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Abstract
A triangulation T of a convex n-gon P is a dissection of P into triangles by non-
crossing diagonals. An ear in such a triangulation is a triangle of T that shares
two sides with P itself. Certain enumerative and structural problems become easier
when one considers only triangulations with few ears. We demonstrate this in two
ways. First, for k = 2, 3, we find the number of symmetry classes of triangulations
with k ears. Second, for k = 2, 3, we determine the number of triangulations disjoint
from a given triangulation: this number depends only on n for k = 2, and only on
lengths of branches of the dual tree for k = 3.

1. Introduction

Let P be a convex n-gon (n � 4) with vertices labelled 0, 1, 2, . . . , n�1, and let T be
its triangulation, that is, a dissection of P into triangles by non-crossing diagonals.
An ear is a triangle of T that shares two sides with P . An internal triangle is a
triangle of T that shares no side with P . The number of ears of any triangulation
P is two more than the number of its internal triangles. The triangulations in
Figure 1(a, b) have 2 ears, and the triangulation in Figure 1(c) has 3 ears. More
examples of 2-eared triangulations are given in Figures 2, 3 and 4.

Recall that the number of triangulations of P is Cn�2, where Cn = 1
n+1

�2n
n

�
is the

nth Catalan number. Hurtado and Noy [4] found that the number of triangulations
1 Current address: Institut für Diskrete Mathematik und Geometrie, Technische Universität
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of an n-gon with exactly k ears is

n

k
2n�2k

✓
n� 4
2k � 4

◆
Ck�2

(see also [3]). Triangulations having few ears (equivalently, with few internal tri-
angles) are generally easier to understand than triangulations with an arbitrary
number of ears. Adin, Firer and Roichman [1] showed that the a�ne Weyl group
C̃n acts transitively, by “colored” flips, on the set of 2-eared triangulations.

The purpose of this note is to study two aspects of 2-eared and 3-eared trian-
gulations: we enumerate their symmetry classes, and we compute the number of
triangulations which share no diagonals with a given 2-eared or 3-eared triangula-
tion. As we shall see, the proofs for the cases of 2- and 3-eared triangulations are
easy due to the fact such triangulations have very simple dual trees (a dual tree of
a triangulation T is a combinatorial embedding whose vertices correspond to the
triangles of T , in which two vertices are adjacent if and only if the corresponding
triangles share a diagonal). Indeed, the dual tree of a 2-eared triangulation is a
path, and the dual tree of a 3-eared triangulation is a triple of paths which have
a common endpoint and are otherwise disjoint. Thus extension of our results to
general triangulations is interesting but might be substantially more di�cult – even
on the level of formulation.

Comment. An ear of a triangulation of a convex n-gon is a triangle of the triangu-

lation that shares two sides with the n-gon itself. Let Cn =
1

n + 1

✓
2n
n

◆
denote the

n-th Catalan number, and recall that there are Cn�2 triangulations of an n-gon.
Hurtado and Noy [4] found that the number of triangulations of an n-gon with k
ears is

n

k
2n�2k

✓
n� 4
2k � 4

◆
Ck�2

(see also [3]). For n � 4, the number of ears of a triangulation of an n-gon is
two more than the number of its internal triangles, which are triangles that share
no side with the polygon itself. Triangulations having 2 ears (equivalently, where
every triangle shares at least one side with the polygon itself) are generally easier to
understand than triangulations with an arbitrary number of ears. Adin, Firer and
Roichman [1] showed that the a�ne Weyl group C̃n acts transitively, by “colored”
flips, on the set of 2-eared triangulations. Some 2-eared triangulations are given in
Figures 2, 3 and 4, as well as the left and middle of Figure 1.

