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Laboratoire de mathématiques fondamentales et appliquées d’Amiens,

CNRS UMR 6140, 33 Rue Saint Leu, 80039 Amiens (France)
youssef.fares@u-picardie.fr

Keith Johnson
Department of Mathematics, Dalhousie University, Halifax, Nova Scotia,

B3H 4R2, Canada
johnson@mathstat.dal.ca

Received: 8/31/14, Revised: 5/12/16, Accepted: 6/6/16, Published: 7/7/16

Abstract
If A is a subset of Z, then the n-th characteristic ideal of A is the fractional ideal
of Z consisting of 0 and the leading coe�cients of polynomials in Q[x] of degree no
more than n which are integer-valued on A. The valuative capacity with respect
to a prime p of A is a measure of the rate of growth of the p-adic part of these
characteristic ideals of A and is defined, for a given p, to be the value of the limit

lim
n!1

↵A,p(n)
n

,

where ↵A,p(n) is the p-adic valuation of the inverse of the n-th characteristic ideal
of A. In this paper we compute this valuative capacity when A is the set of those
integers which are expressible as the sum of two and of three squares.

1. Introduction

For any subset A of Z, the ring of integer-valued polynomials on A is defined to be

Int(A, Z) = {f(x) 2 Q[x] : f(A) ✓ Z}.

Associated with this ring is its sequence of characteristic ideals {In : n = 0, 1, 2, . . . },
with In the fractional ideal formed by 0 and the leading coe�cients of the elements of
Int(A, Z) of degree at most n. For p a prime, the sequence of negatives of the p-adic
valuations of the ideals In, {↵A,p(n) : n = 0, 1, 2, . . . }, is called the characteristic
sequence of A with respect to p. This sequence is super-additive in the sense that
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↵A,p(n+m) � ↵A,p(n)+↵A,p(m) for any nonnegative integers n and m, and so the
limit

LA,p = lim
n!1

↵A,p(n)
n

always exists (by Fekete’s lemma) and is called the valuative capacity of A with
respect to the prime p.

In some cases this limit can be evaluated by knowing a closed form formula for
the terms in the characteristic sequence. For example, if A = Z then, for any prime,
p, we have ↵Z,p(n) = ⌫p(n!), the p-adic valuation of n!, which equals the largest
k for which pk divides n!. Since this is given by ⌫p(n!) =

P
k>0

⌅
n/pk

⇧
, it follows

that LZ,p = 1/(p� 1).
In this paper we evaluate this limit for two subsets of Z familiar from number

theory, for which closed form formulas for ↵A,p(n) are not available. Let S de-
note the set of integers which are squares and let E = S + S and F = S + S + S
denote the sets of integers which are the sums of two and of three squares, respec-
tively. Of course both of the sets E and F have complete classical number theoretic
descriptions:

Theorem 1. (Fermat) An integer z is in E if and only if every prime congruent
to 3 modulo 4 which occurs in its prime factorization, does so with even exponent.

Theorem 2. (Legendre) An integer z is in F if and only if it is not of the form
4a(8b + 7) for any integers a and b.

A subset B ✓ A ✓ Z is polynomially dense in A if any rational polynomial that
is integer-valued on B, is also integer-valued on A, and so Int(B) = Int(A). There
is a corresponding idea for p-locally integer-valued polynomials, and an important
result is that p-adically dense subsets are also p-locally polynomially dense, for any
prime p. Fermat’s and Legendre’s theorems allow us to describe E and F as p-
locally polynomially dense subsets of unions of cosets of powers of primes, and so
to use the methods for computing ↵ and L that were developed in [4] and [5]. The
results are given in the following theorem.

Theorem 3. The valuative capacities of the sets E and F are

LE,p =

8>>><
>>>:

1
p�1 if p ⌘ 1 (mod 4),

� 1 +
q

1 + 2p
(p�1)2 if p ⌘ 3 (mod 4),

�1+
p

13
2 if p = 2.

