(K0,0) = 1.
The values K4,4 = 2100, K3,3 = 128, K2,3 = 34, K1,3 = 8, K1,2 = 4 and K0,n = 1

can be calculated from the formulas in [1] or [3].

3. The Defect Polynomial of Graphs

In order to group the Bell-numbers in the expression in Theorem 2.5, let

cG
i =

X
K2⇥(G)
|[K|=i

(�1)|K|.

In this way, if |V (G)| = k we obtain

C(GKn) =
kX

i=0

cG
i B(n� i). (1)

The coe�cients cG
i depend only on ⇥(G); hence they do not depend on n, only on

G. It will be shown that there are unique real numbers (integers) cG
i such that this

expression holds for every n.



INTEGERS: 16 (2016) 6

Lemma 3.1. Let G = (V (G), E(G)) be a graph, |V (G)| = k. Let B(x) =
1P

n=0
B(n)xn

be the ordinary generator function of the Bell numbers, and a1, . . . , ak such that for
every n � k

C(GKn) =
kX

i=0

aiB(n� i) (2)

holds. Then ai = cG
i for every i = 1, 2, . . . , n. Moreover,

B(x)dG(x)� r(x) =
1X

n=k

C(GKn)xn (3)

for some polynomial r(x) of degree k � 1.

Proof. First observe that Formula (3) holds for every k-tuple of numbers satisfying
(2). We need only examine the coe�cient of xn in the product for n > k. Let

p(x) =
nP

i=1
aixi and q(x) =

kP
i=0

cG
i xi.

Now, by the assumption, there are polynomials r(x) and r0(x) such that

B(x)q(x)� r(x) =
1X

n=k

C(GKn)xn

and

B(x)p(x)� r0(x) =
1X

n=k

C(GKn)xn.

After subtraction, we get that B(x)(q(x)� p(x))� r(x) + r0(x) = 0, and therefore

B(x) =
r(x)� r0(x)
q(x)� p(x)

. (4)

In order to exclude 0 as a pole of the right-hand side, by multiplying by xn we
obtain

xnB(x) = xn r(x)� r0(x)
q(x)� p(x)

. (5)

For the coe�cients of B(x) we have

lim sup n
p

B(n) = lim sup n

s
1
e

X
k�0

kn

k!
� lim sup n

r
tn

t!
= t.

Therefore, lim sup n
p

B(n) = 1.
On the left-hand side of (5) we have a formal power-series with no radius of

convergence. On the right-hand side the corresponding expansion has a positive
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radius of convergence, unless its denominator is the zero polynomial. Therefore
p(x) = q(x) and, also r(x) = r0(x).

By Lemma 3.1 the polynomial q(x) is unique and although we substitute Bell
numbers for xi, by Equation (2) it shows some polynomial behavior.

Definition 3.2. The defect polynomial of G is

dG(x) =
kX

i=0

cG
i xi.

If there is no confusion, we write ci for cG
i .

Now, we investigate the properties of dG(x). It really shows some further natural
polynomial behaviour.

Lemma 3.3. Let G = G1 [G2 where G1 and G2 are two components of G. Then

dG(x) = dG1(x)dG2(x).

Proof. As there is no vertex of G1 connected to vertices of G2, a class of a partition
of G contains either vertices of G1 or vertices of G2, but not both.

The same holds for the obstacles of G: A(G) = A(G1) [ A(G2), and A(G1) \
A(G2) = ;; moreover, for any Ki 2 A(Gi) for i = 1, 2 we have K1 \K2 = ;. So

dG(x) =
X

K2⇥(G)

(�1)|K|x|[K|
(1)
=

X
K12⇥(G1),K22⇥(G2)

(�1)|K1[K2|x|([K1)[([K2)|

(2)
=

X
K12⇥(G1),K22⇥(G2)

(�1)|K1|+|K2|x|[K1|+|[K2|

=
X

K12⇥(G1)

(�1)|K1|x|[K1|
X

K22⇥(G2)

(�1)|K2|x|[K2|

= dG1(x)dG2(x).