The purpose of this note is to study two aspects of 2-eared and 3-eared trian-
gulations: we enumerate their symmetry classes, and we compute the number of
triangulations which share no diagonals with a given 2-eared or 3-eared triangula-
tion. Extension of these results to general triangulations is interesting but generally
more di�cult.
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2. Symmetry Classes

The action of the dihedral group of order 2n on the triangulations of an n-gon
by rotation and reflection2 defines an equivalence relation, whose classes are called
symmetry classes. Figure 1 shows representatives of all three symmetry classes of
triangulations of a hexagon. Moon and Moser [7] enumerated the symmetry classes
of triangulations of an n-gon. Clearly, rotations and reflections preserve the number
of ears, so that the equivalence relation may be restricted to triangulations with a
fixed number of ears.
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Figure 1: Triangulations of a hexagon.

To enumerate the symmetry classes of 2-eared triangulations, we note their con-
nection with integer compositions. The two ears of a 2-eared triangulation of an
n-gon partition the remaining n� 4 sides of the n-gon into two paths. Considering
a drawing in which the ears are separated by a vertical line, we can call these paths
“up” and “down”. See Figure 2: the “up path” is 123456, and the “down path”
is 89(10). Each of the remaining n � 4 triangles of the triangulation “points” ei-
ther up or down. For example, in the triangulation in Figure 2, the triangles with
vertices 2, 9, 10 and 6, 8, 9 are the ones pointing up. It is easily seen that every
configuration of triangles pointing up and down is possible, and that together with
the location of the ears this configuration completely determines the 2-eared trian-
gulation. The connection with integer compositions is apparent if we associate with
each composition of n � 3 a sequence of bars placed in the n � 4 spaces between
n � 3 balls. Then each bar corresponds to an upwards-pointing triangle and each
vacant space between balls corresponds to a downwards-pointing triangle. Every
symmetry class can be represented in this way four times (some of the representa-
tions might coincide); see Figure 2. The operation of interchanging the bars and
the vacant spaces is known as conjugation of compositions, first studied by MacMa-
hon [6]. In terms of triangulations, conjugation corresponds to interchanging the
up and down directions, and composition reversal (i.e., taking x1 + x2 + . . . + xn to
xn + xn�1 + . . . + x1) corresponds to reflection around the vertical axis. This leads
to the following conclusion.

2To this end, we consider P as a regular polygon.
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Proposition 1. There is a bijection between symmetry classes of 2-eared trian-
gulations of an n-gon and equivalence classes of compositions of n � 3, where two
compositions are considered equivalent if one can be obtained from the other by
conjugation and reversal.

Now we are able to enumerate the symmetry classes for 2-eared triangulations.

Theorem 1. There are 2n�6 +2bn/2c�3 symmetry classes of 2-eared triangulations
of an n-gon.

Proof. By Proposition 1 it su�ces to enumerate the conjugacy-and-reversal classes
of compositions. We do this by counting the compositions invariant under each
relevant operation. In all, there are 2m�1 compositions of an integer m. By results
of MacMahon [6, 8], there are 2bm/2c compositions of m which are equal to their
own reversal, and if m is odd, there are 2bm/2c compositions of m whose conjugate
equals their reversal. If m is even, the conjugate of a composition of m cannot be
equal to its reversal. Finally, for m > 1 a composition cannot be self-conjugate.

2 + 5 + 1

1 + 2 + 1 + 1 + 1 + 2

1 + 5 + 2

2 + 1 + 1 + 1 + 2 + 1

9
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3 4
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8

Figure 2: A 2-eared triangulation of a 11-gon and corresponding compositions of 8.

Thus by the Cauchy-Frobenius Lemma [2] (applied to the group of order 4 gener-
ated by the reversal and conjugation operations), the number of equivalence classes
of compositions of m > 1 is

1
4
(2m�1 + 2bm/2c + 112-m 2bm/2c) = 2m�3 + 2b(m�3)/2c,

where the indicator 112-m is 1 if m is odd and 0 if m even. Setting m = n� 3 then
gives the stated result.

