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Abstract
Let f : GF (p)n → GF (p). When p = 2, Bernasconi and Codenotti discovered
a correspondence between certain properties of f (e.g., if it is bent) and proper-
ties of its associated Cayley graph. Analogously, but much earlier, Dillon showed
that f is bent if and only if the “level curves” of f have certain combinatorial
properties (again, only when p = 2). We investigate an analogous theory when
p > 2. We formulate some problems concerning natural generalizations of the
Bernasconi correspondence and Dillon correspondence. We give a partial classifi-
cation, in a combinatorial way, of even bent functions f : GF (p)n → GF (p) with
f(0) = 0 for (p, n) = (3, 2), (3, 3), and (5, 2), where “even” means f(x) = f(−x).
We will show that for any prime p > 2, there are (p+1)!/2 amorphic bent functions
f : GF (p)2 → GF (p) of signature (p − 1, p − 1, . . . , p − 1) with algebraic normal
form that is homogeneous of degree p− 1. They are all weakly regular. (Briefly, an
amorphic bent function is one whose edge-weighted Cayley graph corresponds to an
amorphic association scheme.) Our main conjecture is Conjecture 2, but a number
of other open questions are scattered throughout the paper.
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1. Introduction

Roughly speaking, in this paper we try to investigate which graph-theoretical prop-
erties of the Cayley graph of a p-ary function can be characterized in terms of
function-theoretic properties of the function itself.

In Section 2, we present the combinatorial background needed: difference sets,
partial difference sets, weighted partial difference sets, association schemes, adja-
cency rings and Schur rings. We also discuss how these notions relate in our case.
Moreover, we recall the Dillon correspondence and give several examples.

In Section 3, we present the graph-theoretical background needed: Cayley graphs
associated with Boolean functions, edge-weighted Cayley graphs associated with p-
ary functions, amorphic Cayley graphs, strongly regular graphs, and edge-weighted
strongly regular graphs. In brief, an amorphic edge-weighted graph is a graph
whose corresponding association scheme is amorphic (i.e., one for which all fusions
of it are also association schemes). Results on the graph spectrum of edge-weighted
Cayley graphs are recalled. We also recall the Bernasconi correspondence in that
section and formulate several analogues in the p-ary case. More precisely, we try
to investigate which graph-theoretical properties of the Cayley graph Γf of a p-ary
function f : GF (p)n → GF (p) can be characterized in terms of function-theoretic
properties of f , and which function-theoretic properties of f correspond to com-
binatorial properties of the set of “level curves” f−1(a) (where a ∈ GF (p)). Our
main conjecture, Conjecture 2, can be found there.

In Section 4, we give a general formula for algebraic normal forms. For any prime
p > 2, we show there are (p+1)!/2 amorphic bent functions f : GF (p)2 → GF (p) of
signature (p−1, p−1, . . . , p−1) with algebraic normal form that is homogeneous of
degree p−1. Additionally, we summarize Sagemath computations of a large number
of examples (for p = 3, 5), which support Conjecture 2 of Section 3.

Finally, in Section 5, we present some suggestions for further study.

More computational details and more (standard) proofs can be found in the
expanded paper [10].

Fix n ≥ 1 and let V = GF (p)n, where p is a prime. Let f : V → GF (p) be given.
Our main interest is in how to classify properties of bent functions, an important
class of functions used in encryption algorithms (e.g., see [16, 21, 28, 36]). For the
case when p = 2, i.e., f is a binary function, there is a one-to-one correspondence
between f being bent and f−1(1) giving rise to a difference set [15] (see Theorem
11 below). In addition, when p = 2, f is bent if and only if the Cayley graph of
f is strongly regular [1, 2, 3] (see Theorem 25 below). We investigate how these
theorems generalize when p > 2. We require the following definitions.

Definition 1. TheWalsh(-Hadamard) transform of a function f : GF (p)n → GF (p)
is a complex-valued function on V that can be defined as
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Wf (u) =
∑

x∈V

ζf(x)−⟨u,x⟩, (1)

where ζ = e2πi/p and ⟨ , ⟩ is the usual inner product.

We call f bent if
|Wf (u)| = pn/2, (2)

for all u ∈ V . The p-ary bent functions are “maximally non-linear” in some sense,
and can be used to generate pseudo-random sequences rather easily.

Next, we recall some properties of the Walsh transform.

1. The Walsh coefficients satisfy Parseval’s equation
∑

u∈V

|Wf (u)|2 = p2n.

2. If σ denotes the map σk : Q(ζ) → Q(ζ) defined by sending ζ to ζk, then
Wf (u)σ = Wkf (ku), where Wf (u)σ is the image of Wf (u) ∈ Q(ζ) under σ.

If f : V → GF (p), then we let fC : V → C be the function whose values are
those of f but regarded as integers (i.e., we select the congruence class residue
representative in the interval {0, 1, . . . , p− 1}). We abuse notation and often write
f in place of fC.

Definition 2. When g is a complex-valued function on V , we define the Fourier
transform g∧ : V → Q(ζ) of g as

g∧(y) =
∑

x∈V

g(x)ζ−⟨x,y⟩. (3)

If f : V → GF (p), we define the Fourier transform of f to be the Fourier transform
of fC.

Note that
f∧(0) =

∑

x∈V

fC(x)

and
Wf (y) = (ζf )∧(y).

We say f is even if f(x) = f(−x) for all x ∈ GF (p)n. It is not hard to see that
if f is even then the Fourier transform of f is real-valued. (However, this is not
necessarily true of the Walsh transform.)

Example 3. It turns out that there are 34 = 81 even functions f : GF (3)2 → GF (3)
such that f(0) = 0, of which exactly 18 are bent. Section 4.3 discusses this in more
detail.
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Example 4. It turns out that there are a total of 313 = 1594323 even functions
f : GF (3)3 → GF (3) such that f(0) = 0, of which exactly 2340 are bent. Section
4.4 discusses this in more detail.

Example 5. It turns out that there are a total of 512 = 244140625 even functions
f : GF (5)2 → GF (5) such that f(0) = 0, of which exactly 1420 are bent. Section
4.5 discusses this in more detail.

In the Boolean case, there is a nice simple relationship between the Fourier
transform and the Walsh-Hadamard transform. In Equation (26) below, we shall
try to connect these two transforms, (1) and (3), in the GF (p) case, as well. In this
context, it is worth noting that it is possible (see Proposition 7) to characterize a
bent function in terms of the Fourier transform of its derivative.

Definition 6. Suppose f : GF (p)n → GF (p) is bent. We say f is regular if and
only if Wf (u)/pn/2 is a pth root of unity for all u ∈ V = GF (p)n.

If f is regular, then there is a function f∗ : GF (p)n → GF (p), called the dual (or
regular dual) of f , such that Wf (u) = ζf

∗(u)pn/2, for all u ∈ V . We call f weakly
regular1, if there is a function f∗ : GF (p)n → GF (p), called the dual (or µ-regular
dual) of f , such that Wf (u) = µζf

∗(u)pn/2, for some constant µ ∈ C with absolute
value 1. These duals f∗ are described in more detail in Proposition 1 below.

Let V = GF (p)n and suppose f : V → GF (p) is bent. In this case, for each
u ∈ V , the quotient Wf (u)/pn/2 is, by definition, an element of the cyclotomic field
Q(ζ) having absolute value 1.

Proposition 1. (Kumar, Scholtz, Welch) If f is bent, then there are functions
f∗ : GF (p)n → Z and f∗ : GF (p)n → GF (p) such that

Wf (u)p
−n/2 =

{
(−1)f∗(u)ζf

∗(u), if n is even, or n is odd and p ≡ 1 mod 4;
if∗(u)ζf

∗(u), if n is odd and p ≡ 3 mod 4.

The above result is known (thanks to Kumar, Scholtz, and Welch [27]), but
the form above is due to Helleseth and Kholosha [24] (although we made a minor
correction to their statement). Also, note that [27, Property 8] established a more
general fact than the statement above.

Corollary 1. If f is bent and Wf (0) is rational (i.e., belongs to Q), then n must
be even.

The condition Wf (0) ∈ Q arises in Lemma 10 below, so this corollary will be
useful later.

Below we give a necessary and sufficient condition to determine if f is regular.
The next lemmas are well-known but included for the reader’s convenience.

1If µ is fixed and we want to be more precise, we call this µ-regular.
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Lemma 1. If f : V → GF (p) is bent, then the following conditions are equivalent:

(a) The function f is weakly regular.

(b) The quotient Wf (u)/Wf (0) is a p-th root of unity for all u ∈ V .

Lemma 2. If f : V → GF (p) is bent and weakly regular, then the following condi-
tions are equivalent:

(a) The function f is regular.

(b) The quotient Wf (0)/pn/2 is a p-th root of unity.

Lemma 3. Suppose that f is bent and weakly regular, with µ-regular dual f∗. Then
f∗ is bent and weakly regular, with µ−1-regular dual f∗∗ given by f∗∗(x) = f(−x).
If f is also even, then f∗ is even and f∗∗ = f .

2. Combinatorial Background

In this section, we introduce the notion of a partial difference set and its weighted
analogue, and the related notion of an association scheme and algebraic variants:
the Schur ring and the Bose-Mesner algebra. Amorphic association schemes are
defined. Also, we recall the relationship between partial difference sets and bent
functions in the Boolean case.

Dillon’s thesis [15] was one of the first publications to discuss the relationship be-
tween bent functions and combinatorial structures, such as difference sets. His work
concentrated on the Boolean case. In Dillon’s work, it was proven that the “level
curve” f−1(1) gives rise to a difference set in GF (2)n. A more precise statement is
given below (Theorem 11).

In this paper, we consider p-ary functions f : GF (p)n → GF (p) (where p is a
prime), and try to obtain analogues of Dillon’s Theorem for the “level curves”
f−1(a) in GF (p)n (where a ∈ GF (p), a ̸= 0).

2.1. Partial Difference Sets

We recall some well-known definitions and some generalizations.

Definition 7. Let G be a finite abelian multiplicative group of order v, and let D
be a subset of G of order k. The set D is a (v, k,λ)-difference set (DS) if the list
of differences d1d

−1
2 , where d1, d2 ∈ D, represents every non-identity element in G

exactly λ times. The set D is a (v, k,λ, µ)-partial difference set (PDS) if the list
of differences d1d

−1
2 , where d1, d2 ∈ D, represents every non-identity element in D

exactly λ times and every non-identity element in G \D exactly µ times.
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We sometimes refer to the pair (G,D) as a DS or PDS.

Definition 8. A PDS (G,D) is of Latin square type (respectively, negative Latin
square type) if there exist N > 0 and R > 0 (respectively, N < 0 and R < 0) such
that

(v, k,λ, µ) = (N2, R(N − 1), N +R2 − 3R,R2 −R).

Example 9. Consider the finite field GF (9), represented as

GF (3)[x]/(x2 + 1) = {0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2}.

The set of non-zero quadratic residues is given by D = {1, 2, x, 2x}. One can show
that D is a PDS with parameters v = 9, k = 4, λ = 1, µ = 2. This example is of
Latin square type (N = 3 and R = 2) and of negative Latin square type (N = −3
and R = −1).

We shall return to this example with more details below (see Example 14).

Definition 10. A Hadamard difference set is one whose parameters are of the form
(4m2, 2m2 −m,m2 −m), for some m ∈ Z. It is, in addition, elementary if G is an
elementary abelian 2-group (i.e., isomorphic to (Z/2Z)k for some k).

The following result is well-known.

Theorem 11. (Dillon Correspondence. [15, Theorem 6.2.10, p. 78]) The function
f : GF (2)n → GF (2) is bent if and only if f−1(1) is an elementary Hadamard
difference set of GF (2)n.

Two (naive) analogues of this are formalized below (see Analogue 45 and Ana-
logue 46).

Let D−1 = {d−1 | d ∈ D}.

Lemma 4. Let G be a finite abelian multiplicative group of order v, and let D be
a subset of G of order k such that (G,D) is a partial difference set.

(a) If λ = µ, then (G,D) is also a (v, k,λ)-difference set.

(b) If λ ̸= µ, then D = D−1.

Proof. Part (a) follows directly from the definitions. Part (b) is Proposition 1 in
Polhill’s article [29]. ✷

Definition 12. Let G be a finite abelian multiplicative group of order v, and let
D be a subset of G such that 1 /∈ D. Let

D = D1 ∪ · · · ∪Dr, (4)

be a decomposition of D into a union of disjoint subsets, let ki = |Di|, and let
k = (k1, . . . , kr). We say D is a weighted (v, k,λ, µ)-PDS if there exist constants
λ ∈ Z3r and µ ∈ Z2r such that the following conditions hold:
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(a) The list of “differences”

DiD
−1
j = {d1d−1

2 | d1 ∈ Di, d2 ∈ Dj}

represents every non-identity element of Dℓ exactly λi,j,ℓ times and every
non-identity element of G \D exactly µi,j times (where 1 ≤ i, j, ℓ ≤ r).

(b) For each i there is a j such that D−1
i = Dj (and if D−1

i = Di for all i, then
we say the weighted PDS is symmetric).

We sometimes refer to the pair (G,D) or the tuple (G,D1, D2, . . . , Dr) as a
weighted PDS. In addition, we sometimes define D0 = {1} andDr+1 = G\(D∪D0).

Remark 13. If D = D1 ∪ · · · ∪Dr is a symmetric weighted PDS, then µi,j = µj,i

and λi,j,ℓ = λj,i,ℓ.

How does the above notion of a weighted PDS relate to the usual notion of a
PDS?

Lemma 5. Let G be a finite abelian multiplicative group, and let D be a subset of
G such that 1 /∈ D. Let (G,D), where D = D1 ∪ · · · ∪Dr (disjoint union) is as in
Equation (4), be a symmetric weighted PDS with parameters (v, (ki), (λi,j,ℓ), (µi,j)).

(a) If ∑

i,j

λi,j,ℓ

does not depend on ℓ, for 1 ≤ ℓ ≤ r, then D is also an unweighted PDS with
parameters (v, k,λ, µ), where

k =
∑

i

ki, λ =
∑

i,j

λi,j,ℓ, µ =
∑

i,j

µi,j .

(b) If
λi,i,ℓ = µi,i

for all ℓ ̸= i, then Di is an unweighted PDS with parameters (v, k,λ, µ), where

k = ki, λ = λi,i,i, µ = µi,i.

The proof follows directly from the definitions.

In Proposition 13 we give an example in which level curves D1 = f−1(1) and
D2 = f−1(2) of a bent function f : GF (3)3 → GF (3) give a weighted PDS but
D = D1 ∪D2 is not an unweighted PDS (see Example 60 and Theorem 22).
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Example 14. Consider the finite field of Example 9,

GF (9) = GF (3)[x]/(x2 + 1).

Recall that the set of non-zero quadratic residues is given by D = {1, 2, x, 2x} and
that D is a PDS. Note that, by our convention of writing multiplicative operations
additively,

D−1 = {1−1, 2−1, x−1, (2x)−1} = {−1,−2,−x,−2x} = {2, 1, 2x, x} = D.

LetD1 = {1, 2} andD2 = {x, 2x}. These define a symmetric weighted PDS. Indeed,
in the additive notation,

D1D
−1
1 = {d1 − d2 | d1 ∈ D1, d2 ∈ D1} = {0, 1, 2},

D1D
−1
2 = {d1 − d2 | d1 ∈ D1, d2 ∈ D2} = {x+ 1, x+ 2, 2x+ 1, 2x+ 2} = D2D

−1
1 ,

D2D
−1
2 = {d1 − d2 | d1 ∈ D2, d2 ∈ D2} = {0, x, 2x}.

