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Abstract

We define g-multiparameter-Bernoulli polynomials and g-multiparameter-Cauchy
polynomials by using Jackson’s integrals, which generalize the previously known
numbers, including poly-Bernoulli By(lk) and the poly-Cauchy numbers of the first
kind cslk ) and of the second kind Eflk). We investigate their properties connected with
multiparameter Stirling numbers which generalize the original Stirling numbers.
We also give the relations between g-multiparameter-Bernoulli polynomials and g-
multiparameter-Cauchy polynomials.

1. Introduction

Let n and k be integers with n > 0, and let L = (l1,...,lx) be a k-tuple of real
numbers with ¢ := -+l # 0 and A = (ap,1,...,a,-1) be a n-tuple of real
numbers. Let ¢ be a real number with 0 < ¢ < 1.

Jackson’s q-derivative with 0 < ¢ < 1 (see e.g., [1, (10.2.3)], [12]) is defined by

_dof _ flz) = flgz)
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and Jackson’s g-integral ([1, (10.1.3)], [12]) is defined by

[ == a2 Y p(amog
n=0

The Jackson integral gives a unique g-antiderivative within a certain class of func-
tions. In particular, when f(z) = 2™ for some nonnegative integer m, then
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Here,
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is the g-number with [0]; = 0 (see e.g. [1, (10.2.3)], [12]). Note that limg_,[z], = .
Define poly-Bernoulli polynomials By(fg,q(z) with a parameter p by

P . 1—e Pt —tz S k) "
lek,q T e = Z Bn,p,q(z)m ) (1)

where Liy 4(2) is the g-polylogarithm function (see [16]) defined by

le’q Z

Notice that
hm B (2) = B,(L]fz(z),

n,0,q

which is the poly-Bernoulli polynomial with a p parameter (see [6]), and
lim1 Lig ¢(2) = Lix(2),
q—>

which is the ordinary polylogarithm function, defined by

ZCEDY = (2)
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In addition, when z = 0, Br(f,))(O) = B,S’f,)) is the poly-Bernoulli number with a p
parameter. When z = 0 and p = 1, Bﬁbk% (0) = B is the poly-Bernoulli number
(see [15]) defined by

S l—et

le ].—6 Z 7' (3)

The poly-Bernoulli numbers are expressed as special values at negative arguments
of certain combinations of multiple zeta values. The poly-Bernoulli numbers can be
expressed in terms of the Stirling numbers of the second kind.

m=0
([15, Theorem 1]), where Sa(n, m) is the Stirling number of the second kind, see [7],
determined by the falling factorial:

" = ZSg(n,m)x(x—l)-~-(x—m+1).

The poly-Bernoulli numbers are extended to the poly-Bernoulli polynomials (see
[3, 8]) and to the special multi-poly-Bernoulli numbers (see [11]). The Bernoulli
polynomials occur in the study of many special functions and in particular the
Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence,
i.e., a Sheffer sequence for the ordinary derivative operator.

Deﬁne the g-multiparameter-poly- Cauchy polynomials of the first kind cn L A q(z)
by

11 I
nLA,q / / T —ag—2) - (T X — pm1 — 2)dgy - - dg
(4)

Notice that

k
lim e 4 4(2) = i) A(2).

which are the multiparameter-poly-Cauchy polynomials of the first kind. The idea of
dealing with multiparameters g, aq, ..., a,_1 instead of 0,1,...,n — 1 has already
been considered in [25]. Namely, If [y = --- = [ = 1 and z = 0, the number
cglkzl AT cglk)A has been studied to prove the convexity. It has been proven that

glk)A is log-convex, satisfying (c,, (k ) W= ng)l Acff_zl 4 <0.
(k)

In addition, if a; = ip (i = 0, 1, ...,n—1), then the number Cpoals reduced to the
poly-Cauchy numbers of the first kind with a parameter p (see [19]). Furthermore,

if p = 1, then the number 05124 is reduced to the poly-Cauchy number cS{“ (see

[18]). If k = 1, then ) = ¢, is the classical Cauchy number (see [7, 27]). The
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number ¢, /n! is sometimes referred to as the Bernoulli number of the second kind
(see [4, 13, 28]).

The poly-Cauchy numbers have been considered as analogues of the poly-Bernoulli
numbers B,(lk). The poly-Cauchy numbers of the first kind, cglk), can be expressed
in terms of the Stirling numbers of the first kind:

=3 <_1):ﬂ;isi>(l‘ 20, k2

m=0

([18, Theorem 1]), where S1(n,m) is the (unsigned) Stirling number of the first kind
(see [7]), determined by the rising factorial:

x(w+1)-~-(m+n—1):Zsl(n,m)xm. (5)

Similarly, define the g-multiparameter-poly-Cauchy polynomials of the second
kind &), 4 ,(2) by

(k)
n,L,Aq
ll lk
/ / g —ag+2) (a1 xE — oot + 2)dgz - dgzk . (6)
Ifg—1,h=-=lk=1La;=ip(i=0,1,...,n—1) andz:O,thenumber@flkj4

is reduced to the poly-Cauchy numbers of the second kind with a parameter p (see
[19]). Furthermore, if p = 1, then the number ¢ ’{ ) is reduced to the poly-Cauchy
numbers of the second kind ¢ (bee [18]). If k = 1, then 2 = ¢, is the classical
Cauchy number (see [7, 27]). The poly-Cauchy numbers of the second kind ™ can
be expressed in terms of the Stirling numbers of the first kind by

n

Si(
_ "Z 1(n,m) n>0,k>1)
0 m+1

([18, Theorem 4]). The generating function of the poly-Cauchy numbers of the
second kind E%k) is given by

Lify (—In(1+1)) = de>t (7)

([18, Theorem 5]).