The sequence enumerating these symmetry classes is given in The On-Line En-
cyclopedia of Integer Sequences [10, A005418]. An analysis along the same lines
can be performed to enumerate the symmetry classes of triangulations with k ears.
For example, the number of symmetry classes of 3-eared triangulations of an n-gon
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can be determined by counting those that are invariant under rotation by 120� and
those that are invariant under reflection. The result is that there are

1
3
2n�8(n� 4)(n� 5) + 112|n2n/2�4 + 113|n

1
3
2n/3�2

symmetry classes of 3-eared triangulations. Similar computations for larger k are
possible but become rather tedious.

3. Disjoint Triangulations

3.1. The Two-eared Case

We call two triangulations disjoint if they have no diagonals in common. Huguet
and Tamari [5] gave a complicated recursive formula for the total number of “proper
diagonals” of the associahedron, or equivalently, the total number of pairs of disjoint
triangulations of an n-gon. Given a triangulation, it may be di�cult to determine
how many triangulations are disjoint from it. However, for 2-eared triangulations
the answer is simple.

Theorem 2. If T is any 2-eared triangulation of an n-gon, there are Cn�3 trian-
gulations disjoint from T .

Proof. Consider a 2-eared triangulation whose diagonals all have a common end-
point: such triangulations are called arrow triangulations. To be specific, we con-
sider the arrow triangulation TA with diagonals 13, 14, . . . , 1(n�1) (see the left side
of Figure 3). It is easily seen that a triangulation T 0 is disjoint from TA if and only
if T 0 includes the diagonal 02. Therefore there are Cn�3 triangulations disjoint from
TA.

Now let T1 and T2 be two 2-eared triangulations, and we show that the number
of triangulations disjoint from T1 is equal to the number of triangulations disjoint
from T2. Note that both T1 and T2 have linear dual trees, so we can define an
order < on their diagonals (in either of two possible ways). This induces a bijection
� between the diagonals of T1 and of T2. For example, for the triangulations of
Figure 3, we may assign �(13) = 68, �(14) = 69, �(15) = 59, and so on. If
e1, e2, . . . , er are some diagonals of T1, we claim that the number of triangulations
that include the diagonals e1, . . . , er is the same as the number of triangulations
that include the diagonals �(e1), . . . ,�(er). Indeed, since the diagonals ei and the
diagonals �(ei) have the same relative positions in their respective triangulations,
they partition their n-gon into polygons of the same respective sizes. The number of
triangulations including at least these diagonals is then just the number of ways to
triangulate these polygons, which is the same number for T1 and T2. For example,
for each of the triangulations given in Figure 3, there are C2C2C4C1 triangulations
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that include the marked diagonals. Thus, the number of triangulations sharing
each subset of the diagonals of T1 is the same as the number of triangulations
sharing the corresponding subset of T2. In particular this is true for the empty set,
and the theorem follows from considering any 2-eared triangulation and an arrow
triangulation.
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Figure 3: Two 2-eared triangulations with corresponding subsets of diagonals.

Next we make some remarks related to Theorem 2 and its proof.

1. The proof of Theorem 2 can be also presented as follows. The number of
triangulations of an n-gon containing certain fixed diagonals is the product of
the numbers of triangulations of sub-polygons created by these diagonals, that
is – the product of corresponding Catalan numbers. Therefore, the number
disj(T ) of triangulations avoiding all the diagonals of a given triangulation T is
given by an inclusion-exclusion formula. If T is a 2-eared triangulation of an n-
gon, then, due to the linear ordering of its diagonals, the terms in this formula
will be products of Catalan numbers Ca1Ca2 . . . Cai , where (a1, a2, . . . , ai) are
all possible compositions of n� 2. Namely, we have

disj(T ) =
n�2X
i=1

0
BBBBBBBBB@

(�1)i+1
Y

(a1, a2, . . . , ai) :
a1, a2, . . . , ai 2 N,

a1 + a2 + · · · + ai = n� 2

Cai

1
CCCCCCCCCA

. (1)

This already proves that for given n, disj(T ) does not depend on a specific T .
In order to find disj(T ) analytically, we notice that the right-hand side of (1)
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is the coe�cient of xn�3 in
X
i�0

(�1)ixisi+1(x),

where c(x) is the generating function of Catalan numbers, and s(x) = c(x)�1
x =

c2(x). The sum of this geometric series is

s(x)
1 + xs(x)

=
c(x)� 1
xc(x)

= c(x),

and, therefore, disj(T ) is indeed equal to Cn�3.