Therefore, the symmetric weighted PDS has the following parameters:

k1 = 2, k2 = 2,

λ1,1,1 = 1, λ1,1,2 = 0, λ1,2,1 = 0, λ1,2,2 = 0,

λ2,1,1 = 0, λ2,1,2 = 0, λ2,2,1 = 0, λ2,2,2 = 1,

µ1,1 = 0, µ1,2 = 1, µ2,1 = 1, µ2,2 = 0.

2.2. Association Schemes

The following definition is standard, but we give [30] as a reference.

Definition 15. Let S be a finite set, and let R0, R1, . . . , Rs denote binary relations
on S (subsets of S × S). The dual of a relation R is the set

R∗ = {(x, y) ∈ S × S | (y, x) ∈ R}.

Assume R0 = ∆S , where ∆S = {(x, x) ∈ S×S | x ∈ S}. We say (S,R0, R1, . . . , Rs)
is an s-class association scheme on S if the following conditions hold:

(a) We have a disjoint union, i.e.,

S × S = R0 ∪R1 ∪ · · · ∪Rs, with Ri ∩Rj = ∅ for all i ̸= j. (5)

(b) For each i there is a j such that R∗
i = Rj (and if R∗

i = Ri for all i, then we
say the association scheme is symmetric).
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(c) For each i, j, k and for all (x, y) ∈ Rk, define

pkij(x, y) = |{z ∈ S | (x, z) ∈ Ri, (z, y) ∈ Rj}|.

For each i, j, k, the integer pkij(x, y) is a constant (independent of x and y),
denoted pkij .

These constants pkij are called the intersection numbers or parameters or structure
constants of the association scheme.

Next, we recall (see Herman [25]) the matrix-theoretic version of this definition.
Let Mm×n(Z) denote the set of m× n matrices with integer entries.

Definition 16. Let (S,R0, . . . , Rs) denote a tuple consisting of a finite abelian
multiplicative group S of order N , with relations Ri for which we have a disjoint
union as in Equation (5). Let Ai ∈ MN×N(Z) denote the adjacency matrix of Ri,
for i = 0, 1, . . . , s. We say that the subring of Z[MN×N(Z)] generated by the the set
of matrices {Ai}i=0,1,...,s is an adjacency ring (also called the Bose-Mesner algebra)
provided the set of adjacency matrices satisfies the following conditions:

(a) For each integer i ∈ {0, 1, 2, . . . , s}, Ai is a (0, 1)-matrix.

(b) The identity
∑s

i=0 Ai = J (where J is the all 1’s matrix) holds.

(c) For each integer i ∈ {0, 1, 2, . . . , s}, tAi = Aj holds true, for some integer
j ∈ {0, 1, 2, . . . , s} (where tAi denotes the transpose of the matrix Ai).

(d) There is a subset K ⊂ {0, 1, 2, . . . , s} such that
∑

k∈K Ak = I.

(e) There is a set of non-negative integers {pkij | i, j, k ∈ {0, 1, 2, . . . , s}} (structure
constants) such that

AiAj =
s∑

k=0

pkijAk, (6)

for all i, j ∈ {0, 1, 2, . . . , s}.

In our examples, the subset K will simply be K = {0}.
We will see (see Corollary 2) that the weight-specific adjacency matrices of an

edge-weighted Cayley graph corresponding to a symmetric weighted PDS form a
Bose-Mesner algebra.

Let us consider the “Schur ring,” which naturally gives rise to an association
scheme.

For the following definition, we identify any subset S of a finite group G with
the formal sum of its elements in the group ring

C[G] = {
∑

g∈G

cg · g | cg ∈ C},
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where addition is “componentwise” and multiplication is that induced by the mul-
tiplicative2 structure of G. Whenever convenient, we identify a subset S ⊂ G with
the corresponding formal sum in C[G]:

S /→
∑

g∈S

g ∈ C[G]. (7)

For instance, from Example 14, we compute, using the “multiplicative convention,”
that

D−1 = {1−1, 2−1, x−1, (2x)−1}
/→ 1−1 + 2−1 + x−1 + (2x)−1

= 2 + 1 + 2x+ x

/→ {1, 2, x, 2x} = D.

Definition 17. Let G be a finite abelian group, and let C0, C1, . . . , Cs denote finite
subsets of G. Assume that C0 = {1} is the singleton containing the identity. The
subalgebra A of C[G] generated by C0, C1, . . . , Cs is called a Schur ring over G if
the following conditions hold:

(a) We have a disjoint union, i.e.,

G = C0 ∪ C1 ∪ · · · ∪ Cs, with Ci ∩ Cj = ∅ for all i ̸= j.

(b) For each i there is a j such that C−1
i = Cj .

(c) For all i, j, we have

Ci · Cj =
s∑

k=0

ρkijCk,

for some nonnegative integers ρkij (the structure constants of the Schur ring).

We will sometimes denote the Schur ring A as (G,C0, . . . , Cs) for convenience.

If C−1
i = Ci for all i, then we say the Schur ring is symmetric.

Note that, in the cases we are dealing with, the Schur ring is commutative, so
ρkij = ρkji, for all i, j, k. Moreover, observe that if (G,C0, . . . , Cs) is a Schur ring,
then the binary relations

Ri = {(g, h) ∈ G×G | gh−1 ∈ Ci},

for 0 ≤ i, j ≤ s, give rise to an s-class association scheme.

2Note: even if G is an additive group, for the purpose of computations in this group ring, we
re-express it multiplicatively to avoid confusing it with the additive structure of C.
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Remark 18. Suppose that G is a finite abelian multiplicative group of order v and
D is a subset of order k such that 1 /∈ D. Then (G,D) is a (v, k,λ, µ)-PDS if and
only if the following identity holds in C[G] (see, e.g., [29]):

D ·D−1 = (k − µ) · 1 + (λ− µ) ·D + µ ·G, (8)

where we have used correspondence (7) to identify D and D−1 as elements of C[G].

If (G,D) is a (v, k,λ, µ)-PDS with 1 /∈ D and D−1 = D, and such that D′ =
G \ (D ∪ {1}) is non-empty, we obtain from Equation (8) the well-known identity

k2 − k = kλ+ (v − k − 1)µ. (9)

The following result is well-known. A proof is given for the convenience of the
reader.

Lemma 6. Suppose that G is a finite abelian multiplicative group of order v and
D is a subset of order k such that 1 /∈ D and D−1 = D. Suppose also that D′ =
G \ (D ∪ {1}) is not empty. Let

R0 = ∆G, where ∆G = {(g, g)| g ∈ G},

R1 = {(g, h) ∈ G×G| gh−1 ∈ D}, and

R2 = {(g, h) ∈ G×G| gh−1 /∈ D, g ̸= h}.

Then (G,D) is a PDS if and only if (G,R0, R1, R2) is a symmetric 2-class associ-
ation scheme.

Proof. Suppose that (G,R0, R1, R2) is a symmetric association scheme with inter-
section numbers pℓij . Regarding D and D−1 as elements of C[G], we have

D ·D−1 = D ·D = p011 · 1 + p111 ·D + p211 ·D′.

It follows that (G,D) is a (v, k,λ, µ)-PDS with k = p011, λ = p111, and µ = p211.

Conversely, suppose that (G,D) is a (v, k,λ, µ)-PDS. We first construct a Schur
ring from the PDS.

Note that, by Equation (8) and the fact that D = D−1, we have

D ·D = (k − µ) · 1 + (λ− µ) ·D + µ ·G.

By expanding out expressions for D ·G in C[G], we obtain

D ·D′ = (−k + µ) · 1 + (−1− λ+ µ) ·D + (k − µ) ·G,

or equivalently,
D ·D′ = (k − 1− λ) ·D + (k − µ)D′.
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Similarly, by expanding out expressions for G ·D′ in C[G], we obtain

D′ ·D′ = (k − λ− 1) · 1 + (µ− λ− 2) ·D′ + (v − 2k + λ) ·G.

From this identity and Remark 18, we see that D′ is (v, k′,λ′, µ′)-PDS, where

k′ = v − k − 1,
λ′ = v − 2k − 2 + µ, and
µ′ = v − 2k + λ.

(10)

Furthermore, (D′)−1 = D′ and 1 /∈ D′.

It follows that the PDS (G,D) naturally yields an associated Schur ring, gen-
erated by D, D′, and D0 = {1} in C[G], and a corresponding 2-class association
scheme with intersection numbers given by the following tables:

p0ij 0 1 2
0 1 0 0
1 0 k 0
2 0 0 k′

p1ij 0 1 2
0 0 1 0
1 1 λ k − 1− λ
2 0 k − 1− λ µ′

p2ij 0 1 2
0 0 0 1
1 0 µ k − µ
2 1 k − µ λ′

✷

There is a weighted version of this result, i.e., a weighted symmetric PDS (G,D)
with D = D1 ∪ · · · ∪ Dr (disjoint union) and 1 /∈ D determines an (r + 1)-class
association scheme.

Lemma 7. Let G be a finite abelian multiplicative group, and let D be a subset of
G such that 1 /∈ D. Suppose that D is a disjoint union D = D1 ∪ · · · ∪ Dr, with
D−1

i = Di for all i. Let D0 = {1} and let Dr+1 = G\ (D∪{1}). Suppose that Dr+1

is not empty. For each i with 0 ≤ i ≤ r + 1, let

Ri = {(g, h) ∈ G×G| gh−1 ∈ Di}.

Then (G,D) is a symmetric weighted PDS if and only if (G,R0, R1, . . . , Rr+1) is a
symmetric association scheme of class s = r + 1.

Proof. Suppose that (G,D) is a symmetric weighted PDS. To show that it deter-
mines a Schur ring, we must show that structure constants exist, i.e., we must show
that there are nonnegative integers ρℓij such that

Di ·Dj =
r+1∑

ℓ=0

ρℓijDℓ, (11)

for 0 ≤ i, j ≤ r + 1. Symmetry of the Schur ring follows from symmetry of the
weighted PDS.
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Let ki = |Di| for 0 ≤ i ≤ r + 1. Note that (G,D) is a symmetric weighted PDS
if and only if D−1

i = Di for 1 ≤ i ≤ r and the following identity holds in C[G], for
1 ≤ i, j ≤ r:

Di ·Dj = δijki ·D0 +
r∑

ℓ=1

λi,j,ℓDℓ + µi,jDr+1 (12)

(where δij = 1 if i = j and δij = 0 otherwise). Note that identity (12) implies
identity (11), provided that, for 0 ≤ i, j ≤ r+1, we put ρ0ij = δijki, for 1 ≤ i, j, ℓ ≤ r,
we put ρℓij = λi,j,ℓ and ρr+1

ij = µi,j . Furthermore, since D0 ·Dj = Dj ·D0 = Dj , for
all j, identity (11) holds if we put ρℓ0j = ρℓj0 = δjℓ for 0 ≤ j, ℓ ≤ r + 1.

By expanding out expressions for Di ·G and Dr+1 ·G, it can be shown that

ρℓi,r+1 = ki − δiℓ −
r∑

j=1

λi,j,ℓ, for 1 ≤ i, ℓ ≤ r,

ρr+1
i,r+1 = ki −

r∑

j=1

µi,j , for 1 ≤ i ≤ r, and

ρr+1
r+1,r+1 = kr+1 − 1−

r∑

i=1

ki +
r∑

i=1

r∑

j=1

µi,j .

Also, ρℓij = ρℓji for all i and j, because G is abelian.

In the converse direction, if (G,R0, R1, . . . , Rr+1) is a symmetric association
scheme, it follows immediately that (G,D) is a symmetric weighted PDS whose
parameters are related to the intersection numbers of the association scheme by the
same relations as above. ✷

Consequently, if f : GF (p)n → GF (p) is an even function with f(0) = 0, then
saying that the level curves of f give rise to a symmetric weighted PDS is equivalent
to saying that the level curves determine a symmetric p-class association scheme.
(See, e.g., Theorem 30 and Propositions 11, 13, and 14.) When we refer to the
intersection numbers pkij of a symmetric weighted PDS, we mean the intersection
numbers of the corresponding symmetric association scheme.

Definition 19. Suppose that S is a finite set and {R0, R1, . . . Rs} is a collection
of binary relations on S. A collection of binary relations {T0, T1, . . . , Tu} is called
a fusion of {R0, R1, . . . Rs} if each Ti is a union of elements of {R0, R1, . . . Rs}.

An association scheme (S,R0, R1, . . . , Rs) is called amorphic if, for every fu-
sion {T0, T1, . . . , Tu} of {R0, R1, . . . , Rs}, (S, T0, T1, . . . , Tu) is also an association
scheme.

A symmetric weighted PDS is called amorphic if the symmetric association
scheme it determines is amorphic.



INTEGERS: 16 (2016) 14

3. Cayley Graphs

In this section, we discuss edge-weighted Cayley graphs and their relationship with
weighted PDSs. We recall results on graph decompositions and amorphic Cayley
graphs. We also discuss possible generalizations of the Dillon and BCV correspon-
dences, posing several open questions.

Let G be a finite abelian multiplicative group, and let D be a non-empty subset
of G such that 1 /∈ D.

Definition 20. The Cayley graph Γ = Γ(G,D) associated with (G,D) is a graph
constructed as follows. Let the vertices of the graph be the elements of the group
G. Two vertices g1 and g2 are connected by a directed edge if g2 = dg1 for some
d ∈ D.

If there exist d1 and d2 in D such g1 = d1g2 and g2 = d2g1, we say that the
vertices g1 and g2 are connected by an undirected edge. (We must have d2 = d−1

1

in this case.) Suppose that D = D−1. If g2 = dg1, then g1 = d−1g2, so the Cayley
graph Γ(G,D) can naturally be regarded as an undirected graph in this case.

Definition 21. A connected (undirected) graph Γ = (V,E) with vertex set V and
edge set E is a (v, k,λ, µ)-strongly regular graph (SRG) provided it has the following
properties:

(a) The graph Γ has v vertices, and each vertex g ∈ V is adjacent to k other
vertices, i.e., the degree of g is k.

(b) Distinct vertices g1 and g2 have λ common neighbors if g1 and g2 are neighbors,
and µ common neighbors if g1 and g2 are not neighbors.

In the usual terminology/notation, such a graph is called an SRG(v, k,λ, µ).

The neighborhood of a vertex g in a graph Γ = (V,E) is the set

N(g) = {g′ ∈ V | (g, g′) is an edge in Γ}.

The following result is well-known (see, e.g., [12]). The proof is included for
convenience.

Theorem 22. Let G be a finite abelian multiplicative group, and let D be a subset
of G such that 1 ̸∈ D. Then D is a (v, k,λ, µ)-PDS such that D−1 = D if and only
if the associated Cayley graph Γ(G,D) is a (v, k,λ, µ)-strongly regular undirected
graph.

Proof. Suppose D is a (v, k,λ, µ)-PDS such that D = D−1. Then Γ(G,D) has v
vertices. The set D has k elements, and each vertex g of Γ(G,D) has neighbors
dg, where d ∈ D. Therefore, Γ(G,D) is regular of degree k. Let g1 and g2 be
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distinct vertices in Γ(G,D). Let x be a vertex that is a common neighbor of g1
and g2, i.e., x ∈ N(g1) ∩N(g2). Then x = d1g1 = d2g2 for some d1, d2 ∈ D, which
implies that d1d

−1
2 = g−1

1 g2. If g−1
1 g2 ∈ D, then there are exactly λ ordered pairs

(d1, d2) that satisfy the previous equation (by Definition 7). If g−1
1 g2 /∈ D, then

g−1
1 g2 ∈ G \ (D ∪ {1}), so there are exactly µ ordered pairs (d1, d2) that satisfy the
equation. If g−1

1 g2 ∈ D, then g2 = dg1 for some d ∈ D, so g1 and g2 are adjacent.
By a similar argument, if g−1

1 g2 ∈ G \ (D ∪ {1}), then g1 and g2 are not adjacent.
So Γ(G,D) is a (v, k,λ, µ)-strongly regular graph.

