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IUT Sénart-Fontainebleau
cegielski@u-pec.fr

Serge Grigorieff1

IRIF, CNRS and Université Paris-Diderot, France
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Abstract
Using a simple basis of rational polynomial-like functions P0, . . . , Pn−1 for the free
module of functions Z/nZ → Z/mZ, we characterize the subfamily of congruence
preserving functions as the set of linear combinations of the products lcm(k)Pk

where lcm(k) is the least common multiple of 2, . . . , k (viewed in Z/mZ). As a
consequence, when n ≥ m, the number of such functions is independent of n.

1. Introduction

The notion of a congruence preserving function on rings of residue classes was
introduced in Chen [3] and studied in Bhargava [1].

Definition 1.1. Let m,n ≥ 1. A function f : Z/nZ → Z/mZ is said to be
congruence preserving if for all d dividing m

for all a, b ∈ {0, . . . , n− 1} a ≡ b (mod d) implies f(a) ≡ f(b) (mod d). (1)

Remark 1.2. 1. If n ∈ {1, 2} or m = 1 then every function Z/nZ → Z/mZ is
trivially congruence preserving.

1Partially supported by TARMAC ANR agreement 12 BS02 007 01.
2Emeritus at UPMC Université Paris 6. Corresponding author
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2. Observe that since d is assumed to dividem, equivalence modulo d is a congruence
on (Z/mZ,+,×). However, since d is not supposed to divide n, equivalence modulo
d may not be a congruence on (Z/nZ,+,×).

Example 1.3. 1. For functions Z/6Z → Z/3Z, condition (1) reduces to the condi-
tions f(3) ≡ f(0) (mod 3), f(4) ≡ f(1) (mod 3), f(5) ≡ f(2) (mod 3).
2. For functions Z/6Z → Z/8Z, condition (1) reduces to f(2) ≡ f(0) (mod 2),
f(3) ≡ f(1) (mod 2), f(4) ≡ f(0) (mod 4), f(5) ≡ f(1) (mod 4).

In this paper, we characterize congruence preserving functions Z/nZ → Z/mZ.
We denote by Z the set of integers and by N the set of nonnegative integers

(including zero).

Definition 1.4. The unary lcm function N → N maps 0 to 1 and k ≥ 1 to the least
common multiple of 1, 2, . . . , k.

A natural way to associate with each map from N to Z a map from Z/nZ to
Z/mZ is to restrict F to {0, · · · , n− 1} and take its values modulo m.

Definition 1.5. With each map F : N → Z, we associate the map f : Z/nZ →
Z/mZ defined by f = πm ◦ F ◦ ιn, where πm(x) = x (mod m), and ιn(z) is the
unique element of π−1

n (z) ∩ {0, . . . , n− 1}.

Definition 1.5 is best pictured by the commutativity of diagram (2).

N F !! Z

πm
""

Z/nZ

ιn

##

f
!! Z/mZ

(2)

Applying Definition 1.5 to binomial coefficients, we obtain a basis of the (Z/mZ)-
module of functions Z/nZ → Z/mZ.

Proposition 1.6. Let Pk : Z/nZ → Z/mZ be associated with the N → N binomial
function x )→

(x
k

)
. For every function f : Z/nZ → Z/mZ there is a unique sequence

(a0, . . . , an−1) of elements of Z/mZ such that

f =
k=n−1∑

k=0

ak Pk . (3)

In other words, the family {P0, . . . , Pn−1} is a basis of the (Z/mZ)-module of func-
tions Z/nZ → Z/mZ.

Our main result can be stated as
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Theorem 1.7. A function f : Z/nZ → Z/mZ is congruence preserving if and only
if, for each k = 0, . . . , n − 1, in equation (3) the coefficient ak is a multiple of the
residue of lcm(k) in Z/mZ.

The paper is organized as follows.

