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Abstract
We present generalizations of Ruehr’s identities with two additional parameters. We
prove the claimed results by two di↵erent proof methods, namely combinatorially
and mechanically. Further, we derive recurrence relations for some special cases by
using the Zeilberger algorithm.

1. Introduction and Results

Define the following four binomial sums

An =
nX

j=0
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3n� j

2n

◆
3j , Bn =

nX
j=0
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3n + 1
n� j

◆
2j ,
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2nX
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3n� j
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◆
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2nX
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3n + 1

n + j + 1

◆
(�4)j .

The study of two integral equations led Ruehr [3] to the identities for n � 0

An = Cn and Bn = Dn.

Recently Meehan and at all [4] gave a combinatorial proof for the identity An =
Bn, for n � 0. In particular, by using Zeilberger’s algorithm (for more details see
[6]) they showed that An, Bn, Cn and Dn satisfy the recursion formula, for n � 0

X0 = 1,Xn+1 =
27
4

Xn �
3

4 (n + 1)
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.
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Afterwards, Alzer and Prodinger [1] defined the following four polynomials to
obtain polynomial generalizations of Ruehr’s identities [3]:

An (x) =
nX
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2n

◆
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nX
j=0
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◆
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◆
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Note that An (3) = An, Bn (2) = Bn, Cn (�3) = Cn and Dn (�4) = Dn. Moreover,
they derived the following recursions for the above polynomials:

An+1 (x) =
x3

(x� 1)2
An (x) +

(4n + 2)x2 � (15n + 10)x + 9n + 6
2 (n + 1) (x� 1)2

✓
3n + 1

n

◆
,

Bn+1 (x) =
(x + 1)3

x2
Bn (x) +

(4n + 2)x2 � (7n + 6)x� 2n� 2
2 (n + 1)x2

✓
3n + 1

n

◆
,

Cn+1 (x) =
x3

(x� 1)2
Cn (x) +

(2n + 2)x2 + (3n + 2)x� 9n� 6
2 (n + 1) (x� 1)

✓
3n + 1

n

◆
,

Dn+1 (x) =
(x + 1)3

x2
Dn (x) +

(2n + 2)x2 + (7n + 6)x� 4n� 2
2 (n + 1)x

✓
3n + 1

n

◆
.

From the recursions, they obtained the identities

An (x + 1) = Bn (x) and Cn (x + 1) = Dn (x) .

In particular, from the recursion mentioned above, they also derived that An =
Bn = Cn = Dn. As mentioned above, the results of Alzer and Prodinger are
the polynomial generalizations of the results given in [4]. Note that the binomial
coe�cients of the sums considered in both works [1, 4] are the same.

In this paper, by adding two extra parameters to the binomial coe�cients in the
works [1, 4], we define new kinds of polynomials with two additional parameters m
and t:

An (m, t;x) =
nX

k=0

✓
mn + t� k

n� k

◆
xk, Bn (m, t;x) =

nX
k=0

✓
mn + t + 1

n� k

◆
xk,

Cn (m, t;x) =
(m�1)nX

k=0

✓
mn + t� k

mn� k � n

◆
xk, Dn (m, t;x) =

(m�1)nX
k=0

✓
mn + t + 1
mm� k � n

◆
xk.

Now we state our main results:

Theorem 1. For any integers n,m, t � 0 and any real number x,

An (m, t;x + 1) = Bn (m, t;x) .

Theorem 2. For any integers n,m, t � 0 and any real number x,

Cn (m, t;x + 1) = Dn (m, t;x) .
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2. Proofs

In this section, we give two di↵erent proof methods to show the claimed results.
The first one is a combinatorial proof and the later is a mechanical proof. In Section
3, we will give recursions for the special cases of the sums An (m, t;x), Bn (m, t;x),
Cn (m, t;x), Dn (m, t;x) by using the Zeilberger algorithm.

Firstly, we will give a combinatorial proof of Theorem 1, which is inspired by the
proof method given in [4]. Secondly, we will give a mechanical proof for Theorem 1.
In order to prove Theorem 2, firstly we give a new combinatorial proof and secondly
give a mechanical proof.

Assume that x is a positive integer such that x > 1. Let A1 and A2 be the sets of
the words over the alphabets {1, 2, . . . , x + 1} and {1, 2, . . . , x}, respectively. The
length of a word w is denoted by |w|. Let S be the set which consists of the pairs
of words (w1, w2) satisfying the following conditions:

(i) w1 2 A1 and w2 2 A2,

(ii) |w1| + |w2| = mn + t,

(iii) |w1| + (# of 1’s in w2) = n.

We count the number of elements of S in two di↵erent ways. Hence, we get two
di↵erent expressions which are equal.

