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Abstract
Let A = (a0, . . . , a0| {z }

r copies

, a1, . . . , a1| {z }
r copies

, . . . , ak�1, . . . , ak�1| {z }
r copies

) be a finite sequence of integers,

where a0 < a1 < · · · < ak�1, k � 1 and r � 1. Given a subsequence, the sum of all
the terms of the subsequence is called the subsequence sum. The set of all nontrivial
subsequence sums of A is denoted by S(r,A), where A = {a0, a1, . . . , ak�1} is the
set of distinct terms of the sequence A, called the associated set of the sequence
A. For r = 1, this sumset is the usual sumset S(A) of nontrivial subet sums of A.
The direct problem for the sumset S(r,A) is to find a lower bound for |S(r,A)| in
terms of |A| and r. The inverse problem for S(r,A) is to determine the structure
of the finite set A of integers for which |S(r,A)| is minimal. In this paper, we give
new proofs of existing direct and inverse theorems for S(r,A) using the direct and
inverse theorems of Nathanson for S(A).

1. Introduction

Let A = (a0, . . . , a0| {z }
r copies

, a1, . . . , a1| {z }
r copies

, . . . , ak�1, . . . , ak�1| {z }
r copies

) be a finite sequence of integers,

where a0 < a1 < · · · < ak�1, k � 1 and r � 1. The set A = {a0, a1, . . . , ak�1} of all
distinct terms of the sequence A is called the associated set of the sequence A. Since
r is fixed, we shall always identify the sequence A by the associated set A. Given a
subsequence, the sum of all the terms of the subsequence is called the subsequence
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sum. The set of all nontrivial subsequence sums of A is denoted by S(r,A). Thus

S(r,A) :=

(
k�1X
i=0

riai : 0  ri  r for i = 0, 1, . . . , k � 1 and
k�1X
i=0

ri � 1

)
.

The direct problem for the sumset S(r,A) is to find a lower bound for |S(r,A)| in
terms of |A| and r. The inverse problem for S(r,A) is to determine the structure
of the finite set A of integers for which |S(r,A)| is minimal. The case r = 1
corresponds to the usual sumset S(A) of nontrivial subset sums. The direct and
inverse problems for the sumset S(r,A) have been studied by the authors (see [1])
using the notation S(r,A) instead of S(r,A). Those proofs are constructive. Here,
we give small and new proofs of these results using the direct and inverse theorems
for subset sums S(A) due to Nathanson [2]. Some more direct and inverse theorems
for the general sequence A may be found in [1].

In Section 2, we study the direct problem and in Section 3, we study the inverse
problem. We agree with the convention that

�a
b

�
= 0 if a and b are two positive

integers with a < b.

2. Direct Problem

The following theorems are the direct theorems.

Theorem 1. (See [1], Theorem 2.1.) Let k � 1 and r � 1. Let A be a set of k
positive (negative) integers. Then

|S(r,A)| � r

✓
k + 1

2

◆
. (1)

Let A be a set of k nonnegative (nonpositive) integers and 0 2 A. Then

|S(r,A)| � 1 + r

✓
k

2

◆
. (2)

The lower bounds in (1) and (2) are best possible.

Theorem 2. (See [1], Theorem 2.2.) Let k � 2 and r � 1. Let A be a set of k
integers. If 0 2 A, then

|S(r,A)| �
(

r(k2�1)
4 + 1 if k ⌘ 1 (mod 2),

rk2

4 + 1 if k ⌘ 0 (mod 2).
(3)

If 0 62 A, then

|S(r,A)| �
(

r(k+1
2 )2 + 1 if k ⌘ 1 (mod 2),

r (k+1)2�1
4 + 1 if k ⌘ 0 (mod 2).

(4)

The lower bounds in (3) and (4) are best possible.



INTEGERS: 16 (2016) 3

For the proofs of these theorems, we need the following well-known results.

Theorem A. (See [3], Theorem 1.4.) Let h � 2. Let A1,A2, . . . ,Ah be nonempty
finite sets of integers. Then

|A1 + A2 + · · · + Ah| � |A1| + |A2| + · · · + |Ah|� h + 1.

Theorem B. (See [2], Theorem 3.) Let k � 2. If A is a set of k positive (negative)
integers, then

|S(A)| �
✓

k + 1
2

◆
. (5)

If A is a set of k nonnegative (nonpositive) integers and 0 2 A, then

|S(A)| � 1 +
✓

k

2

◆
. (6)

The lower bounds in (5) and (6) are best possible.