The poly-Cauchy numbers (of the both kinds) are extended to the poly-Cauchy
polynomials (see [14]), and to the poly-Cauchy numbers with a ¢ parameter (see
[19]). The corresponding poly-Bernoulli numbers with a ¢ parameter can be ob-
tained in [6]. A different direction of generalizations of Cauchy numbers is about
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hypergeometric Cauchy numbers (see [21]). Arithmetical and combinatorial prop-
erties including sums of products have been studied (see [20, 23, 24]).

Various kinds of ¢g-analogues or extensions have been studied. In [17], as gener-
alizations of the poly-Cauchy numbers of the first kind ¥ and of the second kind
c*,f”, by using Jackson’s ¢-integrals, g-analogues or extensions of the poly-Cauchy
numbers of the first kind cgf()] and of the second kind d{“}z are introduced, and their
properties are investigated. In [22], by using Jackson’s g¢-integrals, the concept
about g-analogues or extensions of the poly-Bernoulli polynomials B,gf()](z) with a
parameter were also introduced.

In this paper, by using Jackson’s g-integrals, as essential generalizations of the
previously known numbers and polynomials, including poly-Bernoulli numbers BT(Lk),
the poly-Cauchy numbers of the first kind c%k) and of the second kind /cﬂc), we
introduce the concept of g-analogues or extensions of the poly-Bernoulli polynomials
By(fz,,q(z) with a parameter, and the poly-Cauchy polynomials of the first kind cslk th
and of the second kind ’cﬂf};,q with a parameter. We investigate their properties
connected with the usual Stirling numbers and the weighted Stirling numbers. We
also give the relations between generalized poly-Bernoulli polynomials and two kinds

of generalized poly-Cauchy polynomials.

2. g-multiparameter-Cauchy Polynomials

For an n-tuple A = (ag, a1, ..., a,—1) of real numbers, define multiparameter Stir-
ling numbers of the first kind Sy(n,m, A) and of the second kind Sa(n,m, A) by

(t—ag)(t—a1) - (t—an_1) = > Si(n,m, A" (8)
m=0
and .
ZSz(n,m,A)(t—ao)(t—al)-~-(t—am,1)Zt”, (9)
m=0

respectively (cf. [7, 9, 26]). If a; =ip (i =0,1,...,n — 1), then

Sl (n’ m, (0’ Pyeves (n - 1)p)> (_p)n—msl (TL, m) )
So (n, m, (0,p,...,(n— 1)p)) = p""™Sy(n,m),

where S1(n,m) and Saz(n,m) are the (unsigned) Stirling numbers of the first kind
and the Stirling numbers of the second kind, respectively.

The g-multiparameter-poly-Cauchy polynomials of the first kind can be expressed
explicitly in terms of the multiparameter Stirling numbers of the first kind.
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Theorem 1. For all integers n and k with n > 0 and a real number q with 0 < g <
1, we have

Z)iszz?kl

m
) S (ME
Bhad) = s 3 (1) S
Proof. By definitions of (4) and (8), we have

1 ly M
Cglkj)L,A,q@) = / / Z Si(n,m, A)(x1 - -z — 2)"dgxy - - - dyz
m ol e _
—ZS1TLTTLAZ( ) z)m_’/ / lex;gdqxldqu
0 0

=0
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If z = 0, then we have the expression of the ¢g-multiparameter-poly-Cauchy num-
bers of the first kind.

Corollary 1. For all integers n and k with n > 0 and a real number q with 0 <
q < 1, we have
(k) zn: 51 (n, m, A)fm"’_l

C
b m=0 [m—l—l]’;

Similarly, the g-multiparameter-poly-Cauchy polynomials of the second kind can
be expressed explicitly in terms of the multiparameter Stirling numbers of the first
kind. The proof is similar to that of Theorem 1 and is omitted.

Theorem 2. For all integers n and k with n > 0 and a real number g with 0 < g <
1, we have

A(k) B n . m m (7z)i€mfi+1
Cn,L.A, q(z) - Z(il) Sl(nvva) g (Z) [m—i+ 1}5 '

m=0

If z = 0, then we have the expression of the g-multiparameter-poly-Cauchy num-
bers of the second kind.
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Corollary 2. For all integers n and k with n > 0 and a real number q with 0 <
q <1, we have

/\(k) o i (—1)mSl(n7m7A)€m+1
cn,L,A,q - Z [m + 1]1;

m=0
There are simple relations between two kinds of ¢g-multiparameter-poly-Cauchy
polynomials.