First way: We start with counting elements of S by considering the length of the
word w1. Let |w1| = k, which implies 0  k  n by the condition (iii). So there are
(x + 1)k di↵erent ways to choose the word w1. From the condition (ii), the length
of w2 is equal mn + t� k, i.e. |w2| = mn + t� k. In addition, the number of 1’s in

w2 is n� k by the condition (iii). Thus we are given
✓

mn + t� k

n� k

◆
di↵erent places

for 1’s and mn� k + t� n + k = (m� 1)n + t places for other alphabets of the set
A2, by the condition (ii). There are (x� 1)(m�1)n+t di↵erent ways to choose these

alphabets. Finally, we count (x + 1)k
✓

mn + t� k

n� k

◆
(x� 1)(m�1)n+t di↵erent ways

to construct the words w1 and w2 for fixed k. Since 0  k  n, we get

#S =
nX

k=0

(x + 1)k
✓

mn + t� k

n� k

◆
(x� 1)(m�1)n+t . (2.1)

Second way: Now we consider the number of the alphabets of {2, 3, . . . , x + 1} in
the word w1. Let k be this number which implies 0  k  n and |w1| = j which

implies k  j  n by the condition (iii). So there are xk

✓
j

k

◆
di↵erent ways to choose

the word w1. From the condition (ii), |w2| = mn + t � j and from the condition
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(iii), the number of 1’s in w2 is equal to n� j. Also there are (m� 1)n + t places

for other alphabets of the set A2. Thus there are
✓

mn + t� j

n� j

◆
(x� 1)(m�1)n+t

di↵erent ways to construct the word w2. Consequently,

#S =
nX

k=0

nX
j=k

✓
j

k
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mn + t� j

n� j

◆
xk (x� 1)(m�1)n+t

= (x� 1)(m�1)n+t
nX

k=0

xk
nX

j=k
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j

k

◆✓
mn + t� j

n� j

◆
,

which, by the Vandermonde convolution [2], equals

(x� 1)(m�1)n+t
nX

k=0

✓
mn + t + 1

n� k

◆
xk. (2.2)

Finally, from the equations (2.1) and (2.2), Theorem 1 holds for any positive
integer x > 1 since (x� 1)(m�1)n+t is a constant factor. The case x = 1 can be
easily checked. Now consider the polynomial of degree n

f (x) =
nX

k=0

✓
mn + t� k

n� k

◆
(x + 1)k �

nX
k=0

✓
mn + t + 1

n� k

◆
xk,

which has infinitely many roots because of our combinatorial proof. Since it may
have at most n roots, the polynomial f (x) must be identically equal to 0. Conse-
quently, Theorem 1 holds for any real number x, which completes the proof.

Note that this polynomial argument may apply on m and t, as well, by using the

fact that the binomial coe�cient
✓

n

k

◆
can be considered as a kth-degree polynomial

in n.
Now we give an alternative proof which is an application of the Binomial Theorem

and Vandermonde’s convolution. So we write

nX
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◆
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as claimed.
For the combinatorial proof of Theorem 2, let us construct a set, similar to the

combinatorial proof of Theorem 1. For an integer x such that x > 1, let B1 and
B2 be the sets of the words over the alphabets {1, 2, . . . , x + 1} and {1, 2, . . . , x},
respectively. Then let S0 be the set which consists of the pairs of the words (w1, w2)
with the following conditions:

(i) w1 2 B1 and w2 2 B2,

(ii) |w1| + |w2| = mn + t,

(iii) |w1| + (# of x’s in w2) = (m� 1)n.

Again, we present two di↵erent ways to count the number of elements of the set
S0.

First way: Let |w1| = k. Then we have 0  k  (m� 1)n by the condi-
tion (iii). So there are (x + 1)k possibilities to choose the word w1. By the
condition (ii), |w2| = mn + t � k. Besides, the number of x’s in w2 is equal to
(m� 1)n � k by (iii) and there are n + t places for the other alphabets. Thus we

have
✓

mn + t� k

(m� 1)n� k

◆
(x� 1)n+t di↵erent ways to select the word w2. Finally, we

obtain (x + 1)k
✓

mn + t� k

(m� 1)n� k

◆
(x� 1)n+t ways to choose tuples (w1, w2) 2 S0 for

the fixed k such that 0  k  (m� 1)n. So

#S0 =
(m�1)nX

k=0

✓
mn + t� k

mn� n� k

◆
(x + 1)k (x� 1)n+t . (2.3)

Second way: In this case, let k be the number of the alphabets of {1, 2, . . . , x}
in the word w1 which implies 0  k  (m� 1)n and |w1| = j which implies

k  j  (m� 1)n by the condition (iii). So there are xk

✓
j

k

◆
possible ways to choose

w1. In addition, from (ii) |w2| = mn + t � j and from condition (iii), the number

of x’s in w2 equals to (m� 1)n � j. Thus there are
✓

mn + t + 1
(m� 1)n� j

◆
(x� 1)n+t

possibilities. Since 0  k  (m� 1)n and k  j  (m� 1)n, we have

#S0 =
(m�1)nX

k=0

(m�1)nX
j=k

✓
j

k

◆✓
mn + t + 1
mn� n� j

◆
xk (x� 1)n+t .