Equality (1) holds, because the partitions of G split into two classes, a partition
of G1 and a partition of G2. Equality (2) is just using the fact that the parts of
partitions of G1 and G2 are disjoint, hence the sizes are the sum of the sizes of the
two parts.

Lemma 3.4. Let G be a graph, v 2 V (G). Then

dG(x) = dG�v(x)�
X

v2K2A(G)

x|K|dG�K(x).
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Proof. The first term calculates those partitions where v is a single vertex (that is,
{v} is a class of the partition). The sum handles the remaining ones.

Corollary 3.5. Let kD denote the graph with k independent edges. Then dkD(x) =
(1� x2)k.

Proof. Every connected component of kD is a K2, and therefore by Lemma 3.3,
dkD(x) = (dK2(x))k. As dK2(x) = 1� x2, we obtain the desired result.

Example 3.6. Let O denote the vertex-edge graph of the regular octahedron. Then
C(O) = 163. Indeed, the graph O can be obtained from a complete graph on six
vertices omitting three edges. As d3D(x) = (1� x2)3 = 1� 3x2 + 3x4 � x6 we have
that C(O) = B(6)� 3B(4) + 3B(2)� B(1) = 163.

Corollary 3.7. Let ak =
P
t=1

(�1)tS2(k, t), where S2(n, k) denotes the 2-associated

Stirling number of the second kind. Then

dKn(x) = 1 +
nX

k=1

✓
n

k

◆
akxk.

Moreover, let d(x, y) denote the exponentional generating function of the polynomi-
als dKn(x), d(x, y) =

P
n=0

dKn(x)yn

n! . Then

d(x, y) = e1+y+xy�exy

.

Proof. Observe that every K 2 ⇥(Kn) is a subpartition of V = V (Kn), where every
class contains at least two vertices. So we can count them in the following way:
for every 1  k  n we choose k elements from V , then partition it into exactly t
subsets, where every member contains at least two elements. So

dKn(x) = 1 +
nX

k=1

✓
n

k

◆X
t=1

(�1)tS2(k, t)xk = 1 +
nX

k=1

✓
n

k

◆
akxk.

Let F (x, y) =
P

n,k>0
S2(n, k)xn

n! y
k. It is known that

F (x, y) = ey(ex�1�x) � 1.

It follows that d(x, y) = (F (xy,�1) + 1)ey.

Corollary 3.8. For the defect polynomials of paths the following recurrence formula
holds: dPn(x) = dPn�1(x)� x2dPn�2(x)� x3dPn�3(x).
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Proof. Apply Lemma 3.4 with H = Pn and v the last vertex. Then by omitting v,
we obtain a path of length n� 1. If the vertex v is contained in an obstacle, then
v is either a single edge, or a path of length three. These give the last two terms of
the expression.

Corollary 3.9. Let T be a tree and L denote the set of its leaves. Let u be a vertex
of T such that |N(u)\L| � |N(u)|� 1, that is every neighbour of u is a leaf except
possibly one vertex. Let Lu = N(u)\L, l = |N(u)\L|, and let t denote the possible
non-leaf neighbour of u. Then

dT (x) = dT�Lu(x)� x((1 + x)l � 1)(dT�u�Lu(x) + xdT�u�Lu�t(x)).

We remark that sometimes the last term does not exist, as the vertex t does not
necessarily exist. Hence we define the defective polynomial of the empty graph to
be the zero polynomial.

Proof. First of all, observe that every obstacle of the tree is a star on at least three
vertices. Indeed, for any path of the tree that is longer than three its relative
complement is connected, and complements of stars contain two components, one
of them consisting of the single center of the star. Then, dividing the partitions
into three parts depending on whether or not they have parts from the star and
depending on if they contain t, we have the following:

dT (x) =
X

K2⇥(G)

(�1)|K|x|[K|

=
X

K2⇥(G)
L\([K)=;

(�1)|K|x|[K| +
X

K2⇥(G)
L\([K)6=;

t/2[K

(�1)|K|x|[K| +
X

K2⇥(G)
L\([K)6=;

t2[K

(�1)|K|x|[K|

= dT�L(x)�
X

;6=A✓L

x|A[{u}|dT�L�u(x)dL�A(x)�

�
X

;6=A✓L

x|A[{u,t}|dT�L�u�t(x)dL�A(x)

= dT�L(x)�
X

;6=A✓L

x|A[{u}|dT�A�u(x)�
X

;6=A✓L

x|A[{u,t}|dT�A�u�t(x)

= dT (x)

= dT�L(x)� x((1 + x)l � 1)dT�u�L(x)� x2((1 + x)l � 1)dT�u�L�t(x).