Theorem 3. For all integers n and k with n > 1 and a real number g with 0 < g <
1, we have

n (k k
(=17l ag(2) =80 _a4(2), (10)
n~(k k
(=", ag(2) = e 4 ,(2), (11)
where —A = (—ap, —Q1, ..., —Qp_1).

Proof. We shall prove identity (11). The identity (10) is proven similarly and omit-
ted. By the definition of Eff)L’A’q(z), we see that

k
(Wth
11 Ui
/ / e xptz—ag) (T w2 — ap_1)dg®r - - dgg
15 Ui
/ / exp—zFag) (T Tk — 2 F Qpot)dgTy - dgT
0
k
- C£’7)L —A,q )
O
3. g-multiparameter-poly-Bernoulli Polynomials
Define the g-multiparameter-poly-Bernoulli polynomials Bn % A q( z) by
(k) zgm 41
BY, 4y = Y 5 nmAWZ()——;T— (12)

m=0

This is a generalization of poly-Bernoulli polynomials B,(Lk)(z), defined in [24].
Ifg—1,54h=--=lx=1land oy =4 (¢ =0,1,...,n — 1), then the polynomial

Br(LkI)J 4,4(#) are reduced to the polynomial B (2) in [24].
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By putting z = 0 in (12), the g-multiparameter-poly-Bernoulli numbers Bnlf},,A,q
are given by
(k) "L Sy(n,m, A)mlem+! (
®) ag= 13)
L 3 S
Since the orthogonality relations
> Si(n,k, A)Sa(k,i, A) =Y Si(k,i, A)Sa(n, k, A) = 6, (14)
k=i k=i
where 4, ; is the Kronecker’s delta, we obtain the inverse relation
fo=> Sin,m, A)gm = gn=>_ Sa(n,m, A)fm. (15)
m=0 m=0

Theorem 4. For g-multiparameter-poly-Bernoulli and q-multiparameter-poly-Cauchy
polynomials, we have

n k n n [n i+1
Z Sl(nava)Br(n,)L,Aq = n'z ( ) ’I’L i 1 k ’ (16)
i=0
n
n gn 141
Z SQ n m, A 'm,L,A,q = ) 7’L—Z+ ]_ k ’ (17)
n zgn i+1
Sa( Ae & )" _—t. 18
mzomm 0, a2 ;()nm] (18)

Remark. If ¢ » 1 and o; = ip (¢ =0,1,...,n — 1), then Theorem 4 is reduced to
Theorem 3.2 in [6].

Proof. By (12), applying (15) with
gm i+1 (
fmmlz< )H—l] and g, = B, 1 4,(2),
we get the identity (16). Similarly, by Theorem 1 and Theorem 2 we have the
identities (17) and (18), respectively. O
If we put z = 0 in Theorem 4, we have the identities for appropriate numbers.

Corollary 3. For q-multiparameter-poly-Bernoulli and g-multiparameter-poly-Cauchy
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numbers, we have

nlentl

- I
Z Sunm By gy = Lo (19)
m=0 a
n *) B [n—i—l
n;)sm,m,A)cm,L’A,q TR (20)
(_1)n€n+1
ZSznmA G A = S 1)

4. Several Relations of g-poly-Bernoulli Polynomials and g-poly-Cauchy
Polynomials

Theorem 5. For any z we have

k - - k
Byl1a(2) = D0 D7 miSa(nm, A)Sa(m i )y a4 (2),
pn=0m=p
k) k
B7(1LA¢1 Z Z "mlSz(n,m, A)Sz(m, /‘vA)AL)LA,q(Z),
p=0m=p
et aq(2 ZZ—SlnmAwl(m 1 A)BLL 44(2),
=0m=p
k k
et a2 S1(n.m, A)Si(m, u, A)BLE), 4 4(2).
pu=0m=p

Remark. If p =1 and ¢ — 1 and o; = ip (¢ = 0,1,...,n — 1), then Theorem
5 is reduced to Theorem 4.1 in [24]. A different generalization without Jackson’s
integrals is discussed in [23].

Proof. We shall prove the first and the fourth identities. The other two are proven
similarly and omitted. By (17) in Theorem 4 and (12), we have

k) k)
B’t(ﬁ,LAq ZSgnmAm'Zngu, cfh a4(%)

_ Z Z mlSa(n, m, A)Sa(m, u, A)c uLA,q( 2).-

pu=0m=p
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By (16) in Theorem 4 and Theorem 2, we have

—_1)m m
( m? Sl(namaA) ngl(myuﬂA)B/yfi,A,q(z)
m=0 n=

k
,c\fm,)L,A,q(Z)

I
HMS

3

n _1 m
Z ( m? Sl(n,m,A)Sl(m,mA)Bff)L,A,q(Z)'

o

=

m=pu
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