LF,p =

( 1
p�1 if p > 2,
�25+3

p
705

52 if p = 2.

The answer to the corresponding question for S itself follows from the results in
[1] (Example 19). For any prime, p, the characteristic sequence of S is given by
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↵S,p(n) = ⌫p((2n)!/2) and hence LS,p = 2/(p� 1). Since any nonnegative integer is
a sum of four squares the answer in that case is, therefore, also known.

2. Valuative Capacity of the Set of Sums of Two Squares

We begin this section with two lemmas, which will be used in the following sections.

Lemma 1. For any prime p and integer c, the congruence

x2 + y2 ⌘ c (mod p)

is solvable.

Proof. If p = 2, then this is trivial. For p > 2, consider the sequence consisting of
those positive integers that are congruent to 1 modulo 4 and also congruent to c
modulo p. This is an arithmetic sequence and so, by Dirichlet’s theorem, contains
a prime q. Since q is congruent to 1 modulo 4, it is a sum of squares, q = x2 + y2,
and so x2 + y2 ⌘ c (mod p), as required.

Lemma 2. If p is any odd prime, c is any integer not divisible by p, and k is any
positive integer, then the congruence

x2 + y2 ⌘ c (mod pk)

is solvable.

Proof. We proceed by induction on k, with the case k = 1 being the previous lemma.
Assume that we have found (xk, yk) such that

x2
k + y2

k ⌘ c (mod pk)

and consider the following expansion:

(xk + apk)2 + (yk + bpk)2 = (x2
k + y2

k) + 2pk(axk + byk) + p2k(a2 + b2).

We wish to solve the congruence

2pk(axk + byk) ⌘ (x2
k + y2

k)� c (mod pk+1)

for integers a and b. Since c 6⌘ 0 (mod p), one of xk or yk is not divisible by p.
Thus the congruence

2(axk + byk) ⌘ c� (x2
k + y2

k)
pk

(mod p)

is solvable for a and b. Taking xk+1 = xk + apk and yk+1 = yk + bpk completes the
induction.
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2.1. The Case p ⌘ 1 (mod 4)

Proposition 1. If p is a prime congruent to 1 modulo 4, c is any integer, and k
is any positive integer, then the congruence

x2 + y2 ⌘ c (mod pk)

is solvable.

Proof. If c is not divisible by p, then this is the previous lemma; so we restrict our
attention to the case c ⌘ 0 (mod p). Since p ⌘ 1 (mod 4), there exists an integer d
for which d2 ⌘ �1 (mod p). It follows that x1 = d and y1 = 1 gives a solution of

x2 + y2 ⌘ c (mod pk)

for k = 1. Since neither x1 nor y1 is divisible by p, the inductive proof in the
previous lemma applies to show that this congruence is solvable for all positive
k.

Corollary 1. If p is a prime congruent to 1 modulo 4, and if k is a positive integer,
then

E/(pk) = Z/(pk),

and so E is p-adically dense in Z.

Recall, from [2, p. 30] for example, that the characteristic sequence of Z is given
by Legendre’s formula

↵Z,p(n) =
X
k�1

b n

pk
c =

n�
Pm

i=0 ni

p� 1
,

if n =
Pm

i=0 nipi is the expansion of n in base p. We thus have the following result:

Corollary 2. If p is a prime congruent to 1 modulo 4, then the characteristic
sequence, {↵E,p(n) : n = 0, 1, 2, . . . }, of E with respect to p is equal to ↵Z,p(n), and
so the valuative capacity of E with respect to p is given by

LE,p = lim
n!1

↵E,p(n)
n

= lim
n!1

↵Z,p(n)
n

=
1

p� 1
.

2.2. The case p ⌘ 3 (mod 4)

We begin with the following notation. If p is a prime congruent to 3 modulo 4, then
let E0 = E \ (Z \ pZ); for k > 0, let Ek = p2kE0.
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Lemma 3. If p is a prime congruent to 3 modulo 4, then for any positive integer
k,

E0/(pk) = (Z \ pZ)/(pk)

and
E =

[
k�0

Ek.