Conversely, suppose Γ(G,D) is a (v, k,λ, µ)-strongly regular undirected graph.
Since Γ(G,D) is undirected, for distinct vertices g1 and g2 there is an edge from
g1 to g2 if and only if there is an edge from g2 to g1. By definition, g1 and g2
are connected by an edge if and only if g1 = dg2, for some d ∈ D. This means
that g1 = d1g2 if and only if g2 = d2g1, for some d1, d2 ∈ D. This implies that
d2 = d−1

1 , so D = D−1. Since Γ(G,D) is (v, k,λ, µ)-strongly regular, it is k-regular,
so the order of D is k. Let x be a vertex in Γ(G,D) such that x ∈ N(g1) ∩N(g2).
Then x = d1g1 = d2g2 for some d1, d2 ∈ D, which implies that d1d

−1
2 = g−1

1 g2.
If g1 and g2 are adjacent, then g−1

1 g2 ∈ D, and there are exactly λ ordered pairs
(d1, d2) that satisfy the previous equation. If g1 and g2 are not adjacent, then
g−1
1 g2 ∈ G \ (D ∪ {1}), and there are exactly µ ordered pairs (d1, d2) that satisfy
the equation. Therefore, D is a (v, k,λ, µ)-PDS and D = D−1. ✷

Remark 23. It is well-known that the complement of a (v, k,λ, µ)-strongly regular
graph is a (v, v−k−1, v−2k−2+µ, v−2k+λ)-strongly regular graph. Combining
this result with Theorem 22 gives another way to see that if D is a symmetric PDS
with 1 /∈ D, then D′ = G \ (D ∪ {1}) is also a symmetric PDS which does not
contain 1.

There is a weighted analogue of the correspondence between PDSs and SRGs
in Theorem 22. After defining edge-weighted strongly regular graphs and edge-
weighted Cayley graphs, we will give a generalization of that theorem in Theorem
29 below.

Definition 24. Let f be a GF (p)-valued function on GF (p)n. The Cayley graph
of f is defined to be the edge-weighted digraph Γf = (V,E) whose vertex set is
V = GF (p)n and whose set of edges is defined by

E = {(u, v) | u, v ∈ GF (p)n, f(u− v) ̸= 0},

where the edge (u, v) ∈ E has weight f(u − v). We routinely identify GF (p) with
{0, 1, . . . , p− 1} when referring to the edge-weights of Γf .

If f is even, then we can (and do) regard Γf as a weighted undirected graph.

The support of a function f : GF (p)n → GF (p) is defined to be the set

supp(f) = {v ∈ GF (p)n | f(v) ̸= 0}.
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Theorem 25. (BCV correspondence, [1], [2], [3]) Suppose f : GF (2)n → GF (2).
The function f is bent if and only if the Cayley graph of f is a strongly regular
graph having parameters (2n, k,λ,λ) for some λ, where k = |supp(f)|.

The (naive) analogue of this for p > 2 is formalized in Analogue 43.

Example 26. Let f : GF (2)4 → GF (2) be given by

f(x0, x1, x2, x3) = x0x1 + x2x3.

The function f is bent and |supp(f)| = 6. Therefore, the Cayley graph is a strongly
regular graph with parameters v = 16 and k = 6. By the classification of strongly
regular graphs of small size (see Spence [31]), it must be the Shrikhande graph,
which is (16, 6, 2, 2)-strongly regular.

Suppose that Γ = (V,E) is any edge-weighted graph (without loops or multiple
edges) whose edge weights are positive integers. We fix a labeling of the set of
vertices V (Γ), which we often identify with the set {0, 1, . . . , N − 1}, where N =
|V (Γ)|. If u and v are vertices of Γ, then a walk P from u to v with weight sequence
(w0, w1, . . . , wk−1) is a sequence of edges e0 = (v0, v1) ∈ E, e1 = (v1, v2) ∈ E, . . . ,
ek−1 = (vk−1, vk) ∈ E, where v0 = u and vk = v, connecting u to v, where edge ei
has weight wi. Let A = (aij) denote the N × N weighted adjacency matrix of Γ,
where i, j ∈ {0, 1, . . . , N − 1} and where

aij =

{
w, if (i, j) is an edge of weight w;
0, if (i, j) is not an edge of Γ.

(13)

From the adjacency matrix A, we can derive weight-specific adjacency matrices as
follows. For each weight w of Γ, let Aw = (a(w)ij) denote the N ×N (1, 0)-matrix
defined by

a(w)ij =

{
1, if (i, j) is an edge of weight w;
0, if (i, j) is not an edge of weight w.

(14)

When Γ is the Cayley graph of a GF (p)-valued function, we identify the edge-
weights with the integers {1, . . . , p− 1}. We extend the weight set by imposing the
following conventions:

(a) If u and v are distinct vertices of Γ but (u, v) is not an edge of Γ, then we say
the weight of (u, v) is w = p.

(b) If u = v is a vertex of Γ (so (u, v) is not an edge, since Γ has no loops), then
we say the weight of (u, v) is w = 0.

This allows us to define the weight-specific adjacency matrices Ap and A0 as well,
and we can (and do) extend the weight set of Γ by appending p and 0. Clearly,
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these weight-specific adjacency matrices have disjoint supports: if a(w)ij ̸= 0, then
a(w′)ij = 0 for all weights w′ ̸= w.

Note that an alternative convention, which can be used for more general edge-
weighted graphs, is to extend the weight set by appending 0 (for case (a) above)
and −1 (for case (b) above).

In Corollary 2, we will give conditions under which these weight-specific adja-
cency matrices form a Bose-Mesner algebra.

For the reader’s convenience, the well-known matrix-walk theorem is formulated
as in the result below (see, e.g., [19] for a proof in the unweighted case).

Proposition 2. For any vertices u and v of Γ and any sequence of non-zero edge
weights w1, w2, . . . , wk, the (u, v)th entry of Aw1Aw2 . . . Awk is equal to the number
of walks of weight sequence (w1, w2, . . . , wk) from u to v. Moreover, the total number
of closed walks of weight sequence (w1, w2, . . . , wk) is equal to tr (Aw1Aw2 . . . Awk).

Let us return to describing the Cayley graph of Definition 24 above. We identify
Z/pnZ with {0, 1, . . . , pn − 1}, and let

η : Z/pnZ → GF (p)n (15)

be the p-ary representation map. In other words, if we regard x ∈ Z/pnZ as a
polynomial in p of degree ≤ n− 1, then η(x) is the list of coefficients, arranged in
order of decreasing degree. This is a bijection. (Actually, for our purposes, any
bijection will do, but the p-ary representation is the most natural one.)

As the following lemma illustrates, it is very easy to characterize the Cayley
graph of an even p-ary function in terms of its adjacency matrix.

Lemma 8. Let Γ be an undirected edge-weighted graph with weights in GF (p) and
with vertex set V = GF (p)n (and vertices labeled using the bijection given by the p-
ary representation map of Equation 15). Let A = (aij) be the (symmetric) weighted
adjacency matrix of Γ, where i, j ∈ {0, 1, . . . , pn − 1}. Let f be an even GF (p)-
valued function on V with f(0) = 0. Then Γ is the Cayley graph of f if and only if
Γ is regular and the following conditions hold:

(a) For each i ∈ {0, 1, . . . , pn − 1}, ai,0 = f(η(i)).

(b) For each i, j ∈ {0, 1, . . . , pn − 1}, ai,j = ak,0, where η(k) = η(i)− η(j).

Proof. Let w be an element of GF (p). We know that ai,j = w if and only if there is
an edge of weight w from η(i) to η(j) if and only if f(η(i)− η(j)) = w. The lemma
follows. ✷

Let Γ be an edge-weighted graph with vertices V , edges E, and weight set W .
Usually our weight set will be GF (p)× = GF (p) \ {0}, which we identify with
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{1, . . . , p− 1}. Recall that we define

N(u) = the set of all neighbors v of u in Γ.

For each u ∈ V and a ∈ W ∪ {0}, we define the weighted a-neighborhood of u,
N(u, a), as follows:

• N(u, a) = the set of all neighbors v of u in Γ for which the edge (u, v) ∈ E
has weight a (for each a ∈ W ).

• N(u, 0) = the set of all non-neighbors v of u in Γ (i.e., the set of v such that
(u, v) /∈ E). In particular, u ∈ N(u, 0).

Now suppose that V = GF (p)n and f : V → GF (p) is an even function with
f(0) = 0. Let Γ = Γf be the Cayley graph of f . Recall that the support of f is
defined to be

supp(f) = {v ∈ V | f(v) ̸= 0}.

It is clear that supp(f) = N(0) is the set of neighbors of the zero vector in Γ. More
generally, for any u ∈ V ,

N(u) = u+ supp(f), (16)

where the last set is the collection of all vectors u+ v, for some v ∈ supp(f).

Let Sa = {v ∈ V | f(v) = a}, for a ∈ GF (p). We can extend Equation (16) to
the following more precise statement describing the a-neighborhood of u:

N(u, a) = u+ Sa. (17)

We can restate the definition of a strongly regular graph, using neighborhood
notation, as follows. A connected simple graph Γ (without edge weights) is strongly
regular if there are constants (v, k,λ, µ) such that Γ has v vertices, and for vertices
u1 and u2 we have

|N(u1) ∩N(u2)| =

⎧
⎨

⎩

k, if u1 = u2;
λ, if u1 ∈ N(u2);
µ, if u1 /∈ N(u2) and u1 ̸= u2.

The concept of strongly regular simple graphs generalizes to that of edge-weighted
graphs.

Definition 27. Let Γ be a connected edge-weighted graph which is regular as a
simple (unweighted) graph. Let W be the set of edge-weights of Γ. The graph
Γ is called edge-weighted strongly regular with parameters v, k = (ka)a∈W , λ =
(λa)a∈W 3 , and µ = (µa)a∈W 2 , denoted SRGW (v, k,λ, µ), if Γ has v vertices, and
there are constants ka, λa1,a2,a3 , and µa1,a2 , for a, a1, a2, a3 ∈ W , such that

|N(u, a)| = ka for all vertices u,
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and for vertices u1 ̸= u2 we have

|N(u1, a1) ∩N(u2, a2)| =
{

λa1,a2,a3 , if u1 ∈ N(u2, a3);
µa1,a2 , if u1 /∈ N(u2) and u1 ̸= u2.

(18)

In our examples, the weights will usually be in GF (p), but will be routinely
identified with integers. Thus we will treat the set of edge weights W as a subset
of Z, and note that k ∈ Z|W |, λ ∈ Z|W 3|, and µ ∈ Z|W 2|.

How does the above notion of an edge-weighted strongly regular graph relate to
the usual notion of a strongly regular graph?

Lemma 9. Let Γ be an edge-weighted strongly regular graph as in Definition 27,
with edge-weights W and parameters (v, (ka), (λa1,a2,a3), (µa1,a2)).

(a) If ∑

(a1,a2)∈W 2

λa1,a2,a3

does not depend on a3, for a3 ∈ W , then Γ is strongly regular (as an un-
weighted graph) with parameters (v, k,λ, µ), where

k =
∑

a∈W

ka, λ =
∑

(a1,a2)∈W 2

λa1,a2,a3 , µ =
∑

(a1,a2)∈W 2

µa1,a2 .

(b) For each weight a, let Γa be the graph with the same vertices as Γ, whose edges
are the edges of weight a. If

λa,a,a3 = µa,a

for all weights a3 ̸= a, then Γa is strongly regular (as an unweighted graph)
with parameters (v, k,λ, µ), where

k = ka, λ = λa,a,a, µ = µa,a.

The proof follows directly from the definitions.

Definition 28. Let G be a finite abelian multiplicative group, and let D be a
subset of G such that 1 /∈ D and such that D has a disjoint decomposition D =
D1 ∪ D2 ∪ · · · ∪Dr. The edge-weighted Cayley graph Γ = Γ(G,D) associated with
(G,D) is the edge-weighted graph constructed as follows. Let the vertices of the
graph be the elements of the group G. Two vertices g1 and g2 are connected by an
edge of weight i if g2 = dg1 for some d ∈ Di. If D−1

i = Di for all i, the graph Γ is
undirected.

We have the following generalization of Theorem 22.
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Theorem 29. Let G be a finite abelian multiplicative group, and let D be a subset
of G such that 1 /∈ D and such that D has a disjoint decomposition D = D1 ∪D2 ∪
· · · ∪Dr. Let D0 = {1}, let Dr+1 = G \ (D ∪D0), and let

Ri = {(g, h) ∈ G×G| gh−1 ∈ Di}, 0 ≤ i ≤ r + 1.

The following statements are equivalent:

(a) The set D is a symmetric weighted partial difference set.

(b) The graph Γ(G,D) is an edge-weighted strongly regular graph with edge weights
{1, 2, . . . , r}.

(c) The tuple (G,R0, R1, . . . , Rr+1) is a symmetric association scheme of class
r + 1.

Proof. The equivalence of (a) and (c) is just Lemma 7.

((a) =⇒ (b)) Suppose (G,D) is a weighted partial difference set satisfying
D−1

i = Di for all i, and having parameters (v, k,λ, µ), where v = |G|, k = {ki}
with ki = |Di|, λ = {λi,j,ℓ}, and µ = {µi,j}. The graph Γ = Γ(G,D) has v = |G|
vertices, by definition. Each vertex g of Γ has ki neighbors of weight i, namely, dg
where d ∈ Di. Let g1 and g2 be distinct vertices in Γ. Let x be a vertex which is a
neighbor of each: x ∈ N(g1, i) ∩N(g2, j). By definition, x = d1g1 = d2g2, for some
d1 ∈ Di, d2 ∈ Dj . Therefore, d

−1
1 d2 = g1g

−1
2 . If g1g

−1
2 ∈ Dℓ, for some ℓ ̸= 0, r + 1,

then there are λi,j,ℓ solutions, by definition of a weighted PDS. If g1g
−1
2 ∈ Dr+1,

then there are µi,j solutions, by definition of a weighted PDS.

((b) =⇒ (a)) For the remainder of the proof, note that the reasoning above is
reversible. Details are left to the reader. ✷

We sometimes extend the weight set of Γ = Γ(G,D) by imposing the following
conventions:

(a) If u and v are distinct vertices of Γ but (u, v) is not an edge of Γ, then we say
the weight of (u, v) is w = r + 1.

(b) If u = v is a vertex of Γ (so (u, v) is not an edge, since Γ has no loops), then
we say the weight of (u, v) is w = 0.

This allows us to extend the set of weight-specific adjacency matrices given by
Equation (14) to the set A0, A1, . . . , Ar, Ar+1.

Corollary 2. The graph Γ(G,D) is an edge-weighted strongly regular graph if and
only if the (extended) set of weight-specific adjacency matrices given by Equation
(14) form a Bose-Mesner algebra with K = {0}.
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Proof. The corollary is immediate from the definition of Bose-Mesner algebra (see
Definition 16), since the weight-specific adjacency matrices of Γ(G,D) coincide with
the adjacency matrices of the binary relations Ri. ✷

Note that if a function f : GF (p)n → GF (p) is even (i.e., f(x) = f(−x)), then
its level curves Di = f−1(i) satisfy D−1

i = Di (as sets).

Theorem 30. Let f : GF (p)n → GF (p) be an even function such that f(0) = 0. Let
G = GF (p)n, and let Di = f−1(i), for i = 1, 2, . . . , p − 1 If (G,D1, D2, . . . , Dp−1)
is a symmetric weighted partial difference set, then the associated edge-weighted
strongly regular graph is the edge-weighted Cayley graph of f .