Proposition 1.6 is proved in Section 2 where, after recalling Chen’s notion of a
polynomial function Z/nZ → Z/mZ (cf. [3]), we extend it to a notion of a rational
polynomial function.

The proof of our main result, Theorem 1.7, is given in Section 3. We adapt the
techniques of our paper [2], exploiting similarities between Definition 1.1 and the
condition studied in [2] for functions f : N → Z (namely, x−y divides f(x)−f(y)
for all x, y ∈ N). As a consequence of Theorem 1.7, the number of congruence
preserving functions is independent of n for n ≥ m and even for n ≥ gpp(m)
(the greatest prime power dividing m). Also, every congruence preserving function
f : Z/nZ → Z/mZ is a rational polynomial for a polynomial of degree strictly less
than the minimum of n and gpp(m).

In Section 4 we use our main theorem to count the congruence preserving func-
tions Z/nZ → Z/mZ. We thus get an expression equivalent to that obtained by
Bhargava in [1] and which makes apparent the fact that, for n ≥ gpp(m) (hence for
n ≥ m), this number depends only on m and is independent of n.

2. Representing Functions Z/nZ → Z/mZ by Rational Polynomials

In [3, 1], congruence preserving functions Z/nZ → Z/mZ are introduced and studied
together with an original notion of polynomial function Z/nZ → Z/mZ.

Definition 2.1 (Chen [3]). A function f : Z/nZ → Z/mZ is polynomial if it is
associated (in the sense of Definition 1.5) with a function F : N → Z given by a
polynomial in Z[X ].

Polynomial functions Z/nZ → Z/mZ are obviously congruence preserving. Are
all congruence preserving functions polynomial? Chen [3] observed that this is not
the case for some values of n,m, for instance n = 6, m = 8. He also proves that
a stronger identity holds for infinitely many ordered pairs ⟨n,m⟩ : every function
Z/nZ → Z/mZ is polynomial if and only n is not greater than the first prime factor
of m (in particular, this is the case when n = m and m is prime, cf. Kempner [4]).
Using counting arguments, Bhargava [1] characterizes the ordered pairs ⟨n,m⟩ such
that every congruence preserving function f : Z/nZ → Z/mZ is polynomial.

Some polynomials in Q[X ] (i.e., polynomials with rational coefficients) happen
to map integers into integers.
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Definition 2.2. For k ∈ N, let Pk ∈ Q[X ] be the following polynomial:

Pk(x) =

(
x

k

)
=

∏k−1
i=0 (x− i)

k!
.

We will use the following examples later on:
P0(x) = 1, P1(x) = x, P2(x) = x(x − 1)/2, P3(x) = x(x − 1)(x− 2)/6, P4(x) =
x(x− 1)(x− 2)(x− 3)/24, P5(x) = x(x− 1)(x− 2)(x− 3)(x− 4)/120.

In [5], Pólya used the Pk’s to give the following very elegant and elementary char-
acterization of polynomials in Q[X ] mapping integers to integers.

Theorem 2.3 (Pólya). A polynomial in Q[X ] is integer-valued on Z if and only if
it can be written as a Z-linear combination of the polynomials Pk, k = 0, 1, 2, . . ..

It turns out that the representation of functions N → Z as Z-linear combinations
of the Pk’s used in [2] also fits in the case of functions Z/nZ → Z/mZ : every such
function is a (Z/mZ)-linear combination of the Pk’s.

Definition 2.4. 1. A function f : Z/nZ → Z/mZ is rat-polynomial if is associated
in the sense of Definition 1.5 with some polynomial in Q[X ].
2. The degree of a rat-polynomial function is the smallest degree of an associated
polynomial in Q[X ].
3. We denote by Pn,m

k the rat-polynomial function Z/nZ → Z/mZ associated with
the polynomial Pk of Definition 2.2 in the sense of Definition 1.5. When there is no
ambiguity, Pn,m

k will be denoted simply as Pk.