Proof. By Lemma 2, if c is not divisible by p, then x2+y2 ⌘ c (mod pk) is solvable,
and hence (Z \ pZ)/(pk) ✓ E0/(pk). The reverse inclusion is immediate from the
definition of E0, and so the first equality follows. From Theorem 1, if c 2 E, then
⌫p(c) is even, and so we have c = p2kc0 with c0 2 Z \ pZ and, again by Theorem 1,
c0 2 E. Thus c 2 p2kE0 = Ek. Since Theorem 1 also implies Ek = p2kE0 ⇢ E, the
second equality follows.

To make use of this to evaluate LE,p, we recall the following results from [4] and
[5]:

Proposition 2. Let p be a fixed prime.

1. If A ✓ Z with characteristic sequence ↵A,p(n), then for any c 2 Z the charac-
teristic sequence of A + c is also ↵A,p(n), and the characteristic sequence of
pkA is ↵A,p(n) + kn.

2. If B ✓ Z is another subset of Z with the property that for any x 2 A and
y 2 B we have ⌫p(x� y) = 0, then the characteristic sequence of A[B is the
disjoint union of the sequences ↵A,p(n) and ↵B,p(n) sorted into nondecreasing
order. This sequence is called the shu✏e product of ↵A,p(n) and ↵B,p(n), and
is denoted (↵A,p ^ ↵B,p)(n).

The e↵ect that a union of the sort considered in (ii) above has on valuative
capacity is determined by the following algebraic result from [5]:

Proposition 3. If ↵1(n) and ↵2(n) are superadditive sequences with L1 = lim↵1(n)/n
and L2 = lim↵2(n)/n then,

lim
(↵1 ^ ↵2)(n)

n
=

1
1
L1

+
1
L2

.

With these results we can prove:

Proposition 4. If p is a prime congruent to 3 modulo 4, then

LE0,p =
p

(p� 1)2
.
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Proof. The first equality in Lemma 3 shows that E0 is p-adically, and so polyno-
mially, dense in Z \ pZ. Therefore, these sets have the same characteristic sequence
and the same valuative capacity. The set Z \ pZ is the union of p� 1 distinct cosets
of pZ, each of which has, by Proposition 2(i), characteristic sequence ↵Z,p(n) + n,
and so valuative capacity LZ,p + 1 = p/(p � 1). Proposition 2(ii) applies to this
union; hence, by Proposition 3, the valuative capacity of Z \ pZ, and that of E0

are given by

LE0,p = LZ\pZ,p =
1

(p� 1)
1✓
p

p� 1

◆ =
p

(p� 1)2
.

Proposition 5. If p is a prime congruent to 3 modulo 4, then

LE,p = �1 +

s
1 +

2p
(p� 1)2

.

Proof. From Lemma 3 we have

E =
[
k�0

Ek = E0 [ (
[
k�1

Ek) = E0 [ (
[
k�0

p2Ek) = E0 [ p2E.

Also, if x 2 E0 and y 2 p2E, then ⌫p(x � y) = 0. It therefore follows from
Proposition 2 that, if (kn) denotes the linear sequence whose n-th term is kn, then
the characteristic sequence of E with respect to p satisfies the equation

↵E,p = ↵E0,p ^ (↵E,p + (2n)).

This implies, by Proposition 3, that

LE,p =
1

1
LE0,p

+
1

LE,p + 2

.

Solving this for LE,p yields the stated result.

2.3. The Case p = 2

As in the case of odd primes, we will determine the valuative capacity of E for the
prime 2 by showing that the 2-adic closure of E is a union of cosets modulo powers
of 2; Propositions 2 and 3 can then be applied.