The proof is straightforward and left to the reader.

Remark 31. Roughly speaking, this theorem says that “if the level curves of f form
a symmetric weighted PDS, then the edge-weighted Cayley graph corresponding to f
agrees with the edge-weighted strongly regular graph associated with the symmetric
weighted PDS.”

Definition 32. A graph decomposition of an edge-weighted graph Γ, for this paper,
means the graph decomposition determined by the collection {Γa}, where for each
weight a, we define Γa to be the graph with the same vertices as Γ, whose edges are
the edges of weight a. There is a corresponding graph decomposition of the complete
graph on the vertex set of Γ, consisting of the graphs Γa and the complement of
Γ. A graph decomposition is said to be a strongly regular graph decomposition (see
[34]) if the individual graphs of the decomposition are all strongly regular.

Definition 33. Let Γ = Γ(G,D) be the edge-weighted Cayley graph associated
with a symmetric weighted PDS. We say that Γ is amorphic if (G,D) is amorphic,
i.e., if the association scheme determined by (G,D) is amorphic. If f : GF (p)n →
GF (p) is an even function with f(0) = 0, then we call f amorphic if its associated
Cayley graph is edge-weighted strongly regular and amorphic.

Note that if Γ(G,D) is amorphic, then it determines a strongly regular graph
decomposition (see [34]).

The following proposition is a consequence of a theorem from [20] on amorphic
association schemes (which we quote from van Dam and Muzychuk [35]).

Proposition 3. (Gol’fand, Ivanov, Klin) Let Γ = Γ(G,D) be the edge-weighted
Cayley graph associated with a symmetric weighted PDS. Suppose that the corre-
sponding graph decomposition of the complete graph on the vertices of Γ consists of
at least 3 (nonempty) graphs. If Γ is amorphic, then either all the graphs of the
decomposition are of Latin square type, or all the graphs of the decomposition are
of negative Latin square type.

The following result is a consequence of a theorem of van Dam [34, Theorem 3].
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Proposition 4. (van Dam) Let f : GF (p)n → GF (p) be an even bent function
with f(0) = 0. If the decomposition of the edge-weighted Cayley graph of f and
its complement form a strongly regular graph decomposition of the complete graph,
such that the individual graphs are all of Latin square type or all of negative Latin
square type, then f is an amorphic bent function.

We will use this result in Proposition 11 and Example 65, where we give examples
of even bent functions with f(0) = 0 whose Cayley graphs are amorphic. In Section
4.2, we see how these examples fit into a more general framework. We use van Dam’s
result in Corollary 7 in the construction of a family of amorphic bent functions
f : GF (p)2 → GF (p) that are homogeneous of degree p− 1 and weakly regular.

Recall that the weighted adjacency matrix A of the Cayley graph Γf of an even
function f : GF (p)n → GF (p) is the matrix whose entries are

Ai,j = f(η(i)− η(j)),

where η(k) is the p-ary representation as in Equation (15) (and where, as usual,
we identify GF (p) with {0, 1, . . . , p− 1} when referring to the edge weights of Γf ).
Note that Γf is a regular graph (each vertex has the same degree) of degree wt(f),
that is, the Hamming weight of f (when f is regarded as a vector of integer values
of length pn). Let

ω = ωf = wt(f)

denote the cardinality of supp(f) = {v ∈ GF (p)n | f(v) ̸= 0}. Note that f∧(0) ≥
|supp(f)|.

If A is the adjacency matrix of a simple, unweighted, strongly regular graph
having parameters (v, k,λ, µ), then

A2 = kI + λA+ µ(J − I −A), (19)

where J is the all 1s matrix and I is the identity matrix. This is well-known and
relatively easy to verify, by simply computing (A2)ij in the three separate cases (a)
i = j, (b) i ̸= j and i, j adjacent, (c) i ̸= j and i, j non-adjacent3. Compare also to
Equation (8) for partial difference sets.

Let G be a finite abelian multiplicative group, and let D be a subset of G such
that 1 /∈ D and such that D has a disjoint decomposition D = D1 ∪D2 ∪ · · · ∪Dr.
Let D0 = {1}, and let Dr+1 = G \ (D ∪ D0). Suppose that Γ = Γ(G,D) is
an edge-weighted strongly regular graph having weight set W = {1, 2, . . . , r} and
parameters (v, ki,λi,j,ℓ, µi,j) for i, j, ℓ ∈ W . For i ∈ W ∪{0, r+1}, let Ai be the ith
weight-specific adjacency matrix of Γ (see Equation (14) and the remarks preceding
Corollary 2). By Corollary 2, the collection of matrices {Ai}i∈W ∪ {A0, Ar+1}

3 It can also be proven by character-theoretic methods, but this method seems harder to
generalize to the edge-weighted case.
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forms a Bose-Mesner algebra (with K = {0}). Note that Ar+1 = J − I −
∑

i∈W Ai.
For i, j ∈ W , we have the following equation, corresponding to Equation (12) for
symmetric weighted partial difference sets:

Ai ·Aj = δijki · I +
r∑

ℓ=1

λi,j,ℓAℓ + µi,jAr+1. (20)

In fact the matrices, when appropriately reindexed, satisfy Equation (6) from the
definition of a Bose-Mesner algebra, where the constants pℓij are related to the
parameters of the edge-weighted graph as in the proof of Lemma 7.

Definition 34. We call a map g : GF (p)n → GF (p) balanced if the cardinalities
|g−1(x)| (for x ∈ GF (p)) do not depend on x. We say that g is balanced on the
support of g if the cardinalities |g−1(x)| (x ̸= 0) do not depend on x.

Definition 35. We call the signature of f : GF (p)n → GF (p) the list

|S1|, |S2|, . . . , |Sp−1|,

where, for each i in GF (p),

Si = {x | f(x) = i}. (21)

In the notation of Theorem 30, Si = Di, for 1 ≤ i ≤ p− 1, and S0 = D0 ∪Dp.

Note that
Wf (0) = |S0|+ |S1|ζ + · · ·+ |Sp−1|ζp−1,

(where ζ = e2πi/p) which we can regard as an identity in the (p − 1)-dimensional
Q-vector space Q(ζ). The relation

1 + ζ + ζ2 + · · ·+ ζp−1 = 0

gives

Wf (0)− |S0|+ |S1| = (|S2|− |S1|)ζ2 + · · ·+ (|Sp−1|− |S1|)ζp−1.

We have proven the following result.

Lemma 10. If f : GF (p)n → GF (p) has the property that Wf (0) is a rational
number, then

|S1| = |S2| = · · · = |Sp−1|,
(f is balanced on the support of f) and

Wf (0) = |S0|− |S1|.

In particular,

|supp(f)| = |S1|+ |S2|+ · · ·+ |Sp−1|
= (p− 1)|S1| = (p− 1)(|S0|−Wf (0)).
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Remark 36. See Proposition 1 and its corollary for more information on the con-
dition “Wf (0) is rational.” It is also known that if n is even and f is bent, then f
is balanced on its support, i.e.,

|S1| = |S2| = · · · = |Sp−1|.

We have more to say about these sets later. See Proposition 11 for p = 3 and
n = 2, and Section 4.5 for p = 5 and n = 2.

For any graph Γ = (V,E), let dist : V × V → Z ∪ {∞} denote the distance
function. In other words, for any v1, v2 ∈ V , dist(v1, v2) is the length (i.e., number
of edges) of the shortest path from v1 to v2 (if it exists) and ∞ (if it does not).
The diameter of Γ, denoted diam(Γ), is the maximum value (possibly ∞) of this
distance function.

For any v ∈ V , and any k ≥ 0, let

Γk(v) = {u ∈ V | dist(u, v) = k}.

For example, let f : GF (p)n → GF (p) be any even function, and let Γ be the
(unweighted) Cayley graph of f . Suppose that Γ is connected. It follows from the
definitions that, if v ∈ GF (p)n is arbitrary, then

Γk(v) = v + Γk(0).

Lemma 11. If f : GF (p)n → GF (p) is any even function, and if the (unweighted)
Cayley graph of f is connected, then

Γk(0) = {v ∈ GF (p)n | v is the sum of k support vectors of f, and no fewer}.

Proof. We will prove the lemma by induction on k. The statement for k = 1 is
obvious, since Γ1(0) = supp(f). Assume the statement is true for k. We prove it
for k + 1. Let v′ ∈ Γk+1(0), so dist(0, v′) = k + 1. There is a v′′ ∈ Γk(0) such
that v′ = v′′ + v′′′, for some v′′′ ∈ supp(f). By the inductive hypothesis, v′′ can be
written as the sum of k support vectors, so v′ is the sum of k + 1 vectors. ✷

Definition 37. Let Γ = (V,E) be a graph, let dist : V ×V → Z denote the distance
function, and let G = Aut(Γ) denote the automorphism group of Γ. We say the
graph Γ is distance transitive if, for any k ≥ 0, and any (u1, v1) ∈ V × V and
(u2, v2) ∈ V × V with dist(ui, vi) = k (for i = 1, 2), there is a g ∈ G such that
g(u2) = v2 and g(u1) = v1.

Remark 38. The following “conjecture” is false: If f : GF (p)n → GF (p) is any
even bent function, then the (unweighted) Cayley graph of f is distance transi-
tive. In fact, this fails when p = 2 for any bent function of 4 variables having
support of size 6. Indeed, in this case the Cayley graph of f is isomorphic to
the Shrikhande graph (with strongly regular parameters (16, 6, 2, 2)), which is not
distance-transitive (see [5, pp. 104-105, 136]).



INTEGERS: 16 (2016) 25

Let Γ = (V,E) be a graph. For any subset S ⊂ V and any u ∈ V , let Nu(S)
denote the subset of all s ∈ S which are neighbors of u, i.e., let

Nu(S) = S ∩ Γ1(u).

Definition 39. We say a graph Γ = (V,E) is distance regular if, for each k ≥ 0
and any (v1, v2) ∈ V × V with dist(v1, v2) = k, the numbers

ak = |Nv1(Γk(v2))|,

bk = |Nv1(Γk+1(v2))|, and

ck = |Nv1(Γk−1(v2))|

are independent of v1 and v2.

Remark 40. The following “conjecture” is false: If f : GF (p)n → GF (p) is any
even bent function then the (unweighted) Cayley graph of f is distance regular.
In fact, it can by verified by computer that this fails for every even bent function
f : GF (3)3 → GF (3) with f(0) = 0, using the classification of all such functions in
4.4. However, our computer calculations lead us to the following conjecture.

Conjecture 1. Suppose that f is an amorphic even bent function with f(0) = 0 of
the type described in Theorem 56. Then the Cayley graph of f is distance regular.

3.1. Cayley Graphs of Bent Functions

Remark 41. In Chee, Tan, and Zhang [12], it is shown that if n is even, then
the unweighted Cayley graphs of homogeneous4 weakly regular even bent functions
f : GF (p)n → GF (p), with f(0) = 0, are strongly regular.

Problem 42. Some natural problems arise. For f even,

1. find necessary and sufficient conditions for Γf to be strongly regular;

2. find necessary and sufficient conditions for Γf to be connected (and more
generally find a formula for the number of connected components of Γf );

3. classify the spectrum of Γf in terms of the values of the Fourier transform of
f ; and

4. in general, which graph-theoretic properties of Γf can be tied to function-
theoretic properties of f?

4When regarded as a function f : GF (pn) → GF (p).
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Parts 2 and 3 of Problem 42 are addressed below (see Lemma 12 and Section
3.3).

Regarding the BCV correspondence (Theorem 25), the following would be a
graph-theoretical analogue, but is, unfortunately, not true in general!

Analogue 43. We ask under what additional hypotheses the following analogue of
the Bernasconi correspondence is true:

Assume n is even. If f : GF (p)n → GF (p) is even and bent then, for each
a ∈ GF (p)×, we have

(a) if u1, u2 ∈ V are a3-neighbors in the Cayley graph of f , then |N(u1, a1) ∩
N(u2, a2)| does not depend on u1, u2 (with a given edge-weight), for each
a1, a2, a3 ∈ GF (p)×; and

(b) if u1, u2 ∈ V are distinct and not neighbors in the Cayley graph of f , then
|N(u1, a1) ∩N(u2, a2)| does not depend on u1, u2, for each a1, a2 ∈ GF (p)×.

In other words, the associated Cayley graphs is edge-weighted strongly regular as
in Definition 27.

Remark 44. 1. This analogy fails when p = 5. (See Proposition 14.)

2. This analogy fails even if you replace “f : GF (p)n → GF (p) is even and
bent” in the hypothesis by “f : GF (p)n → GF (p) is even, bent, and regular.”
(Again, see Proposition 14.) However, when p = 3 and n = 2, see Lemma
17(a).

3. In general, this analogy fails if you replace “f : GF (p)n → GF (p) is even and
bent” in the hypothesis by “f : GF (p)n → GF (p) is even, bent, and weakly
regular.” However, when p = 3 and n = 2, see Lemma 17(b).

4. This analogy fails if n is odd. (See Section 4.4.)

5. The converse of this analogy fails, if p > 2. (See Example 58.)

6. As noted, if p = 2 then this analogue is true, by the work of Bernasconi et al.
Indeed, if properly formulated, there is a converse (when p = 2) which holds
as well (see [2], [3]).

Let f : GF (p)n → GF (p) be a function such that f(0) = 0. Let D0 = {0} (the
zero vector inGF (p)n), Di = f−1(i) for i ∈ GF (p)\{0}, andDp = GF (p)n\∪p−1

i=0Di.

Regarding the Bernasconi correspondence (Theorem 25), the following would
be combinatorial analogues. Analogue 45 does not always hold, since we show in
Section 4.5 that there are functions f : GF (5)2 → GF (5) such that f is even and
bent and f(0) = 0, but the level curves of f do not determine a PDS. Consequently,
by Lemma 7, Analogue 46 does not always hold.
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Analogue 45. We ask under what additional hypotheses the following analogue of
the Dillon correspondence is true:

If f is an even bent function, then the tuple (GF (p)n, D1, D2, . . . , Dp−1) defines
a weighted partial difference set.

Analogue 46. Let f be as above, and let R0, R1, . . . , Rp denote binary relations
on GF (p)n given by

Ri = {(x, y) ∈ GF (p)n ×GF (p)n | x− y ∈ Di}, 0 ≤ i ≤ p.

We ask under what additional hypotheses the following analogue of the Dillon cor-
respondence is true:

If f is an even bent function, then (GF (p)n, R0, R1, . . . , Rp) is a p-class associa-
tion scheme.

Remark 47. It is known that for “homogeneous” weakly regular bent functions,
the level curves give rise to a weighted PDS. In fact, the weighted PDS corresponds
to an association scheme, and the dual association scheme corresponds to the dual
bent function (see [30, Corollary 3]). We know that any bent function equivalent
to such a bent function also has this property (see Proposition 5).

Our data seems to support the following statement.

Conjecture 2. Let f : GF (p)n → GF (p) be an even bent function with f(0) = 0,
with p > 2. If the level curves of f give rise to a weighted partial difference
set5, then f is weakly regular. If the union of the level curves also determines a
corresponding (unweighted) partial difference set6, this partial difference set is of
(positive or negative) Latin square type.

We also pose the following question: is there a “homogeneous”-type condition
that f must also satisfy, if the level curves of f give a PDS?

The adjacency matrix A = Af is the matrix whose entries are

Ai,j = fC(η(i) − η(j)), (22)

where η(k) is the p-ary representation as in Equation (15). Ignoring edge weights,
we let

A∗
i,j =

{
1, fC(η(i)− η(j)) ̸= 0;
0, otherwise.