Theorem C. (See [2], Theorem 4.) Let k � 2 and let A be a set of k integers. If
0 2 A, then

|S(A)| �
(

k2�1
4 + 1 if k ⌘ 1 (mod 2),

k2

4 + 1 if k ⌘ 0 (mod 2).
(7)

If 0 62 A, then

|S(A)| �
(

(k+1
2 )2 + 1 if k ⌘ 1 (mod 2),

(k+1)2�1
4 + 1 if k ⌘ 0 (mod 2).

(8)

The lower bounds in (7) and (8) are best possible.

We also require the following simple lemma.

Lemma 1. Let k � 1 and r � 1. If A is a set of k integers, then

|S(r,A)| � r|S(A)|� r + 1. (9)

If A is a set of k positive (negative) integers, then

|S(r,A)| � r|S(A)|. (10)

Proof. For r = 1, inequality (9) is obvious. Now assume that r � 2. If A is a set of
k integers, then clearly

S(r,A) ◆ rS(A),

and so by Theorem A, we have

|S(r,A)| � r|S(A)|� r + 1,
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which proves (9). Now, let A be a set of k positive integers (the proof is similar if
A is a set of negative integers). Clearly, inequality (10) is true for r = 1. Let the
inequality (10) be true for r � 1, where r � 2. Now

S(r,A) ◆ (S(r � 1,A) + S(A)) [ {a},

where a is the smallest element of A. Since a 62 S(r�1,A)+S(A) as 0 62 S(r�1,A),
we have

|S(r,A)| � |S(r � 1,A) + S(A)| + 1.

By Theorem A, we have

|S(r,A)| � |S(r � 1,A)| + |S(A)|� 1 + 1,

and so by induction hypothesis,

|S(r,A)| � (r � 1)|S(A)| + |S(A)| = r|S(A)|.

This completes the proof.

For integers a and b, let [a, b] = {n 2 Z : a  n  b}.

Proof of Theorem 1. If k = 1 and r � 1, then A = {a} for some integer a. If a 6= 0,
then |S(r,A)| = r = r

�1+1
2

�
. If a = 0, then |S(r,A)| = 1 = 1 + r

�1
2

�
. Therefore, the

theorem is true for k = 1 and r � 1. For k � 2 and r = 1, the result follows from
Theorem B. Hence we may assume that k � 2 and r � 2. First assume that A is a
set of k positive (negative) integers. By inequality (10) of Lemma 1, we have

|S(r,A)| � r|S(A)|,

and so by Theorem B,

|S(r,A)| � r

✓
k + 1

2

◆
.

Thus we have proved inequality (1). Now assume that A is a set of k nonnegative
(nonpositive) integers and 0 2 A. Then by inequality (9) of Lemma 1, we have

|S(r,A)| � r|S(A)|� r + 1,

and so by Theorem B,

|S(r,A)| � 1 + r

✓
k

2

◆
.

Thus we have proved inequality (2). Next we show that the lower bounds in (1)
and (2) are best possible. Let k � 2 and r � 1. Let A0 = [1, k]. Then the smallest
and the largest integers in S(r,A0) are 1 and r

�k+1
2

�
, respectively. Therefore,

|S(r,A0)|  r

✓
k + 1

2

◆
.
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This inequality together with inequality (1) implies

|S(r,A0)| = r

✓
k + 1

2

◆
.

Thus the lower bound in (1) is best possible. Similarly, by considering the set
A1 = [0, k � 1], where k � 2 and r � 1, it can be verified that the lower bound in
(2) is best possible. This completes the proof.

Proof of Theorem 2. For r = 1, the result follows from Theorem C. Let r � 2.
First assume that A is a set of k integers such that 0 2 A. Then by inequality (9)
of Lemma 1, we have

|S(r,A)| � r|S(A)|� r + 1,

and so by Theorem C, we have

|S(r,A)| �
(

r(k2�1)
4 + 1 if k ⌘ 1 (mod 2),

rk2

4 + 1 if k ⌘ 0 (mod 2).

Thus we have proved inequality (3). The proof is similar for the case 0 62 A. If k ⌘ 1
(mod 2), then by considering the sets A0 = [�k�1

2 , k�1
2 ] and A1 = [�k�1

2 , k+1
2 ]\{0},

it can be verified that the lower bounds in (3) and (4), respectively, are best possible.
If k ⌘ 0 (mod 2), then by considering the sets A2 = [�k

2 , k
2 �1] and A3 = [�k

2 , k
2 ]\

{0}, it can be verified that the lower bounds in (3) and (4), respectively, are best
possible. This completes the proof.

3. Inverse Problem

For a set A ✓ Z and for an integer c, let c ⇤A = {ca : a 2 A}. Following theorems
are the inverse theorems.