2. We note another interpretation of the result of Theorem 2. The second author
[9] showed that the number of triangulations of a 2n-gon without any diagonals
parallel to one of its sides (for example, to 01), is equal to 2C2n�3. Similarly,
consider the triangulations of an n-gon which avoid diagonals parallel to either
01 or 02. These are precisely the triangulations that are disjoint from the 2-
eared triangulation with diagonals 02, 2(n�1), (n�1)3, 3(n�2), . . . , (bn/2c+
2)(bn/2c), known as a snake triangulation (see Figure 4). Thus we obtain the
following corollary.

Corollary 1. For any n � 3, the number of triangulations of an n-gon avoid-
ing any diagonals parallel to 01 or 02, is equal to Cn�3.
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Figure 4: A snake triangulation of an 11-gon.

3. The idea of the proof of Theorem 2 can be extended to proving the following
more general result.

Theorem 3. The number of triangulations disjoint from a triangulation T of
an n-gon depends only on the location of the internal triangles of T .
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The proof is essentially the same: consider two triangulations, T1 and T2, with
their internal triangles in the same location. There is a natural bijection be-
tween the diagonals of T1 and T2 such that corresponding diagonals partition
P into the same size polygons. Therefore, again, the number of triangulations
sharing a subset of the diagonals of T1 is equal to the number of triangulations
sharing the corresponding subset of T2; and, in particular, this holds for the
empty set. In other words, computing the number of triangulations disjoint
from T1 and those disjoint from T2 will produce the same inclusion-exclusion
formula.

3.2. The Three-eared Case

In this section we apply Theorem 3 to the 3-eared case. We start with the following
lemma.

Lemma 1. Let a be a fixed vertex of P . Let m be a number such that 0  m 
n � 3. The number of triangulations of P that do not use any of the m diagonals
a(a + 2), a(a + 3), . . . , a(a + m + 1), is

n�3�mX
i=0

CiCn�3�i. (2)

Proof. If m = 0, there is no restriction, and we have Cn�2 triangulations, which is

equal to
n�3X
i=0

CiCn�3�i.

Now suppose 1  m  n� 3. We assume without loss of generality that a = 0;
refer to Figure 5. A triangulation T 0 that satisfies the condition cannot use the
diagonal 02. Therefore, T 0 has at least one diagonal with an endpoint in 1. Let b,
3  b  n � 1, be the maximum number so that 1b is a diagonal in T 0. Then T 0

necessarily has the diagonal 0b (unless b = n � 1). Therefore we have b > m + 1
because otherwise 0b is forbidden.

For any choice of triangulation of the b-gon with vertices 1, 2, . . . , b and of the
(n � b + 1)-gon with vertices 0, b, b + 1, . . . , n � 1, a valid triangulation of P is
obtained. Since m+2  b  n� 1, the number of triangulations T 0 that satisfy the
condition is

CmCn�m�3 + Cm+1Cn�m�4 + · · · + Cn�3C0 =
n�3�mX

i=0

CiCn�3�i.

Let T be a 3-eared triangulation of an n-gon. We say that T has type (p, q, r)
if p, q, r are the numbers of triangles in three parts of T separated by its (unique)
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m + 1

3

2

1
0

n� 1

b

Figure 5: Illustration to proof of Lemma 1. The forbidden diagonals are shown by
grey color.

internal triangle. In other words, the dual tree of such T consists of three branches,
of lengths p, q and r, connected to the common point. Notice that p+q+r = n�3.
The 3-eared triangulation in Figure 1(c) has type (1, 1, 1).