Remark 2.5. In Definition 2.4, the polynomial crucially depends on the choice
of representatives of elements of Z/nZ: e.g., for n = m = 6, 0 ≡ 6 (mod 6) but
0 = P2(0) ̸≡ P2(6) = 3 (mod 6). The chosen representatives for elements of Z/nZ
will always be 0, 1, . . . , n− 1.

We now prove the representation result by the Pk’s.

Proof of Proposition 1.6. Let us start with uniqueness. We have f(0) = a0, and
hence a0 is f(0). We have f(1) = a0 + a1, and hence a1 = f(1) − f(0). By
induction, letting Qk =

∑ℓ=k−1
ℓ=0 aℓPℓ, and noting that Pk(k) = 1, we have f(k) =

Qk(k) + akPk(k) = Qk(k) + ak, and hence ak = f(k)−Qk(k). We thus are able to
determine ak in Z/mZ.

For existence, argue backwards to see that this sequence suits.

Remark 2.6. The evaluation of ak Pk(x) in Z/mZ has to be done as follows: for
x an element of Z/nZ, we consider it as an element of {0, . . . , n − 1} ⊆ N and we

evaluate Pk(x) =
1

k!

∏k−1
i=0 (x−i) as an element of Z, then we consider the remainder

modulo m, and finally we multiply the result by ak in Z/mZ. For instance, for



INTEGERS: 16 (2016) 5

n = m = 8, we have 4P2(3) = 4 × 3× 2

2
= 4 × 3 = 4, but we might be tempted

to evaluate it as 4P2(3) =
4× 3× 2

2
=

0

2
= 0, which does not correspond to our

definition. However, dividing ak by a factor of the denominator is allowed.

Corollary 2.7. 1. Every function f : Z/nZ → Z/mZ is rat-polynomial with degree
less than n.
2. The family of rat-polynomial functions {Pk | k = 0, 1, . . . , n− 1} is a basis of the
(Z/mZ)-module of functions Z/nZ → Z/mZ.

Example 2.8. The function f : Z/6Z → Z/6Z such that f(0) = 0, f(1) = 3,
f(2) = 4, f(3) = 3, f(4) = 0, f(5) = 1, is represented by the rational polynomial

Pf (x) = 3x+4
x(x − 1)

2
which can be simplified to Pf (x) = 3x−x(x− 1) on Z/6Z.

Example 2.9. The function f : Z/6Z → Z/8Z given by Chen [3] as a non-polynomial
congruence preserving function, namely the function such that f(0) = 0, f(1) = 3,
f(2) = 4, f(3) = 1, f(4) = 4, f(5) = 7, is represented by the rational polynomial
with coefficients a0 = 0, a1 = 3, a2 = 6, a3 = 2, a4 = 4, a5 = 4. Thus,

f(x) = 3x+ 6
x(x− 1)

2
+ 2

x(x − 1)(x− 2)

2
+ 4

x(x − 1)(x− 2)(x− 3)

8

+ 4
x(x− 1)(x− 2)(x− 3)(x− 4)

8

= 3x+ 3x(x − 1) + x(x− 1)(x− 2) +
x(x− 1)(x− 2)(x− 3)

2

+
x(x − 1)(x− 2)(x− 3)(x− 4)

2
.

3. Characterizing Congruence Preserving Functions Z/nZ → Z/mZ

Congruence preserving functions f : Z/nZ → Z/mZ can be characterized by a sim-
ple condition on the coefficients of the rat-polynomial representation of f given in
Proposition 1.6.

3.1. Proof of Theorem 1.7

For proving Theorem 1.7 we will need some relations involving binomial coefficients
and the unary lcm function; these relations are stated in the next three lemmata.
The proofs are elementary but technical and can be found in our paper [2].

Lemma 3.1. If 0 ≤ n− k < p ≤ n then p divides lcm(k)
(n
k

)
in N.