Lemma 4. If z is an element of E, then z 6⌘ 2k�23 (mod 2k) for any integer k > 1.
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Proof. Since z 2 E, by Theorem 1 its prime expansion is of the form

z = 2a
Y

pi⌘1 (mod 4)

pei
i

Y
qi⌘3 (mod 4)

q2fi
i .

Since q2
i ⌘ 1 (mod 4), it follows that z ⌘ 2a (mod 2a+2).

Lemma 5. If c is congruent to 2` modulo 2`+2 for some ` � 0, then the congruence

x2 + y2 ⌘ c (mod 2k).

is solvable, for every k � 0.

Proof. The proof, as before, is by induction on k. For k  ` + 2 there is nothing to
prove. Since c ⌘ 2` (mod 2`+2), we may write c = 2` + d2`+2. Choose (x`+3, y`+3)
as follows:

If ` is even, then

(x`+3, y`+3) =

(
(2`/2, 0) if d is even ,

(2`/2, 2`/2+1) if d is odd ,

while if ` is odd, then

(x`+3, y`+3) =

(
(2(`�1)/2, 2(`�1)/2) if d is even ,

(2(`�1)/2, 2(`�1)/2 + 2(`+1)/2) if d is odd.

Direct calculation shows that these satisfy the required congruence.
We now assume, by induction, that the pair (xk, yk) has been found for some

k � `+3 and proceed to construct (xk+1, yk+1). We divide the proof into two cases
according to the parity of `, and begin by assuming ` is even. Also assume, as part
of the induction hypothesis, that ⌫2(xk) = `/2, and that ⌫2(yk) > `/2. Expanding
(xk + a2k�`/2�1)2 + (yk + b2k�`/2�1)2, we obtain

(x2
k + y2

k) + 2k�`/2(axk + byk) + 22k�`�2(a2 + b2).

Since k � ` + 3, the third term is congruent to 0 modulo 2k+1. Since ⌫2(xk) = `/2,
the congruence

axk2k�`/2 ⌘ c� (x2
k + y2

k) (mod 2k+1)

is solvable for a. Since ⌫2(yk) > `/2, taking b = 0 gives a solution of

(axk + byk)2k�`/2 ⌘ c� (x2
k + y2

k) (mod 2k+1),

and so (xk+1, yk+1) = (xk + a2k�`/2�1, yk) satisfies the required congruence. The
identity ⌫2(xk+1) = `/2 follows from the inequality ⌫2(a2k�`/2�1) � k � `/2� 1 �
`/2 + 2. The corresponding condition on yk+1 is obvious since yk+1 = yk.
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Next assume that ` is odd, and also assume, as part of the induction hypoth-
esis, that ⌫2(xk) = ⌫2(yk) = (` � 1)/2. Expanding (xk + a2k�(`+1)/2)2 + (yk +
b2k�(`+1)/2)2, we obtain

(x2
k + y2

k) + 2k+1�(`+1)/2(axk + byk) + 22k�`�1(a2 + b2).

Since k � ` + 3, the third term, as before, is congruent to 0 modulo 2k+1. Since
⌫2(xk) = ⌫2(yk) = (`� 1)/2, we have

⌫2(xk2k+1�(`+1)/2) = ⌫2(y
k+1�(`+1)/2
k ) = k,

and so the congruence

(axk + byk)2k+1�(`+1)/2 ⌘ c� (x2
k + y2

k) (mod 2k+1)

is solvable for a and b. We take (xk+1, yk+1) = (xk + a2k�(`+1)/2, yk + b2k�(`+1)/2).
Since ⌫2(a2k�(`+1)/2), ⌫2(b2k�(`+1)/2) � k � (` + 1)/2 > (` � 1)/2, we have
⌫2(xk+1), ⌫2(yk+1) = (`� 1)/2.

This provides the following description of the 2-adic completion of E:

Corollary 3. The set E is 2-adically dense in
S

`�0(2
` + 2`+2Z).

The 2-adic valuative capacity of E can now be computed.