Theorem 3. (See [1], Theorem 2.3.) Let k � 3 and r � 1. If A is a set of k
positive integers such that

|S(r,A)| = r

✓
k + 1

2

◆
,

then A = d ⇤ [1, k] for some positive integer d.
If A is a set of k nonnegative integers such that 0 2 A and

|S(r,A)| = 1 + r

✓
k

2

◆
,

then A = d ⇤ [0, k � 1] for some positive integer d.
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Theorem 4. (See [1], Theorem 2.4.) Let k � 3 and r � 1. Let A be a set of k
integers. If 0 2 A and

|S(r,A)| =

(
r(k2�1)

4 + 1 if k ⌘ 1 (mod 2),
rk2

4 + 1 if k ⌘ 0 (mod 2),

then there is a nonzero integer d such that

A =

(
d ⇤

⇥
�k�1

2 , k�1
2

⇤
if k ⌘ 1 (mod 2),

d ⇤
⇥
�k

2 , k
2 � 1

⇤
if k ⌘ 0 (mod 2).

If 0 62 A and

|S(r,A)| =

(
r(k+1

2 )2 + 1 if k ⌘ 1 (mod 2),
r (k+1)2�1

4 + 1 if k ⌘ 0 (mod 2),

then there is a nonzero integer d such that

A =

(
d ⇤

⇥
�k�1

2 , k+1
2

⇤
\ {0} if k ⌘ 1 (mod 2),

d ⇤
⇥
�k

2 , k
2

⇤
\ {0} if k ⌘ 0 (mod 2).

For the proof of these theorems we need the following well-known results.

Theorem D. (See [2], Theorem 5.) Let k � 3. If A is a set of k positive integers
such that

|S(A)| =
✓

k + 1
2

◆
,

then
A = d ⇤ [1, k]

for some positive integer d. If A is a set of k nonnegative integers such that 0 2 A
and

|S(A)| = 1 +
✓

k

2

◆
,

then
A = d ⇤ [0, k � 1]

for some positive integer d.

Theorem E. (See [2], Theorem 6.) Let k � 3 and let A be a set of k integers. If
0 2 A and

|S(A)| =

(
k2�1

4 + 1 if k ⌘ 1 (mod 2),
k2

4 + 1 if k ⌘ 0 (mod 2),
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then there is a nonzero integer d such that

A =

(
d ⇤

⇥
�k�1

2 , k�1
2

⇤
if k ⌘ 1 (mod 2),

d ⇤
⇥
�k

2 , k
2 � 1

⇤
if k ⌘ 0 (mod 2).

If 0 62 A and

|S(A)| =

(
(k+1

2 )2 + 1 if k ⌘ 1 (mod 2),
(k+1)2�1

4 + 1 if k ⌘ 0 (mod 2),

then there is a nonzero integer d such that

A =

(
d ⇤

⇥
�k�1

2 , k+1
2

⇤
\ {0} if k ⌘ 1 (mod 2),

d ⇤
⇥
�k

2 , k
2

⇤
\ {0} if k ⌘ 0 (mod 2).

Proof of Theorem 3. For r = 1, the result follows from Theorem D. Let r � 2.

Case 1. A is a set of k positive integers such that |S(r,A)| = r
�k+1

2

�
.

By Lemma 1, we have
r|S(A)|  |S(r,A)|,

and so by Theorem B, we have

r

✓
k + 1

2

◆
 r|S(A)|  |S(r,A)| = r

✓
k + 1

2

◆
.

Therefore,

r|S(A)| = r

✓
k + 1

2

◆
,

and so
|S(A)| =

✓
k + 1

2

◆
.

Hence it follows by Theorem D that A = d ⇤ [1, k] for some positive integer d.

Case 2. A is a set of k nonegative integers such that 0 2 A and |S(r,A)| = 1+r
�k
2

�
.

By Lemma 1, we have
r|S(A)|� r + 1  |S(r,A)|,

and so by Theorem B, we have

r

✓
1 +

✓
k

2

◆◆
� r + 1  r|S(A)|� r + 1  |S(r,A)| = 1 + r

✓
k

2

◆
.

Therefore,

r|S(A)|� r + 1 = 1 + r

✓
k

2

◆
,
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and so
|S(A)| = 1 +

✓
k

2

◆
.

Hence it follows by Theorem D that A = d ⇤ [0, k � 1] for some positive integer d.
This completes the proof.

Proof of Theorem 4. The proof follows by similar arguments as in the above proof
using Lemma 1 and Theorem E.
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