(23)

Note that the Cayley graph Γf is a regular edge-weighted digraph (each vertex has
the same in-degree and the same out-degree as each other vertex). The in-degree

5In the sense of Remark 31.
6In the sense of Lemma 5.
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and the out-degree both equal wt(f), where wt denotes the Hamming weight of f ,
when regarded as a vector (of length pn) of integers. Let

ω = ωf = wt(f)

denote the cardinality of supp(f) = {v ∈ V | f(v) ̸= 0}, and let

σf =
∑

v∈V

fC(v).

Note that f∧(0) = σf ≥ |supp(f)|. If f is even, then Γf is an σf -regular (edge-
weighted) graph. If we ignore weights, then it is an ωf -regular graph.

Recall that, given a Cayley graph Γ of a function f : GF (p)n → GF (p) and
its (symmetric) adjacency matrix A, the spectrum σ(Γ) = {λ1,λ2, . . . ,λN}, where
N = pn, is the multi-set of (real) eigenvalues of A. Following a standard convention,
we index the elements λi = λi(A) of the spectrum in such a way that they are
monotonically increasing. Because Γf is regular, the row sums of A are all σf ,
whence the all-ones vector is an eigenvector of A with eigenvalue σf . We will see
later (Corollary 5) that λN (A) = σf .

Let D denote the identity matrix multiplied by σf . The Laplacian of Γf can be
defined as the matrix L = D −A.

Lemma 12. Assume f is even. As an edge-weighted graph, Γf is connected if and
only if λN−1(A) < λN (A) = σf , where A is the adjacency matrix of Equation (22).
If we ignore edge weights, then Γf is connected if and only if λN−1(A∗) < λN (A∗) =
ωf , where A∗ is the unweighted adjacency matrix of Equation (23).

Proof. We only prove the statement for the edge-weighted case. Note that for
i = 1, . . . , N , λi(L) = σf − λN−i+1(A), since det(L − λI) = det(σf I − A − λI) =
(−1)n det(A − (σf − λ)I). Thus λi(L) ≥ 0, for all i. By a result on algebraic
connectivity of graphs (see [18] or [19] for the unweighted case; the weighted case is
a corollary of the unweighted case), λ2(L) > 0 if and only if Γf is connected. But
λ2(L) > 0 is equivalent to σf − λN−1(A) > 0. ✷

Clearly, the vertices in Γf connected to 0 ∈ V are in natural bijection with
supp(f). Let Wj denote the subset of V consisting of those vectors which can be
written as the sum of j elements in supp(f). Clearly,

W1 = supp(f) ⊂ W2 ⊂ · · · ⊂ Span(supp(f)),

where Span(S) denotes the vector space of all linear combinations of a set S ⊂ V
of vectors.

For each v0 ∈ W1 = supp(f), the vertices connected to v0 are the vectors in

supp(fv0) = {v ∈ V | f(v − v0) ̸= 0},
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where fv0(v) = f(v − v0) denotes the translation of f by −v0. Therefore,

supp(fv0) = v0 + supp(f).

In particular, all the vectors in W2 are connected to 0 ∈ V . For each v0 ∈ W2,
the vertices connected to v0 are the vectors in supp(fv0) = v0 + supp(f), so all the
vectors in W3 are connected to 0 ∈ V . Inductively, we see that Span(supp(f)) is the
connected component of 0 in Γf . Pick any u ∈ V representing a non-trivial coset
in V/Span(supp(f)), where V/S denotes the vector space quotient of V modulo a
subspace S. Clearly, 0 is not connected with u in Γf . However, the above reasoning
implies u is connected to v if and only if u and v represent the same coset in
V/Span(supp(f)). This proves the following result.

Lemma 13. The connected components of Γf are in one-to-one correspondence
with the elements of the quotient space V/Span(supp(f)).

3.2. Group Actions on Bent Functions

We note here some useful facts about the action of nondegenerate linear transforms
on p-ary functions. Let V = GF (p)n. Suppose that f : V → GF (p), and suppose
that φ : V → V is a nondegenerate linear transformation (isomorphism of V ). Let
g(x) = f(φ(x)). The functions f and g both have the same signature, (|f−1(i)| | i =
1, . . . , p− 1).

It is straightforward to check that

Wg(u) = Wf (
t(φ−1)u),

where t denotes transpose.

It follows that if f is bent, so is g, and if f is bent and regular, so is g. If f is
bent and weakly regular, with µ-regular dual f∗, then g is bent and weakly regular,
with µ-regular dual g∗, where g∗(u) = f∗( t(φ−1)u).

Next, we examine the effect of the group action on bent functions and the cor-
responding weighted PDSs.

Proposition 5. Let f : GF (p)n → GF (p) be an even bent function such that f(0) =
0, and define Di = f−1(i) for i ∈ GF (p) − {0}. Suppose φ : GF (p)n → GF (p)n

is a linear map that is invertible (i.e., det φ ̸= 0 (mod p)). Define the function
g = f ◦ φ; g is the composition of a bent function and an affine function, so it
is also bent. If the collection of sets {D1, D2, . . . , Dp−1} forms a weighted partial
difference set for GF (p)n, then so does its image under the function φ.

The following result is given in [6, Chapter 17]. We include a different proof.

Theorem 48. Let f : GF (p)n → GF (p) be an even function with f(0) = 0, and
let Γ be its Cayley graph. Assume Γ is an edge-weighted strongly regular graph. Let
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Dk = f−1(k) for k ∈ GF (p) − {0}. Let A = (ak,l) be the adjacency matrix of Γ.
Let Ai = (aik,l) be the (0, 1)-matrix where

aik,l =

{
1, if ak,l = i;

0, otherwise,

for each i = 1, 2, . . . , p − 1. Let A0 be the pn × pn identity matrix. Let Ap be the
(0, 1)-matrix such that A0+A1+ · · ·+Ap−1+Ap = J , where J is the pn×pn matrix
with all entries 1. Let R denote the matrix ring generated by {A0, A1, . . . , Ap}. The
structure constants pkij defined by Equation (6), with s = p, satisfy the formula

pkij =

(
1

pn|Dk|

)
tr(AiAjAk),

for all i, j, k = 1, 2, . . . , p.

Proof. By the matrix-walk theorem, AiAj can be considered as counting walks
along the Cayley graph of specific edge weights. Supposed (u, v) is an edge of Γ
with weight k. If k = 0, then u = v and the edge is a loop. If k = p, then (u, v) is
technically not an edge in Γ, but we will label it as an edge of weight p.

The (u, v)-th entry of AiAj is the number of walks of length 2 from u to v, where
the first edge has weight i and the second edge has weight j; the entry is 0 if no
such walk exists. If we consider the (u, v)-th entry on each side of the equation
defining the structure constants, Equation (6) with s = p, we can deduce that pkij
is the number of walks of length 2 from u to v, where the first edge has weight i
and the second edge has weight j (it equals 0 if no such walk exists) for any edge
(u, v) with weight k in Γ.

Similarly, the matrix-walk theorem implies that tr(AiAjAk) is the total number
of closed walks of length 3 having edge weights i, j, k. We claim that if △ is any
triangle with edge weights i, j, k, then, by subtracting an element v ∈ GF (p)n, we
will obtain a triangle in Γ containing the zero vector as a vertex with the same edge
weights. Suppose △ = (u1, u2, u3), where (u1, u2) has edge weight i, (u2, u3) has
edge weight j, and (u3, u1) has edge weight k. Let △′ = (0, u2 − u1, u3 − u1). We
compute the edge weights of △′:

edge weight of (0, u2 − u1) = f(0− (u2 − u1)) = f(u1 − u2) = i;
edge weight of (u2 − u1, u3 − u1) = f((u2 − u1)− (u3 − u1)) = f(u2 − u3) = j;

edge weight of (u3 − u1, 0) = f((u3 − u1)− 0) = f(u3 − u1) = k.

Thus the claim is proven.

Therefore, (
1

|GF (p)n|

)
tr(AiAjAk) =

(
1

pn

)
tr(AiAjAk)
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is the number of closed walks of length 3 having edge weights i, j, k and containing
the zero vector as a vertex, incident to the edge of weight i and the edge of weight
k.

There are |Dk| edges of weight k incident to the zero vector, so

(
1

pn

)(
1

|Dk|

)
tr(AiAjAk)

is the number of (i, j)-weighted walks (of length 2) from the zero vector to any
k-neighbor of it. This is equivalent to the definition of the number pkij in the
matrix-walk theorem. ✷

Corollary 3. Let f : GF (p)n → GF (p) be an even function such that f(0) = 0,
and let Γ be its edge-weighted Cayley graph. Let Ai be as in the theorem above. If

(
1

pn|Dk|

)
tr(AiAjAk)

is not an integer, for some i, j, k, then Γ is not edge-weighted strongly regular.

By the intersection numbers of an edge-weighted strongly regular graph, we mean
the structure constants of the corresponding adjacency ring. If f : GF (p)n → GF (p)
is an even function such that f(0) = 0 whose edge-weighted Cayley graph is edge-
weighted strongly regular, then by the intersection numbers of f we mean those of
its Cayley graph.

Remark 49. Let f : GF (p)n → GF (p) be an even function with f(0) = 0 whose
Cayley graph Γ is an edge-weighted strongly regular graph. We note that if g = bf
for some nonzero b in GF (p), then the intersection numbers pkij(g) of g are easily
found from the intersection numbers pkij(f) of f . If we define σ(i) = b−1i, for

i = 0, . . . , p− 1, and σ(p) = p, we have pkij(g) = pσ(k)σ(i)σ(j)(f).

3.3. Fourier Transforms and the Graph Spectrum

Let V = GF (p)n, and let f : V → GF (p). Let ζ = e2πi/p. If we fix an ordering on
GF (p)n, then the pn × pn matrix

F = (fC(x− y) | x, y ∈ V ) (24)

is a Z-valued matrix. Here x indexes the rows, and y indexes the columns.

Recall that a circulant matrix is a square matrix in which each row vector is a
cyclic shift one element to the right relative to the preceding row vector. It seems
that the matrix F of Equation (24) is not circulant, but is “block circulant.” Like
circulant matrices, it has the property that v⃗a = (ζ−⟨a,x⟩ | x ∈ V ) is an eigenvector
with eigenvalue λa = f∧(−a) (for a ∈ V ), where f∧ is the Fourier transform of fC.
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This is a property of the Hadamard transform of a Boolean function f (see, e.g.,
Theorem 2.1 of Stanica’s article [32]). Thus the proposition below, whose proof
is straightforward and omitted, shows that it “morally” behaves like a circulant
matrix in some ways.

Proposition 6. The eigenvalues λa = f∧(−a) of the matrix F of Equation (24)
(for a ∈ V ) are values of the Fourier transform f∧ of f , given by

f∧(y) =
∑

x∈V

fC(x)ζ
−⟨x,y⟩,

and the eigenvectors are the vectors of p-th roots of unity,

v⃗a = (ζ−⟨a,x⟩ | x ∈ V ).

Corollary 4. The matrix F is invertible if and only if none of the values of the
Fourier transform of fC vanish.

Corollary 5. The spectrum of the graph Γf is precisely the set of values of the
Fourier transform of fC. In particular, if {λ1,λ2, . . . ,λN} is the spectrum, indexed
in monotone increasing order, then λN =

∑
v∈V fC(v).

Suppose we want to write the function ζf as a linear combination of translates
of the function fC:

ζf(x) =
∑

a∈V

cafC(x− a), (25)

for some ca ∈ C. This may be regarded as the convolution of fC with a function c.
Note that c is well-defined up to an element of ker(F ). One way to solve for the
ca’s is to write this as a matrix equation,

ζ f⃗ = F · c⃗,

where c⃗ = c⃗f = (ca | a ∈ V ) and ζ f⃗ = (ζf(x) | x ∈ V ). If F is invertible, that is if
the Fourier transform of f is always non-zero, then

c⃗ = F−1ζ f⃗ .

If Equation (25) holds, then we can write the Walsh transform f ,

Wf (u) =
∑

x∈GF (p)n

ζf(x)−⟨u,x⟩,

as a linear combination of values of the Fourier transform,

f∧(y) =
∑

x∈V

fC(x)ζ
−⟨x,y⟩.
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In other words,

Wf (u) =
∑

a∈V ca
∑

x∈GF (p)n ζ−⟨u,x⟩fC(x− a)

=
∑

a∈V ca
∑

x∈GF (p)n ζ−⟨u,x+a⟩f(x)

=
∑

a∈V caζ−⟨u,a⟩ ∑
x∈GF (p)n ζ−⟨u,x⟩fC(x)

= f∧(u)
∑

a∈V caζ−⟨u,a⟩.

(26)

This may be regarded as the product of Fourier transforms (that of the function f
and that of the function c, which depends on f). In other words, there is a rela-
tionship between the Fourier transform of a GF (p)-valued function and its Walsh-
Hadamard transform. However, it is not explicit unless one knows the function c
(which depends on f in a complicated way).

Remark 50. In the case p = 2, the spectrum of Γf is determined by the set of
values of the Walsh-Hadamard transform of f when regarded as a vector of (integer)
0, 1-values (of length 2n). (This nice fact seems to have first appeared in [1].) Does
this result have an analogue for p > 2?

We include here some results relating bent functions and balanced functions.
Recall that a map g : GF (p)n → GF (p) is balanced if the cardinalities |g−1(x)|, for
x ∈ GF (p), are all equal.

Lemma 14. Consider a map g : GF (p)n → GF (p), where we identify GF (p) with
{0, 1, 2, . . . , p− 1}. The following statements are equivalent:

(a) The map g is balanced.

(b) We have |g−1(x)| = pn−1, for each x ∈ GF (p).

(c) The Fourier transform of ζg satisfies (ζg)∧(0) = 0.

Proof. It is easy to show that (a) and (b) are equivalent. Also, a straightforward
and omitted argument shows (a) implies (c).

We show (c) implies (a) by an argument similar to that used for Lemma 10.

Note that

(ζg)∧(0) = |supp(g)0|+ |supp(g)1|ζ + · · ·+ |supp(g)p−1|ζp−1,

which we can regard as an identity in the (p− 1)-dimensional Q-vector space Q(ζ).
If (ζg)∧(0) is rational, the relation

1 + ζ + ζ2 + · · ·+ ζp−1 = 0

implies all the |supp(g)j | are equal, for j ̸= 0. It also implies (ζg)∧(0) = |supp(g)0|−
|supp(g)1|. Therefore, (ζg)∧(0) = 0 implies g is balanced. ✷
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Definition 51. We call an N ×N complex matrix M a Butson matrix if

M · tM = NIN ,

where IN is the N ×N identity matrix.

The following equivalences are known (see for example [33] and [8]), but proofs
are included for the convenience of the reader.

Proposition 7. Let f : GF (p)n → GF (p) be any function. The following state-
ments are equivalent:

(a) The function f is bent.

(b) The matrix ζF = (ζf(η(i)−η(j)))0≤i,j≤pn−1 is Butson, where η is as in Equation
(15).

(c) The derivative
Dbf(x) = f(x+ b)− f(x)

is balanced, for each b ̸= 0.

Proof. Let
h(b) = (ζDbf )∧(0) =

∑

x∈V

ζf(x+b)−f(x).

((a) =⇒ (c)) Note that

h∧(y) =
∑

b∈V

∑
x∈V ζf(x+b)−f(x)ζ−⟨y,b⟩

=
∑

b∈V

∑
x∈V ζf(x+b)−f(x)−⟨y,b⟩−⟨y,x⟩+⟨y,x⟩

=
∑

x∈V ζ−f(x)+⟨y,x⟩∑
b∈V ζf(x+b)−⟨y,x+b⟩

= (ζf )∧(y)(ζf )∧(y)
= |(ζf )∧(y)|2
= |Wf (y)|2.