By Vandermonde’s convolution formula, we have that

#S0 = (x� 1)n+t
(m�1)nX

k=0

✓
mn + t + 1
mn� n� k

◆
xk. (2.4)
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From (2.3) and (2.4), the proof is completed for any integer x such that x >
1. Finally, by using a similar polynomial argument in the combinatorial proof of
Theorem 1, the proof of Theorem 2 is completed.

Similar to the proof of Theorem 1, as an alternative proof we have

(m�1)nX
k=0

✓
mn + t� k

mn� n� k

◆
(x + 1)k =

(m�1)nX
k=0

✓
mn + t� k

mn� n� k

◆ kX
j=0

✓
k

j

◆
xj

=
nX

j=0

xj
(m�1)nX

k=0

✓
mn + t� k

mn� n� k

◆✓
k

j

◆

=
(m�1)nX

j=0

✓
mn + c + 1
mn� n� j

◆
xj .

Note that when m = 3, t = 0 and x = 2 in Theorem 1, and, when m = 3, t = 0
and x = �4 in Theorem 2, we reobtain the results given in [4]. Also when m = 3
and t = 0 in both Theorems 1 and 2, we reobtain the results given in [1].

3. Recursions for Some Special Cases

In this section, we will give the recurrence relations for the sums An (m, t;x),
Bn (m, t;x), Cn (m, t;x) and Dn (m, t;x) for some special values of m and t by
using the Zeilberger algorithm with Mathematica implementation (for more details,
see [5]). Note that for the case m = 3 and t = 0, the corresponding recursions of
the four sums were given in [1].

Before giving further recurrence relations for various special cases, we note that
Zeilberger’s algorithm calculates recurrences for An(m, t;x), Bn(m, t;x), Cn(m, t;x)
and Dn (m, t;x) with respect to n only if one specializes m to specific integers.

For the case m = 2 and t = 0, note that An (2, 0;x) = Cn (2, 0;x) and Bn (2, 0;x) =
Dn (2, 0;x) . By the Zeilberger algorithm for An (2, 0;x) , we obtain

x2F (k, n) + (1� x)F (k, n + 1) = G (k + 1, n)�G (k, n) ,

where F (k, n) is the summand term and

G (k, n) =
(nx + x + k � 2n� 2)

n + 1
xk

✓
2n� k + 1
n� k + 1

◆
.

Summing both sides on k, we have

x2An (2, 0;x) + (1� x)An+1 (2, 0;x) = (x� 2)
✓

2n + 1
n + 1

◆
.
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Similarly, by the Zeilberger algorithm for Bn (2, 0;x) and after some arrangements,
we get the recurrence

(x + 1)2 Bn (2, 0;x)� xBn+1 (2, 0;x) = (x� 1)
✓

2n + 1
n

◆
.

It is easy to see that An (2, 0;x + 1) = Bn (2, 0;x) since A0(2, 0;x+1) = B0(2, 0;x) =
1.

Now we consider the case m = 4 and t = 0. We omit all details here. We give
just the recurrence relations generated by the algorithm:

x4An (4, 0;x)� (x� 1)3 An+1 (4, 0;x) =
1

3 (4n + 2) (4n + 3)

✓
4n + 3
n + 1

◆

⇥ 6(�4 + 11x� 9x2 + x3) + n(�80 + 220x� 182x2 + 27x3)
+ n2(�64 + 176x� 148x2 + 27x3),

(x + 1)4 Bn (4, 0;x)� x3Bn+1 (4, 0;x) =
1

3 (4n + 2) (4n + 3)

✓
4n + 3
n + 1

◆

⇥ 6(�1� 4x� 6x2 + x3) + n(�15� 63x� 101x2 + 27x3)
+ n2(�9� 39x� 67x2 + 27x3),

x4Cn (4, 0;x) + (1� x)Cn+1 (4, 0;x) =
1

3 (4n + 2) (4n + 3)

✓
4n + 3
n + 1

◆

⇥ 6(�4 + x + x2 + x3) + n(�80 + 20x + 18x2 + 15x3)
+ n2(�64 + 16x + 12x2 + 9x3)

and

(1 + x)4 Dn (4, 0;x)� xDn+1 (4, 0;x) =
1

3 (4n + 2) (4n + 3)

✓
4n + 3
n + 1

◆

⇥ 6(�1 + 6x + 4x2 + x3) + n(�27 + 101x + 63x2 + 15x3)
+ n2(�27 + 67x + 39x2 + 9x3).

From their recurrence relations, it is seen that An(4, 0;x + 1) = Bn (4, 0;x) and
Cn (4, 0;x + 1) = Dn (4, 0;x) . For general m, it is hard to determine recurrence
relations for these sums because their nonhomogeneous parts are very complicated.
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