Lemma 3.2. If k ≤ b then n divides An
k,b = lcm(k)

((
b+n
k

)
−
(
b
k

))
in N.
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The following is an immediate consequence of Lemma 3.2 (set a = b+ n).

Lemma 3.3. If a ≥ b and k ≤ b, then a− b divides lcm(k)
((a

k

)
−
(b
k

))
in N.

Besides these lemmata which deal with divisibility on integers, we shall use a
classical result in Z/mZ. For x, y ∈ Z we say x divides y in Z/mZ if and only if
the residue class of x divides the residue class of y in Z/mZ.

Lemma 3.4. Let 1 ≤ c1, . . . , ck ≤ m and let c be their least common multiple in
N. If c1, . . . , ck all divide a in Z/mZ then so does c.

Proof. It suffices to consider the case k = 2 since the passage to any k is done
via a straightforward induction. Let c = c1b1 = c2b2 with b1, b2 coprime. Let
t, u be such that a = c1t = c2u in Z/mZ. Then a ≡ c1t ≡ c2u (mod m). Using
Bézout’s identity, let α,β ∈ Z be such that αb1 + βb2 = 1. Then c(tα + uβ) =
c1b1tα + c2b2uβ ≡ aαb1 + aβb2 (mod m), and hence c(tα + uβ) ≡ a (mod m),
proving that c divides a in Z/mZ.

Proof of the “only if” part of Theorem 1.7. Assume f : Z/nZ → Z/mZ is con-
gruence preserving and consider its decomposition f(x) =

∑n−1
k=0 akPk(x) given by

Proposition 1.6. We show that lcm(k) divides ak in Z/mZ for all k < n. The cases
k = 0 and k = 1 are trivial since lcm(0) = lcm(1) = 1.

Claim 1. For all 2 ≤ k < n, k divides ak in Z/mZ.

Proof. Recall that f(k) =
∑n−1

i=0 ai
(k
i

)
=
∑k

i=0 ai
(k
i

)
since

(k
i

)
= 0 for i > k. We

argue by induction on k ≥ 2.
Base case k = 2. If 2 does not divide m then 2 and m are coprime, and hence 2
is invertible and divides a2 in Z/mZ. Assume 2 divides m. As 2 divides 2−0 and f
is congruence preserving, 2 also divides f(2)− f(0) = 2a1+ a2, and hence 2 divides
a2.
Inductive step. Let 2 < k < n − 1. The inductive hypothesis ensures that ℓ
divides aℓ in Z/mZ for every ℓ ≤ k. Let aℓ ≡ ℓqℓ (mod m) for 0 ≤ ℓ ≤ k. We prove
that k + 1 divides ak+1 in Z/mZ. First, observe that

f(k + 1)− f(0) = (k + 1)a1 +

(
k∑

i=2

(
k + 1

i

)
ai

)
+ ak+1

≡ (k + 1)a1 +

(
k∑

i=2

(
k + 1

i

)
iqi

)
+ ak+1 (mod m)

f(k + 1)− f(0) = (k + 1)a1 +

(
k∑

i=2

(k + 1)

(
k

i− 1

)
qi

)
+ αm+ ak+1 (4)
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for some α. Let d = gcd(k + 1,m). Since d divides m and k + 1 − 0 and f is
congruence preserving, d also divides f(k + 1) − f(0). Using equality (4), we see
that d divides the last term ak+1 of the sum. Using Bézout’s identity, let u, v be
such that u(k+1)+ vm = d. Then u(k+1) ≡ d (mod m), and hence k+1 divides
d in Z/mZ. Since d divides ak+1, we conclude that k+1 divides ak+1 in Z/mZ.

Claim 2. (i) For all 2 ≤ p ≤ k < n, p divides ak in Z/mZ.
(ii) For all 2 ≤ k < n, lcm(k) divides ak in Z/mZ.

Proof. Assertion (ii) is a direct application of Lemma 3.4 and assertion (i). We
prove (i) by induction on p ≥ 2. Both the base case and the inductive step of this
induction are proved by induction on k.