(27)

Therefore, if f is bent then h∧ is a constant, which means that h is supported at 0.
By Lemma 14, Dbf(x) is balanced.

((c) =⇒ (a)) We reverse the above argument. Suppose Dbf(x) is balanced.
By Lemma 14, h is supported at 0, so h∧ is a constant. After substituting y = 0
into Equation (27) and using the fact Dbf(x) is balanced, it is easy to see that the
constant must be h∧(0) = |V | = pn. Thus |Wf (y)| = pn/2.

((c) =⇒ (b)) Note that

∑pn−1
j=0 ζf(η(i)−η(j))−f(η(k)−η(j)) =

∑pn−1
j=0 ζf(η(k)−η(j)+η(i)−η(k))−f(η(k)−η(j))

=
∑

x∈V ζf(x+b)−f(x),
(28)
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where b = η(i) − η(k). If Dbf(x) is balanced, then by Lemma 14, this sum is zero
for all b ̸= 0. These are the off-diagonal terms in the product ζF tζF . Those terms
when i = k are the diagonal terms. They are obviously |V | = pn. This implies ζF

is Butson.

((b) =⇒ (c)) This follows by reversing the above argument. The details are
omitted. ✷

4. Examples of Bent Functions

In this section, numerous examples illustrating the open questions formulated above
are given. We also state and prove a general result on the algebraic normal form of
p-ary functions (due to the first-named author).

4.1. Algebraic Normal Form

If f : GF (p)n → GF (p) is a p-ary function, there is a unique representation of f as
a polynomial in n variables, say x0, x1, ... , xn−1 with coefficients in GF (p), such
that each variable xi occurs with exponent at most p − 1. This representation is
called the algebraic normal form (ANF) of f and the highest degree of its terms is
called the degree of f .

In [7], Carlet shows how every Boolean function can be written in algebraic
normal form. Similarly, we show how every GF (p)-valued function over GF (p)n

can be written in ANF as well.

Definition 52. An atomic p-ary function is a function GF (p)n → GF (p) supported
at a single point. For v ∈ GF (p)n, the atomic function supported at v, with value
1 at v, is the function fv : GF (p)n → GF (p) such that fv(v) = 1, and fv(w) = 0
for every w ∈ GF (p)n such that w ̸= v.

We begin by showing how to write the ANFs of the atomic p-ary functions fv.

Theorem 53. Let v = (v0, v1, . . . , vn−1) be an element of GF (p)n, and let fv be
the atomic p-ary function defined above. Then

fv(x) =
n−1∏

i=0

⎛

⎝ 1

(p− 1)!

p−1∏

j=1

(j + vi − xi)

⎞

⎠, (29)

where x = (x0, x1, . . . , xn−1) ∈ GF (p)n.

Proof. First, we start by showing that fv(v) = 1. We can do this by plugging v
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directly into Equation (29), to obtain

fv(v) =
n−1∏

i=0

⎛

⎝ 1

(p− 1)!

p−1∏

j=1

(j + vi − vi)

⎞

⎠

=
n−1∏

i=0

⎛

⎝ 1

(p− 1)!

p−1∏

j=1

j

⎞

⎠

=
n−1∏

i=0

(
(p− 1)!

(p− 1)!

)

= 1.

Second, we show that fv(w) = 0 for every w ̸= v. Let w ̸= v. Pick k such that
wk ̸= vk. So there exists j ∈ {1, . . . , n − 1} ⊂ GF (p) such that j + vk − wk = 0
in GF (p). Thus the inside product of Equation (29) is 0 for i = k, and the whole
equation is 0. So fv(w) = 0. ✷

It easily follows that every GF (p)-valued function over GF (p)n can be written
in ANF.

Corollary 6. Let g : GF (p)n → GF (p). Then

g(x) =
∑

v∈GF (p)n

g(v)fv(x), (30)

where fv is as in Equation (29).

Example 54. Sagemath can easily list all the atomic functions over GF (3) having
2 variables:

x2
0x

2
1 − x2

0 − x2
1 + 1, x2

0x
2
1 + x0x

2
1 − x2

0 − x0, x
2
0x

2
1 − x0x

2
1 − x2

0 + x0,

x2
0x

2
1 + x2

0x1 − x2
1 − x1, x

2
0x

2
1 + x2

0x1 + x0x
2
1 + x0x1, x

2
0x

2
1 + x2

0x1 − x0x
2
1 − x0x1,

x2
0x

2
1 − x2

0x1 − x2
1 + x1, x

2
0x

2
1 − x2

0x1 + x0x
2
1 − x0x1, x

2
0x

2
1 − x2

0x1 − x0x
2
1 + x0x1.

Remark 55. The degree of any bent function f : GF (p)n → GF (p), when repre-
sented in ANF, satisfies

deg(f) ≤ n(p− 1)

2
+ 1.

The degree of any weakly regular bent function f : GF (p)n → GF (p), when repre-
sented in ANF, satisfies

deg(f) ≤ n(p− 1)

2
,

provided that (p− 1)n ≥ 4. Both of these results are due to Hou [26] (see also [11]
for further details).
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4.2. Bent Functions of Two Variables Construction

Recall that a p-ary bent function f is amorphic if its level curves Di = f−1(i) de-
termine an amorphic association scheme. The signature of a GF (p)-valued function
is the (p− 1)-tuple of the sizes of the level curves D1, . . . , Dp−1.

We will show that for any prime p > 2, there are (p + 1)!/2 amorphic bent
functions f : GF (p)2 → GF (p) of signature (p− 1, p− 1, . . . , p− 1) with ANFs that
are homogeneous of degree p − 1. They are all weakly regular. Furthermore, we
show any function from GF (p)2 to GF (p) with signature (p−1, p−1, . . . , p−1) and
ANF that is homogeneous of degree p− 1 must be one of these (p+1)!/2 functions.

These results were suggested by examples computed in Sagemath and Mathe-
matica. We note that for p = 3 we obtain 4!/2 = 12 functions, and for p = 5 we
obtain 6!/2 = 360 functions. These agree with our examples.

Proposition 8. Assume p > 2 is a prime. Let v1, v2, . . . , vp−1 be p − 1 pairwise
linearly independent vectors in G = GF (p)2, and let Di be the set of all non-zero
multiples of vi, for 1 ≤ i ≤ p−1. Let D0 = {0}, and let Dp = G\D0∪D1∪· · ·Dp−1.
Let f be the function given by f(x) = i, for x ∈ Di and 1 ≤ i ≤ p− 1, and f(x) = 0
otherwise. Then f is a bent function. There are exactly (p+ 1)!/2 such functions,
and each has signature (p− 1, . . . , p− 1).

In fact we will show that these bent functions are all homogeneous, weakly reg-
ular, and amorphic.

Proof. First we note that there are (p + 1)!/2 ways to choose the sets Di in the
way described, and each way gives a different function f . The signature of each
such function is (p − 1, . . . , p − 1), by the definition of f , since |Di| = p − 1 for
1 ≤ i ≤ p− 1.

Next we will show that each such f is bent. We wish to show that for any non-
zero b in G, Dbf is balanced, i.e., Dbf takes every value in GF (p) exactly p times.
The result follows from the counting argument given below.

In order to keep track of the number of times Dbf takes a value in GF (p), we will
work with unordered lists [α1, . . . ,αm] of elements of GF (p), where elements may
occur more than once, but order does not matter. Let P denote the unordered list
[0, 1, 2, . . . , p− 1]. For any list S, let PS denote the complement of S in P , i.e., the
list obtained from P by removing any elements of S. Let P +S denote the union of
P and S as unordered lists, i.e., with repetitions allowed. For any positive integer
m, let mP denote a list with each entry of P repeated m times. For example, P[0] =
[1, 2, . . . , p−1], P+[0] = [0, 0, 1, 2, . . . , p−1], and 2P = [0, 0, 1, 1, 2, 2, . . . , p−1, p−1].

We wish to show that for any non-zero b in G, the set of values of Dbf is pP .

Case 1: Suppose that b is in Di for some i such that 1 ≤ i ≤ p− 1.

If x is also in Di, then x+b is either 0 (if x = −b) or an element of Di. Therefore
Dbf takes the value −i once on Di, and takes the value 0, p − 2 times on Di. In



INTEGERS: 16 (2016) 38

unordered list notation, Dbf takes the values [−i] + (p− 2)[0] on Di.

Next consider x in Dj , for some fixed j ̸= i such that 1 ≤ j ≤ p− 1. As x ranges
through the p− 1 elements of Dj , the vector x+ b takes on p− 1 pairwise linearly
independent values in G, none of which is in Di or Dj . Therefore f(x + b) ranges
through the values P[i,j] + [0]. Consequently, Dbf(x) = f(x + b) − f(x) ranges
through the values P[i−j,0] + [−j]. Now taking the union of the values of Dbf over
the p−2 values of j ̸= i such that 1 ≤ j ≤ p−1, we obtain

∑
j

(
P[i−j,0] + [−j]

)
. Let

Q = [i − 1, i − 2, . . . , i− (p − 1)][i−i] = P[0,i]. Let R = [−1,−2, . . . ,−(p− 1)][−i] =
P[0,−i]. The set of values of Dbf on the union of Dj , for j ̸= i and 1 ≤ j ≤ p− 1, is(
(p− 2)P[0]

)
Q
+R =

(
(p− 2)P[0]

)
[−i]

+ [i].

Similarly, as x ranges through the 2(p − 1) vectors in Dp, f(x + b) takes the
values 2P[i] and Dbf(x) takes the same values, since f(x) = 0 for x in Dp.

If x = 0, we have Dbf(x) = f(b) = i.

Taking the union of the unordered lists from all the cases, we obtain

[−i] + (p− 2)[0] +
(
(p− 2)P[0]

)
[−i]

+ [i] + 2P[i] + [i] = pP.

It follows that Dbf is balanced, so f is bent.

Case 2: Similarly, suppose that b is in Dp.

If x is one of the p− 1 vectors in Dp which is a multiple of b, then x+ b is either
0 or is in Dp. On these p− 1 vectors, Dbf takes the values (p− 1)[0]. As x ranges
through the p− 1 vectors in Dp which are not multiples of b, x+ b ranges through
the sets D1, D2, . . . , Dp−1, and Dbf takes the values P[0].

As x ranges through the vectors in Dj , for each j with 1 ≤ j ≤ p−1, then f(x+b)
takes values in P[j], and Dbf(x) takes values in [0− j, 1− j, . . . , p−1− j][j−j] = P[0].
Taking the union over j, with 1 ≤ j ≤ p− 1, gives (p− 1)P[0].

If x = 0, we have Dbf(x) = f(b) = 0.

Thus the values taken by Dbf for b ∈ Dp are

(p− 1)[0] + P[0] + (p− 1)P[0] + [0] = pP,

so once again we see that Dbf is balanced and f is bent. ✷

Lemma 15. Let f be as in Proposition 8. Then f is weakly regular.

Proof. We will show that Wf (b)/Wf (0) is a pth root of unity, for every b in G =
GF (p)2.

We first show that Wf (0) = p. We let ζ = e
2πi
p . Noting that f(x) takes the value

i, p− 1 times, for 1 ≤ i ≤ p− 1, and the value 0, 2p− 1 times, we have

Wf (0) =
∑

x∈G ζf(x)

= (p− 1)
∑p−1

i=1 ζi + 2p− 1
= −(p− 1) + 2p− 1
= p.
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Next suppose that b ∈ Di for some i ̸= 0. Choose a set of representatives vj ∈ Dj ,
for 1 ≤ j ≤ p− 1, and vp and vp+1 linearly independent elements of Dp. We note
that G is the union of {0} and the multiples {vj , 2vj , . . . , (p − 1)vj}, for all j. We
note also that f(vj) = f(kvj), for all non-zero k ∈ GF (p). Then

Wf (b) = 1 +
∑p+1

j=1

∑p−1
k=1 ζ

f(vj)−k<b,vj>

= 1 +
∑p+1

j=1 ζ
f(vj)

∑p−1
k=1

(
ζ−<b,vj>

)k
.

There is exactly one index l such that b and vl are orthogonal. For this l we have

p−1∑

k=1

(
ζ−<b,vl>

)k
= p− 1.

If j ̸= l, we have
p−1∑

k=1

(
ζ−<b,vj>

)k
=

p−1∑

j=1

ζj = −1.

Hence,

Wf (b) = 1 +
(∑p+1

j=1 ζ
f(vj)(−1)

)
+ ζf(vl) + (p− 1)ζf(vl)

= 1− (ζ1 + ζ2 + · · ·+ ζp−1 + ζ0 + ζ0) + pζf(vl)

= pζf(vl).

It follows that Wf (b)/Wf (0) = ζf(vl), which is a pth root of unity, so f is weakly
regular. ✷

Proposition 9. Let f be as in Proposition 8. Let Γi be the subgraph of the Cayley
graph of f whose edges are the edges of weight i, for 1 ≤ i ≤ p− 1, i.e., there is an
edge between vertices u and w in Γi if u−w ∈ Di. Let Γp be the complement of the
Cayley graph of f in the complete graph on the p2 vertices GF (p)2, i.e., there is an
edge between vertices u and w if u − w ∈ Dp. Then the graphs Γ1,Γ2, . . . ,Γp form
a strongly regular decomposition of the complete graph on p2 vertices. Furthermore,
the graphs Γ1,Γ2, . . . ,Γp−1 are all of Latin square type (p2, p− 1, p− 2, 0) and the
graph Γp is of Latin square type (p2, 2(p− 1), p− 2, 2).

Proof. Recall that a graph Γ is (v, k,λ, µ)-strongly regular if Γ has v vertices, each
of degree k, and distinct vertices u and w have λ common neighbors if u and w are
neighbors, and µ common neighbors if u and w are not neighbors.

We see that v = p2 for each graph Γi. Also, k = |Di|, so k = p−1 for 1 ≤ i ≤ p−1,
and k = 2(p− 1) for i = p.

Case 1: 1 ≤ i ≤ p − 1. Suppose that u and w are neighbors in Γi. Let vi be a
vector in Di. Then u = w + ℓvi for some nonzero ℓ ∈ GF (p). If z is a neighbor of
both u and w, then z = u+mvi and z = w+ nvi, for some nonzero m,n ∈ GF (p).
Then w + ℓvi + mvi = w + nvi or ℓ = n −m in GF (p). There are p − 2 possible
pairs (m,n), so λ = p− 2.
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If u and w are not equal and not neighbors in Γi, then z cannot be a neighbor
of both u and w, so µ = 0.

Case 2: i = p. Suppose that u and w are neighbors in Γp. Then u = w + v for
some v ∈ Dp. If z is a neighbor of both u and w, then z = u + v′ and z = w + v′′,
for some vectors v′ and v′′ in Dp. Then u− w = v′′ − v′ = v. This is possible only
if v′ = mv and v′′ = nv for some nonzero m,n ∈ GF (p) such that n−m = 1. As
in Case 1, there are p− 2 possible pairs (m,n), so λ = p− 2.

Next suppose that u and w are not equal and not neighbors in Γp. Then u−w is
not an element of Dp. Let vp and vp+1 be any two linearly independent vectors in
Dp, so that Dp consists of all nonzero multiples of vp and vp+1. There is exactly one
way to express u−w as a linear combinationmvp+nvp+1, for nonzerom,n ∈ GF (p).
Therefore, there are exactly two vectors which are neighbors of both u and w:
z1 = u−mvp = w + nvp+1 and z2 = u− nvp+1 = w +mvp. Therefore µ = 2. ✷

Corollary 7. Let the function f and the sets D0, D1, . . . , Dp be as in Proposition
8. Then the sets D0, D1, . . . , Dp determine an amorphic association scheme.