Corollary 3.10. Let K1,k be a star on k + 1 vertices. Then dK1,k(x) = (1 + x)�
x(1 + x)k.
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Proof. Use Corollary 3.9 for the case when u is the center of the star. Every subset
of the leaves is an empty graph, hence the number of its partitions is one, and the
corresponding polynomials are the constant one polynomials.

Example 3.11. Apply Corollary 3.10 for the graph Kn+1 and the star S with
center-vertex u 2 V (Kn+1) and all edges containing u. Then C(S) = B(n), and the
right-hand side gives B(n+1)�

P�n
k

�
B(n�k), giving back the well-known formula

B(n + 1) =
nX
0

✓
n

k

◆
B(n� k).

4. Obstacles in Graphs with Girth at Least 5

As we have seen earlier, in trees the only obstacles are the stars. A star in an
arbitary graph G consists of a center v 2 V (G) and a subset of vertices of its
neighbors, A ✓ N(v). The subgraph induced by the vertex set {v} [ A will be
connected in G. However, in its complement, v will stand as an isolated vertex. So
it means that the stars are always in A(G).

In the next lemma we will prove that if the girth of a graph G is at least five,
then these stars are the only obstacles.

Lemma 4.1. Let G be a graph with girth at least five. Then A(G) is exactly the
set of the stars of G.

Proof. By the definition of A(G) every star is part of it. Let K ✓ V (G) with
|V (K)| � 4, and suppose that H = G|K is not a star, and H is not connected.
Then there exist X,Y ⇢ V (H) such that |X|, |Y | � 2, X [ Y = V (H), X \ Y = ;,
and there is no edge of H between X and Y . This means that for every x 2 X and
y 2 Y the pair (x, y) is in E(H). Therefore, there exists a C4 in H. But this is a
contradiction, because 5 > g(H) = g(G|K) � g(G) � 5.

From now on, we can deal with graphs of girth at least five in the convenient
way described in Lemma 4.1. For example, we can calculate the connected partition
numbers of the Petersen graph and the graph of the dodecahedron, both fulfilling
this criterion.

We calculated the two polynomials by computer. Our algorithm was based on
the idea of Bodo Lass [6].

Let n = |V (G)| and consider the ring Z[x1, . . . , xn]/(x2
i = 0), where the variables

correspond to the vertices of G. At first we calculated the polynomial v(x), the
sum of the characteristic monomials of the obstacles in the ring. Then we calculated
e�v(x) =

P
k=0

(�v(x))k

k! and the coe�cients of this expansion gave us the coe�cients
of the defect polynomials. (Observe that any element in the ring without constant
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is a nilpotent element, so the sum contains only finitely many nonzero members,
while every obstacle contains at least two vertices.)

Corollary 4.2. Let P denote the Petersen graph and let n � 10. Then

C(PKn) = B(n)� 15B(n� 2)� 30B(n� 3) + 65B(n� 4) + 240B(n� 5)
+80B(n� 6)� 450B(n� 7)� 480B(n� 8) + 10B(n� 9) + 119B(n� 10).

Corollary 4.3. Let D denote the graph of the dodecahedron and let n � 20. Then

C(DKn) = B(n)� 30B(n� 2)� 60B(n� 3) + 355B(n� 4) + 1380B(n� 5)
�890B(n� 6)� 12000B(n� 7)� 13595B(n� 8) + 39520B(n� 9)
+109086B(n� 10) + 9900B(n� 11)� 271010B(n� 12)
�303900B(n� 13) + 143390B(n� 14) + 482616B(n� 15) + 226630B(n� 16)
�149080B(n� 17)� 165350B(n� 18)� 38780B(n� 19) + 1061B(n� 20).
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