Now we prove the main result of this section.

Theorem 4. Let T be a 3-eared triangulation of type (p, q, r). The number of
triangulations of P disjoint from T is

2Cn�3 �
p�1X
i=0

CiCn�4�i �
q�1X
i=0

CiCn�4�i �
r�1X
i=0

CiCn�4�i. (3)

Proof. By Theorem 3 it su�ces to prove the result for triangulation T that appears
in Figure 6.

1

p + 1

p + q + 2

p + q + 3

0 n� 1

p + 2

Figure 6: The representative for triangulations of type (p, q, r).
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Let T 0 be a triangulation disjoint from T . We split the discussion into two cases,
conditioned on whether or not 1(n� 1) belongs to T 0.

• Case 1: 1(n� 1) belongs to T 0.

Note that T 0 is disjoint form T if and only if the triangulation of the (n�1)-gon
with vertices 1, 2, . . . , n� 1 avoids the diagonals (p + 1)(p + 3), (p + 1)(p + 4),
. . . , (p+1)(p+q+2). By Lemma 1, the number of such triangulations is given
by (2) (with n� 1 in role of n, and q in role of m), that is,

n�4�qX
i=0

CiCn�4�i. (4)

• Case 2: 1(n� 1) does not belong to T 0.

In such a case T 0 has a diagonal one of whose endpoints is 0. Denote by d
the maximum number so that 0d is a diagonal in T 0. Obviously, p + 2  d 
p+q+1. Notice that (n�1)d is also a diagonal in T 0. Now we have a situation
shown in Figure 7.

1

p + 1

p + q + 2

p + q + 3

0 n� 1

p + 2

d

Figure 7: Illustration to proof of Proposition 4, case 2.

Now, T 0 is disjoint from T if and only if the triangulation (T1) of the (d+1)-gon
with vertices 0, 1, . . . , d avoids diagonals 02, 03, . . . , 0(p+1) and (p+1)(p+3),
(p+1)(p+4), . . . , (p+1)d. There are no restrictions on the triangulation (T2)
of the (n� d)-gon with vertices d, d + 1, . . . , n� 1. For the the triangulation
T1, the condition is equivalent to being disjoint from a triangulation with two
ears – 012 and (p + 1)(p + 2)(p + 3). Therefore, by Theorem 2, the number of
such triangulations T1 is Cd�2. The number of triangulations T2 is Cn�d�2.
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Since p+2  d  p+ q +1, the number of triangulations T 0 disjoint from T is

CpCn�p�4 + Cp+1Cn�p�3 + · · · + Cp+q�1Cn�p�q�3 =
p+q�1X

i=p

CiCn�4�i. (5)

Summing up (4) and (5), we obtain

n�4�qX
i=0

CiCn�4�i +
p+q�1X

i=p

CiCn�4�i.

Finally, using the standard convolution formula
Pn�4

i=0 CiCn�4�i = Cn�3 and the
equality p + q + r = n� 3, we can rewrite this as

0
@Cn�3 �

n�4X
i=n�3�q

CiCn�4�i

1
A +

0
@Cn�3 �

p�1X
i=0

CiCn�4�i �
n�4X

i=p+q

CiCn�4�i

1
A =

= 2Cn�3 �
p�1X
i=0

CiCn�4�i �
q�1X
i=0

CiCn�4�i �
r�1X
i=0

CiCn�4�i,

which completes the proof.

Remark. The result of Theorem 2 can be seen as a special case of Theorem 4 with
r = 0, q = n� 3� p.

4. Concluding Remarks

It would be interesting to find a formula for the number of triangulations disjoint
from a fixed k-eared triangulation in terms of the location of its internal triangles.
As above, one can take a convenient triangulation with the given inner triangles.
Such results may be used to obtain another formula for the total number of pairs
of disjoint triangulations of an n-gon.
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