Proof. The corollary is an immediate result of van Dam’s theorem (Proposition 4)
and Proposition 9. ✷

Lemma 16. Let f be the function of Proposition 8. Then f has a homogeneous
ANF of degree p− 1.

Proof. It is easy to see that f(kx) = kp−1f(x) = f(x), for any nonzero k in GF (p).
We will show that f has ANF given by P (x1, x2) = a0x

p−1
1 + a1x

p−2
1 x2 + · · · +

ap−2x1x
p−2
2 + ap−1x

p−1
2 for some a0, a1, . . . , ap−1 in GF (p).

Let λ be a generator of the cyclic multiplicative group ofGF (p). Then the vectors
w1 = (1, 0), w2 = (1,λ), w3 = (1,λ2), . . . , wp = (1,λp−1) = (1, 1), wp+1 = (0, 1) are
pairwise linearly independent vectors. For some permutation σ of {1, 2, . . . , p+ 1},
we may take vi = wσ(i), where vi ∈ Di for 1 ≤ i ≤ p − 1 and vp, vp+1 ∈ Dp.
Let τ be defined by τ(i) = σ−1(i) if 1 ≤ σ−1(i) ≤ p − 1 and τ(i) = 0 otherwise.
Then we want P (wi) = τ(i) for all i. This gives an equation of the form Ma = b,
where a = (a0, . . . , ap−1), b = (τ(1), τ(2), . . . , τ(p− 1), τ(p), τ(p+1)), and M is the
(p+ 1)× p matrix shown below:

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0
1 λ λ2 λ3 · · · λp−2 1
1 λ2 λ4 λ6 · · · λ2(p−2) 1
1 λ3 λ6 λ9 · · · λ3(p−2) 1
...

...
...

...
...

...
...

1 λp−2 λ2(p−2) λ3(p−2) · · · λ(p−2)2 1
1 1 1 1 · · · 1 1
0 0 0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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We note that the columns of the matrix M all sum to 0. The sum of the entries
of b is 1 + 2 + 3+ · · ·+ p− 1 + 0+ 0 = 0, so the system is consistent. We note also
that the submatrix ofM consisting of the first p rows is a nonsingular Vandermonde
matrix, so there is a solution a to the equation Ma = b. Thus f has the desired
ANF. ✷

Theorem 56. Suppose that p > 2 is a prime, and f is a function from GF (p)2

to GF (p) with algebraic normal form that is homogeneous of degree p− 1 and with
signature (p− 1, . . . , p− 1). Then f is an amorphic, weakly regular, bent function.

Proof. Such an f must have the form described in Proposition 8. The conclusions
follow from Proposition 8, Lemma 15, and Corollary 7. ✷

4.3. Bent Functions GF (3)2 → GF (3)

We focus on examples of even functions GF (3)2 → GF (3) sending 0 to 0. There
are exactly 34 = 81 such functions. Sagemath was used to identify and classify the
bent functions among them. The Sagemath code for the examples of Section 4.3,
Section 4.4, and Section 4.5 is available online on the second author’s webpage (see
[10]).

Proposition 10. There are 18 even bent functions f : GF (3)2 → GF (3) such that
f(0) = 0. The group G = GL(2, GF (3)) acts on the set B of all such bent functions
and there are two orbits in B/G: B/G = B1 ∪B2, where |B1| = 12 and |B2| = 6.

The 18 bent functions b1, b2, . . . , b18 are given below in table form and ANF. The
orbit B1 consists of the functions b2, b3, b4, b5, b6, b7, b8, b9, b11, b14, b15, and b16.
These functions are all regular. The orbit B2 consists of the functions b1, b10, b12,
b13, b17, and b18. These functions are weakly regular (but not regular). Each of the
bent functions gives rise to a symmetric weighted PDS.

GF (3)2 (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)
b1 0 1 1 1 2 2 1 2 2
b2 0 2 2 1 0 0 1 0 0
b3 0 1 1 2 0 0 2 0 0
b4 0 2 2 0 1 0 0 0 1
b5 0 0 0 2 1 0 2 0 1
b6 0 1 1 0 2 0 0 0 2
b7 0 0 0 1 2 0 1 0 2
b8 0 2 2 0 0 1 0 1 0
b9 0 0 0 2 0 1 2 1 0
b10 0 2 2 2 1 1 2 1 1
b11 0 0 0 0 2 1 0 1 2
b12 0 2 2 1 2 1 1 1 2
b13 0 1 1 2 2 1 2 1 2
b14 0 1 1 0 0 2 0 2 0
b15 0 0 0 1 0 2 1 2 0
b16 0 0 0 0 1 2 0 2 1
b17 0 2 2 1 1 2 1 2 1
b18 0 1 1 2 1 2 2 2 1
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The ANFs of these functions are:

b1 = x2
0 + x2

1, b2 = −x2
0 + x2

1, b3 = x2
0 − x2

1, b4 = −x2
0 − x0x1,

b5 = −x0x1 − x2
1, b6 = x2

0 + x0x1, b7 = x0x1 + x2
1, b8 = −x2

0 + x0x1,

b9 = x0x1 − x2
1, b10 = −x2

0 − x2
1, b11 = −x0x1, b12 = −x2

0 − x0x1 + x2
1,

b13 = x2
0 − x0x1 − x2

1, b14 = x2
0 − x0x1, b15 = −x0x1 + x2

1,

b16 = x0x1, b17 = −x2
0 + x0x1 + x2

1, b18 = x2
0 + x0x1 − x2

1.

For each of these 18 bent functions GF (3)2 → GF (3), the corresponding Cayley
graph is edge-weighted strongly regular. However, the converse is false, i.e., there
exist even functions f : GF (3)2 → GF (3) with f(0) = 0 such that the Cayley graph
of f is edge-weighted strongly regular but f is not bent (see Example 58).

Example 57. Consider the bent function b8 defined above. It can be shown that
the weighted PDS determined by b8 is isomorphic to the weighted PDS of Example
14.

Example 58. Consider the even function f : GF (3)2 → GF (3) with the following
values:

GF (3)2 (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)
f 0 1 1 2 0 1 2 1 0

This f has ANF
2x2

0x
2
1 + x2

0 + x0x1 + 2x2
1.

Using Sagemath , one can compute the Walsh-Hadamard transform of f and verify
that f is not bent. Although f is not bent, its Cayley graph satisfies the statements
in the conclusion of Analogue 43. In other words, the associated edge-weighted
Cayley graph is edge-weighted strongly regular. The plot of the corresponding
Cayley graph is shown in Figure 1.

The unweighted Cayley graph of b2 (as well as b3, b4, b5, b6, b7, b8, b9, b11, b14, b15,
and b16) is a strongly regular graph having parameters SRG(v, k,λ, µ) where v = 9,
k = 4, λ = 1, and µ = 2. We say that these bent functions are of type (9, 4, 1, 2).
The other 6 bent functions are of type (9, 8, 7, 0). Up to isomorphism, there is only
one (unweighted) strongly regular graph having parameters SRG(9, 4, 1, 2) (see [4],
[31]). We shall see later that the edge-weighted Cayley graphs arising from these
12 bent functions of type (9, 4, 1, 2) are also isomorphic7 as edge-weighted graphs.
Likewise, the Cayley graphs of these 6 bent functions of type (9, 8, 7, 0) are also
isomorphic as edge-weighted graphs.

7 We say edge-weighted graphs are isomorphic if there is a bijection of the vertices which
preserves the weight of each edge.
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Figure 1: The undirected unweighted Cayley graph of an even GF (3)-valued func-
tion of two variables from Example 58. (The vertices are ordered as in the example.)

Sagemath computations verify the following relationships:

b1 = −b10, b2 = −b3, b4 = −b6, b5 = −b7, b8 = −b14,

b9 = −b15, b11 = −b16, b12 = −b18, b13 = −b17,

b1 = b7 + b14 = b6 + b15, b10 = b4 + b9 = b5 + b8, b12 = b2 + b11 = b7 + b8,

b13 = b3 + b11 = b6 + b9, b17 = b2 + b16 = b4 + b15, b18 = b3 + b16 = b5 + b14.

According to a Sagemath computation, the following are regular bent:

b∗2 = b3, b∗4 = b9, b∗5 = b8, b∗6 = b15, b∗7 = b14, b∗11 = b16,

whereas
b∗1 = −b10

are weakly regular bent and (−1)-dual to each other (but not regular). The others
are all (−1)-self-dual and weakly regular (but not regular):

b∗12 = −b12, b∗13 = −b13, b∗17 = −b17, b∗18 = −b18.

Define the (left) action of G = GL(2, GF (3)) on V = GF (3)2 by linear transfor-
mations of the coordinates, i.e., if φ is an element of G given by

φ =

(
a b
c d

)
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where ad − bc ̸= 0, and if x⃗ = (x0, x1), then φ(x⃗) = (ax0 + bx1, cx0 + dx1). This
corresponds to the (right) action of G on GF (3)[x0, x1] defined for φ ∈ G by

φ : f(x0, x1) /−→ fφ(x0, x1) = f(φ−1x⃗).

We note the following additional properties of the bent functions bi:

• The 12 functions which are regular, but not µ-regular for some µ ̸= 1, can
all be obtained from b6(x0, x1) = x2

0 + x0x1 by linear transformations of the
coordinates, i.e., transformations (x0, x1) /→ (ax0 + bx1, cx0 + dx1) where
ad − bc ̸= 0. Each such isomorphism of GF (3)2 induces an isomorphism of
the associated edge-weighted Cayley graphs.

• Similarly, the 6 functions which are weakly regular can all be obtained from
b1(x0, x1) = x2

0 + x2
1 by linear transformations of the coordinates.

The following was verified with direct (computer-aided) computations.

Lemma 17. Assume p = 3, n = 2.

(a) The edge-weighted Cayley graph of bi is edge-weighted strongly regular and not
complete as a simple (unweighted) graph if and only if bi is regular if and only
if i ∈ {2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16}, i.e., bi is in the orbit B1.

(b) The edge-weighted Cayley graph of bi is edge-weighted strongly regular and
complete as a simple (unweighted) graph if and only if bi is weakly regular
(but not regular) if and only if i /∈ {2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16}, i.e., bi is
in the orbit B2.

Proposition 11. Let f : GF (3)2 → GF (3) be an even bent function with f(0) = 0.
Then the level curves of f ,

Di = {v ∈ GF (3)2 | f(v) = i},

for i = 1, 2, yield a symmetric weighted PDS and consequently a symmetric associ-
ation scheme.

1. If f is one of the twelve functions in orbit B1, we have |D1| = |D2| = 2. The
level curves of f determine a symmetric 3-class association scheme, and the
intersection numbers pkij are given as follows:
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p0ij 0 1 2 3
0 1 0 0 0
1 0 2 0 0
2 0 0 2 0
3 0 0 0 4

p1ij 0 1 2 3
0 0 1 0 0
1 1 1 0 0
2 0 0 0 2
3 0 0 2 2

p2ij 0 1 2 3
0 0 0 1 0
1 0 0 0 2
2 1 0 1 0
3 0 2 0 2

p3ij 0 1 2 3
0 0 0 0 1
1 0 0 1 1
2 0 1 0 1
3 1 1 1 1

Furthermore, D = D1 ∪D2 is a (9, 4, 1, 2)-PDS of Latin square type (N = 3
and R = 2) and negative Latin square type (N = −3 and R = −1). Both
D1 and D2 are (9, 2, 1, 0)-PDSs of Latin square type (N = 3 and R = 1).
The level curve D3 = G \ (D ∪ {0}) is a (9, 4, 1, 2)-PDS of Latin square type
(N = 3 and R = 2) and negative Latin square type (N = −3 and R = −1).
Moreover, f is an amorphic bent function.

2. If f is one of the six functions in orbit B2, we have |D1| = |D2| = 4, D3 = ∅,
and the intersection numbers pkij are given as follows:

p0ij 0 1 2
0 1 0 0
1 0 4 0
2 0 0 4

p1ij 0 1 2
0 0 1 0
1 1 1 2
2 0 2 2

p2ij 0 1 2
0 0 0 1
1 0 2 2
2 1 2 1

no p3ij

Proof. If f is one of the functions in orbit B1, we use Lemma 5, to see that D1 and
D2 are both (9, 2, 1, 0)-PDSs of Latin square type (N = 3 and R = 1). It follows
from Proposition 4 (and Theorem 22) that f is an amorphic bent function. The rest
of the proposition is verified using a case-by-case analysis. The proof is omitted. ✷

4.4. Bent Functions GF (3)3 → GF (3)

Sagemath and Mathematica were used to find and classify the even bent functions
f : GF (3)3 → GF (3) such that f(0) = 0.

Proposition 12. There are 2340 even bent functions f : GF (3)3 → GF (3) such
that f(0) = 0. The group G = GL(3, GF (3)) acts on the set B of all such bent
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functions, and there are 4 orbits in B/G:

B/G = B1 ∪B2 ∪B3 ∪B4,

where |B1| = 234, |B2| = 936, |B3| = 234, and |B4| = 936. Furthermore, B1 = −B3

and B2 = −B4.

The bent functions which give rise to a symmetric weighted PDS8 are those in
orbits B1 and B3. The other bent functions do not.

The functions in orbits B1 and B3 are weakly regular, but not regular. The
functions in orbits B2 and B4 are not weakly regular.

B1 f1(x0, x1, x2) = x2
0 + x2

1 + x2
2

B2 f2(x0, x1, x2) = x0x2 + 2x2
1 + 2x2

0x
2
1

B3 f3(x0, x1, x2) = −x2
0 − x2

1 − x2
2

B4 f4(x0, x1, x2) = −x0x2 − 2x2
1 − 2x2

0x
2
1

Table 1: Representatives of orbits in B/G for GF (3)3 → GF (3)

Example 59. Consider the example of the even function f2 : GF (3)3 → GF (3)
whose ANF is given in Table 1. This function is bent, but not weakly regular. For
this example, Analogue 43 is false.

Example 60. Consider the example of the even bent function f1 : GF (3)3 → GF (3)
of Table 1, which is homogeneous but bent. It is weakly regular, but not regular.
The unweighted Cayley graph of f1 is regular, but has four distinct eigenvalues, so
is not strongly regular. However, a Sagemath computation shows |Wf1(a)| = 33/2

for all a ∈ GF (3)3, so f1 is bent. Since Wf1 (0)/3
3/2 is not a cube root of 1, f1 is

not regular. In this example, Analogue 43 is true.

Let f : GF (3)3 → GF (3) be an even bent function with f(0) = 0. Let

Di = {v ∈ GF (3)3 | f(v) = i}, i = 1, 2,

D0 = {0}, and D3 = GF (3)3 \ (D0 ∪D1 ∪D2).

Proposition 13. Let f : GF (3)3 → GF (3) be an even bent function with f(0) = 0.
If the level curves Di of f yield a symmetric weighted PDS with intersection numbers
pkij, then one of the following two cases occurs:

1. The function f is in orbit B1, we have |D1| = 6 and |D2| = 12, and the
intersection numbers pkij are given as follows:

8Note, the symmetric weighted PDSs are given in the examples below.
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p0ij 0 1 2 3
0 1 0 0 0
1 0 6 0 0
2 0 0 12 0
3 0 0 0 8

p1ij 0 1 2 3
0 0 1 0 0
1 1 1 4 0
2 0 4 4 4
3 0 0 4 4

p2ij 0 1 2 3
0 0 0 1 0
1 0 2 2 2
2 1 2 5 4
3 0 2 4 2

p3ij 0 1 2 3
0 0 0 0 1
1 0 0 3 3
2 0 3 6 3
3 1 3 3 1

2. The function f is in orbit B3, we have |D1| = 12 and |D2| = 6, and the
intersection numbers pkij are given as follows:

p0ij 0 1 2 3
0 1 0 0 0
1 0 12 0 0
2 0 0 6 0
3 0 0 0 8

p1ij 0 1 2 3
0 0 1 0 0
1 1 5 2 4
2 0 2 2 2
3 0 4 2 2

p2ij 0 1 2 3
0 0 0 1 0
1 0 4 4 4
2 1 4 1 0
3 0 4 0 4

p3ij 0 1 2 3
0 0 0 0 1
1 0 6 3 3
2 0 3 0 3
3 1 3 3 1

Remark 61. In the cases of the above proposition where f does give rise to a PDS,
f is quadratic.