Proposition 6. The valuative capacity of E for the prime 2 is given by

LE,2 =
�1 +

p
13

2
.

Proof. Let Ē denote the 2-adic closure of E determined in the previous corollary.
Since

Ē =
[
`�0

(2` + 2`+2Z) = (1 + 4Z) [ 2(
[
`�0

(2` + 2`+2Z)) = (1 + 4Z) [ 2Ē,

we have

LE,2 = LĒ,2 =
1

1
L1+4Z,2

+
1

LĒ,2 + 1

=
1

1
3

+
1

LĒ,2 + 1

=
1

1
3

+
1

LE,2 + 1

,

which simplifies to
L2

E,2 + LE,2 � 3 = 0;

this has positive root as stated.
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3. Valuative Capacity of the Set of Sums of Three Squares

Legendre’s description of F is equivalent to:

Proposition 7. The set F can be expressed as

F = Z \ (
[
a�0

(22a7 + 22a+3Z)).

From this the valuative capacity of F for odd primes is immediate:

Proposition 8. For any odd prime, p, the valuative capacity of F with respect to
p is

LF,p = LZ,p =
1

p� 1
.

Proof. From Proposition 7 it is clear that F contains the coset 2 + 4Z. If c is a
given integer and k > 0, then the congruences

z ⌘ 2 (mod 4),
z ⌘ c (mod pk),

are simultaneously solvable, hence have a solution in F . Thus F/(pk) = Z/(pk),
and so F is p-adically dense in Z and LF,p is as stated.

It thus only remains to determine LF,p for p = 2.

Lemma 6. The set F satisfies the equation

F = (2 + 4Z) [ ({1, 3, 5} + 8Z) [ 22F.

Proof. This is another restatement of Legendre’s theorem, this time as a union of
cosets:

F = (
[
a�0

(22a+1 + 22a+2Z)) [ (
[
a�0

({1, 3, 5}22a + 22a+3Z))

= (2 + 4Z) [ (
[
a�1

(22a+1 + 22a+2Z))

[ ({1, 3, 5} + 8Z) [ (
[
a�1

({1, 3, 5}22a + 22a+3Z))

= (2 + 4Z) [ ({1, 3, 5} + 8Z)

[ 22(
[
a�0

(22a+1 + 22a+2Z)) [ (
[
a�0

({1, 3, 5}22a + 22a+3Z))

= (2 + 4Z) [ ({1, 3, 5} + 8Z) [ 22F,

as claimed.



INTEGERS: 16 (2016) 10

By applying Proposition 3 twice to the result of Lemma 6, we obtain:

Lemma 7. The valuative capacity of F with respect to the prime 2 satisfies the
equation

LF,2 =
1

1
L{1,3,5}+8Z,2

+
1

1 +
1

1
L2+4Z,2 � 1

+
1

LF,2 + 1

.

Two further applications evaluate the first term in the denominator on the right.

Lemma 8. The valuative capacity of {1, 3, 5} + 8Z is given by

L{1,3,5}+8Z,2 =
11
5

.

Proof. Expressing {1, 3, 5} + 8Z as ({1, 5} + 8Z) [ (3 + 8Z), we obtain

L{1,5}+8Z,2 = 2 +
1

1
L1+8Z,2 � 2

+
1

L5+8Z,2 � 2

= 2 +
1

1
4� 2

+
1

4� 2

= 3

and

L{1,3,5}+8Z,2 = 1 +
1

1
L{1,5}+8Z,2 � 1

+
1

L3+8Z,2 � 1

= 1 +
1

1
3� 1

+
1

4� 1

=
11
5

.

We thus have

LF,2 =
1

5
11

+
1

1 +
1

1
3� 1

+
1

LF,2 + 1

,

which simplifies to give the quadratic

26L2
F,2 + 25LF,2 � 55 = 0,

with positive root

LF,2 =
�25 + 3

p
705

52
;

this concludes the proof of Theorem 3.
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