One way to prove this proposition is to partition the set of even functions into
equivalence classes with respect to the group action of GL(3, GF (3)), then pick a
representative from each class and test for bentness. Once we know which orbits
under GL(3, GF (3)) are bent, we can test a representative from each orbit. It turns
out that there are only 4 orbits whose elements are bent.

By Remark 55 (see [26] and [11]), if f is a bent function f : GF (3)3 → GF (3),
then the algebraic degree of f is at most 4. Furthermore, if f is weakly regular, its
degree is at most 3. We note that if f is even, it can have only terms of even degree,
and if f(0) = 0, then the constant term of f is zero. Thus, if f : GF (3)3 → GF (3)
is even, bent, weakly regular, and satisfies f(0) = 0, it must have only terms of
degree 2.

Consider the set E of all functions f : GF (3)3 → GF (3) such that f is even,
f(0) = 0, and the degree of the ANF of f is at most 4. The ANF of such a function
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must be of the form

f(x0, x1, x2) = a1x
2
0 + a2x0x1 + a3x0x2 + a4x

2
1 + a5x1x2 + a6x

2
2

+b1x
2
0x

2
1 + b2x

2
0x1x2 + b3x

2
0x

2
2 + b4x0x

2
1x2 + b5x0x1x

2
2 + b6x

2
1x

2
2

where a1, . . . , a6, b1, . . . , b6 are in GF (3). Thus there are 312 = 531, 441 such func-
tions. Recall the signature of f is the sequence of cardinalities of the level curves

Di = {x ∈ GF (3)3 | f(x) = i}

for i = 1, 2.

Let G = GL(3, GF (3)) be the set of nondegenerate linear transformations

φ : GF (3)3 → GF (3)3.

This group acts on E in a natural way, and we say f ∈ E is equivalent to g ∈ E if
and only if f is sent to g under some element of G. An equivalence class is simply
an orbit in E under this action of G. Mathematica was used to calculate that
|G| = 11232. However, since f(φ(x)) = f(−φ(x)) for all φ in G and x in GF (3)3,
there are at most 5616 functions in the equivalence class of any nonzero element of
E.

If f is bent, then so is f ◦ φ, for φ in G. Therefore, one way to find all bent
functions in E is to partition E into equivalence classes under the action of G and test
an element of each equivalence class to see if it is bent. However, the computational
time for attacking this problem directly was prohibitive.

We next note that the size of the level curves f−1(1) and f−1(2) is preserved
under the action of elements of G, i.e., the signature of f is the same for all functions
in each equivalence class. Mathematica was used to partition E into sets with the
same signature. There are 35 signatures that occur. The sizes of the signature
equivalence classes range from 0 (for the zero function) to 90090 for |D1| = |D2| = 8.
There are 120120 elements of E of signature (6, 12) or (12, 6).

Mathematica was then used to find all equivalence classes of functions in E under
transformations in G for each of the 35 signature equivalence classes. There are a
total of 281 equivalence classes of functions in E under the action of GL(3, GF (3)).
Of these, 4 classes consist of bent functions. In other words, if B denotes the subset
of E consisting of bent functions, then G acts on B and the number of orbits is 4.

There were two equivalence classes of bent functions of type |D1| = 6 and |D2| =
12. The other two bent classes were of type |D1| = 12 and |D2| = 6 and consisted
of the negatives of the functions in the first two classes. We will call the classes B1,
B2, B3, and B4:

B/G = B1 ∪B2 ∪B3 ∪B4.

Note that the (6, 12) classes are negatives of the (12, 6) classes, so after a possible
reindexing, we have B3 = −B1 and B4 = −B2.
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A representative of B1 is
x2
0 + x2

1 + x2
2.

There are 234 bent functions in its equivalence class under nondegenerate linear
transformations. Note that the ANFs of all these functions are quadratic.

A representative of B2 is

x0x2 + 2x2
1 + 2x2

0x
2
1.

There are 936 bent functions in its equivalence class under nondegenerate linear
transformations.

Thus there are a total of 2340 bent functions in B.
We calculate the intersection numbers pkij for representatives of B1 and B3 by

the formula

pkij =

(
1

pn|Dk|

)
tr(AiAjAk).

The right side of this formula yields some fractional values for k = 3 for represen-
tatives of B2 and B4, showing that the level curves of these functions do not yield
weighted PDS’s.

We note that the functions in B1 and B3 are weakly regular, but those in B2

and B4 are not.

We know that if Wf (0) is rational, then the level curves f−1(i), where i ̸= 0,
have the same cardinality (see Lemma 10). A Sagemath computation shows that
Wf (0) is not a rational number for the representatives of B1, B2 displayed in Table
1 above.

Since the value of Wf (0) depends only on the signature of f , it is easy to check
that Wf (0)/33/2 is not a cube root of unity, for any function of class (6,12) or (12,6).
It follows from Lemma 2 that f is not regular, for all bent functions f : GF (3)3 →
GF (3).

4.5. Bent Functions GF (5)2 → GF (5)

Using Sagemath , we give examples of bent functions of 2 variables over GF (5) and
study their signatures (see Definition 35).

Proposition 14. There are 1420 even bent functions f : GF (5)2 → GF (5) such
that f(0) = 0. The group G = GL(2, GF (5)) acts on the set B of all such bent
functions, and there are 11 orbits in B/G:

B/G = B1 ∪B2 ∪B3 ∪B4 ∪B5 ∪B6 ∪B7 ∪B8 ∪B9 ∪B10 ∪B11,

where |B1| = 40, |B2| = 60, |B3| = · · · = |B9| = 120, and |B10| = |B11| = 240.
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The bent functions which give rise to a symmetric weighted PDS9 are those in
the orbits of f1, f2, f5, f6, and f9 in Table 2. The bent functions in the orbits of
the other fi’s do not.

The function f1 is weakly regular, and the functions f2, . . . , f11 are regular.

B1 f1(x0, x1) = −x2
0 + 2x2

1

B2 f2(x0, x1) = −x0x1 + x2
1

B3 f3(x0, x1) = −2x4
0 + 2x2

0 + 2x0x1

B4 f4(x0, x1) = −x4
1 + x0x1 − 2x2

1

B5 f5(x0, x1) = x3
0x1 + 2x4

1

B6 f6(x0, x1) = −x0x3
1 + x4

1

B7 f7(x0, x1) = x4
1 − x0x1

B8 f8(x0, x1) = 2x4
1 − 2x0x1 + 2x2

1

B9 f9(x0, x1) = −x3
0x1 + x4

1

B10 f10(x0, x1) = 2x0x3
1 + x4

1 − x2
1

B11 f11(x0, x1) = x0x3
1 − x4

1 − 2x2
1

Table 2: Representatives of orbits in B/G for GF (5)2 → GF (5)

Example 62. Consider the example of the even function f : GF (5)2 → GF (5)
given by

f(x0, x1) = x4
0 + 2x0x1.

This is non-homogeneous, but bent and regular.

In this example, Analogue 43 is false.

Do the “level curves” of a bent function GF (5)2 → GF (5) give rise to a PDS?
An association scheme? In specific examples, such questions can be answered using
Sagemath .

The number of even (polynomial) functions f of degree less than or equal to 4
is 58 = 390625. The number of such functions having signature (4, 4, 4, 4) is 10740,
and the number of such functions having signature (6, 6, 6, 6) is 2920.

If G = GL(2, GF (5)), then these 11 bent functions form a complete set of repre-
sentatives of the G-equivalence classes of B. We write f ∼ g if and only if f = g ◦φ,
for some φ ∈ G. The group GF (5)× also acts on B. The functions fi satisfy

• for i ∈ {1, 2, 6}, fi ∼ 2fi ∼ 3fi ∼ 4fi,

• f3 ∼ 2f4 ∼ 3f7 ∼ 4f8,

9Note, the symmetric weighted PDSs are given in the examples below.



INTEGERS: 16 (2016) 51

• f4 ∼ 3f3 ∼ 4f7 ∼ 2f8,

• f5 ∼ 4f5 ∼ 2f9 ∼ 3f9,

• f7 ∼ 2f3 ∼ 4f4 ∼ 3f8,

• f8 ∼ 4f3 ∼ 3f4 ∼ 2f7,

• f9 ∼ 2f5 ∼ 3f5 ∼ 4f9,

• f10 ∼ 4f10 ∼ 2f11 ∼ 3f11,

• f11 ∼ 2f10 ∼ 3f10 ∼ 4f11.

It follows that f3, f4, f7 and f8 all must have the same signature. Similarly, f5 and
f9 must have the same signature, and f10 and f11 must have the same signature.

Note that f5 and f6 are not GL(2, GF (5))-equivalent, but they both correspond
to symmetric weighted PDSs with the same intersection numbers. In particular,
the adjacency ring corresponding to f5 is isomorphic to the adjacency ring corre-
sponding to f6.

Example 63. The example of f1 above can be used to construct an edge-weighted
strongly regular Cayley graph, hence also a symmetric weighted PDS attached to
its level curves. Define the level curve Di (for i = 1, 2, 3, 4) as above, and let
D0 = {0} and D5 = GF (5)2 \ ∪4

i=0Di. We can interpret pkij to be the number of
times each element of Dk occurs in Dj −Di. By computing these numbers directly
using Sagemath , we obtain the intersection numbers pkij :

p0ij 0 1 2 3 4
0 1 0 0 0 0
1 0 6 0 0 0
2 0 0 6 0 0
3 0 0 0 6 0
4 0 0 0 0 6

p1ij 0 1 2 3 4
0 0 1 0 0 0
1 1 2 0 2 1
2 0 0 2 2 2
3 0 2 2 0 2
4 0 1 2 2 1

p2ij 0 1 2 3 4
0 0 0 1 0 0
1 0 0 2 2 2
2 1 2 2 1 0
3 0 2 1 1 2
4 0 2 0 2 2

p3ij 0 1 2 3 4
0 0 0 0 1 0
1 0 2 2 0 2
2 0 2 1 1 2
3 1 0 1 2 2
4 0 2 2 2 0

p4ij 0 1 2 3 4
0 0 0 0 0 1
1 0 1 2 2 1
2 0 2 0 2 2
3 0 2 2 2 0
4 1 1 2 0 2

no p5ij
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Example 64. The example of f2 above can be used to construct an edge-weighted
strongly regular Cayley graph, hence also a symmetric weighted PDS attached to its
level curves. In fact, the union of the level curves determines a (25, 16, 9, 12)-PDS
of Latin square type (N = 5 and R = 4).

Define the level curve Di (for i = 1, 2, 3, 4) as above, and let D0 = {0} and
D5 = GF (5)2 \ ∪4

i=0Di. We can interpret pkij to be the number of times each
element of Dk occurs in Dj − Di. By computing these numbers directly using
Sagemath , we obtain the intersection numbers pkij :

p0ij 0 1 2 3 4 5
0 1 0 0 0 0 0
1 0 4 0 0 0 0
2 0 0 4 0 0 0
3 0 0 0 4 0 0
4 0 0 0 0 4 0
5 0 0 0 0 0 8

p1ij 0 1 2 3 4 5
0 0 1 0 0 0 0
1 1 0 2 0 1 0
2 0 2 0 0 0 2
3 0 0 0 2 0 2
4 0 1 0 0 1 2
5 0 0 2 2 2 2

p2ij 0 1 2 3 4 5
0 0 0 1 0 0 0
1 0 2 0 0 0 2
2 1 0 0 1 2 0
3 0 0 1 1 0 2
4 0 0 2 0 0 2
5 0 2 0 2 2 2

p3ij 0 1 2 3 4 5
0 0 0 0 1 0 0
1 0 0 0 2 0 2
2 0 0 1 1 0 2
3 1 2 1 0 0 0
4 0 0 0 0 2 2
5 0 2 2 0 2 2

p4ij 0 1 2 3 4 5
0 0 0 0 0 1 0
1 0 1 0 0 1 2
2 0 0 2 0 0 2
3 0 0 0 0 2 2
4 1 1 0 2 0 0
5 0 2 2 2 0 2

p5ij 0 1 2 3 4 5
0 0 0 0 0 0 1
1 0 0 1 1 1 1
2 0 1 0 1 1 1
3 0 1 1 0 1 1
4 0 1 1 1 0 1
5 1 1 1 1 1 3

Example 65. The example of f5 above can be used to construct an edge-weighted
strongly regular Cayley graph, hence also a symmetric weighted PDS attached to its
level curves. In fact, the union of the level curves determines a (25, 16, 9, 12)-PDS
of Latin square type (N = 5 and R = 4).

Define the level curve Di (for i = 1, 2, 3, 4) as above, and let D0 = {0} and
D5 = GF (5)2 \ ∪4

i=0Di. Using Lemma 5, we can see that each of D1, D2, D3, and
D4 is a (25, 4, 3, 0)-PDS of Latin square type (N = 5 and R = 1). Furthermore,
since D5 is the complement of D = ∪4

i=0Di, it is a (25, 8, 3, 2)-PDS (see Remark
23), which is of Latin square type (N = 5 and R = 2). It follows from Proposition
4 (and Theorem 22) that f5 is an amorphic bent function.

The intersection numbers pkij are given by:
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p0ij 0 1 2 3 4 5
0 1 0 0 0 0 0
1 0 4 0 0 0 0
2 0 0 4 0 0 0
3 0 0 0 4 0 0
4 0 0 0 0 4 0
5 0 0 0 0 0 8

p1ij 0 1 2 3 4 5
0 0 1 0 0 0 0
1 1 3 0 0 0 0
2 0 0 0 1 1 2
3 0 0 1 0 1 2
4 0 0 1 1 0 2
5 0 0 2 2 2 2

p2ij 0 1 2 3 4 5
0 0 0 1 0 0 0
1 0 0 0 1 1 2
2 1 0 3 0 0 0
3 0 1 0 0 1 2
4 0 1 0 1 0 2
5 0 2 0 2 2 2

p3ij 0 1 2 3 4 5
0 0 0 0 1 0 0
1 0 0 1 0 1 2
2 0 1 0 0 1 2
3 1 0 0 3 0 0
4 0 1 1 0 0 2
5 0 2 2 0 2 2

p4ij 0 1 2 3 4 5
0 0 0 0 0 1 0
1 0 0 1 1 0 2
2 0 1 0 1 0 2
3 0 1 1 0 0 2
4 1 0 0 0 3 0
5 0 2 2 2 0 2

p5ij 0 1 2 3 4 5
0 0 0 0 0 0 1
1 0 0 1 1 1 1
2 0 1 0 1 1 1
3 0 1 1 0 1 1
4 0 1 1 1 0 1
5 1 1 1 1 1 3

The examples of f6 and f9 above have the same pkij ’s.

5. Ideas for Further Study

We conclude with some questions touched on in this paper that we hope to explore
in more detail in future research:

• Which bent functions give rise to an association scheme or Schur ring?

• Can these functions be distinguished from the spectra of their Cayley graphs?

• Under what additional hypotheses is the analogue of the Bernasconi corre-
spondence true?

• Under what additional hypotheses is the analogue of the Dillon correspondence
true?

• Is there a generalization of the construction in Section 4.2 of amorphic bent
functions to higher dimensions?
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