Base case p = 2. We have to prove that 2 divides ak for all k ≥ 2. If 2 does not
divide m, then 2 is invertible and divides all numbers in Z/mZ. Assume now that
2 divides m. We argue by induction on k ≥ 2.

Base case. Apply Claim 1: 2 divides a2.

Inductive step. Let k < n− 1. Assuming that 2 divides ai for all 2 ≤ i ≤ k, we
prove that 2 divides ak+1. Two cases can occur.

Subcase 1: k+1 is odd. Then 2 divides k and hence, by congruence preserva-

tion, 2 divides f(k+1)− f(1). As f(k+1)− f(1) = ka1 +
(∑k

i=2 ai
(
k+1
i

))
+ ak+1,

and 2 divides k and also, by the induction hypothesis, 2 divides ai for 2 ≤ i ≤ k,
we see that 2 divides ak+1.

Subcase 2: k + 1 is even. By congruence preservation, 2 divides f(k + 1) −
f(0) = (k+1)a1+

(∑k
i=2 ai

(
k+1
i

))
+ak+1. Since 2 divides k+1 and ai for 2 ≤ i ≤ k

(induction hypothesis), we infer that 2 divides ak+1.

Inductive step. Let 2 ≤ p < n− 1 and assume that

for all q ≤ p and all ℓ such that q ≤ ℓ < n, q divides aℓ in Z/mZ. (5)

By induction on k ≥ p + 1, we prove that p + 1 divides ak for all k such that
p+ 1 ≤ k < n.

Base case k = p+ 1. Apply Claim 1: p+ 1 divides ap+1.

Inductive step. Let k < n− 1. Assuming that p+1 divides ai in Z/mZ for all i
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such that p+ 1 ≤ i ≤ k, we prove that p+ 1 divides ak+1 in Z/mZ. We have

f(k + 1)− f(k − p) =
k−p∑

i=1

ai

((
k + 1

i

)
−
(
k − p

i

))

+

⎛

⎝
k∑

i=k+1−p

ai

(
k + 1

i

)⎞

⎠+ ak+1 (6)

We first look at the terms of the first sum on the right side of (6) corresponding
to 1 ≤ i ≤ p. Applying (5) with ℓ = i, we see that q divides ai in Z/mZ for all
q ≤ min(p, i) = i. Using Lemma 3.4, we conclude that lcm(i) divides ai in Z/mZ.
Observing that (k+1) = (k−p)+(p+1), we can apply Lemma 3.2 (with k−p, p+1

and i in place of b, n and k) and conclude that p+1 divides lcm(i)
((k+1

i

)
−
(k−p

i

))

in N. Thus, p+ 1 divides ai
((k+1

i

)
−
(k−p

i

))
in Z/mZ.

We now turn to the terms of the first sum on the right side of (6) corresponding
to p + 1 ≤ i ≤ k − p (if there are any). Each of these terms is divisible by p + 1
in Z/mZ, because the induction hypothesis on k ensures that p + 1 divides ai in
Z/mZ whenever p+ 1 ≤ i ≤ k.

Consider next the terms of the second sum on the right side of (6). For those
terms corresponding to values of i such that p+ 1 ≤ i ≤ k, divisibility by p+ 1 in
Z/mZ follows from the fact that, by the induction hypothesis on k, p+1 divides ai.
It remains to look at the terms associated with the i’s such that k + 1− p ≤ i ≤ p
(there are such i’s in case k+1− p < p+1). For such i’s we have 0 ≤ (k+1)− i ≤
(k+1)− p < p+1 ≤ k+1 and Lemma 3.1 (used with k+1, i and p+1 in place of
n, k and p) implies that p+ 1 divides lcm(i)

(
k+1
i

)
. Now, for such i’s, the induction

hypothesis (5) on p shows that lcm(i) divides ai in Z/mZ. A fortiori, p+ 1 divides
ai
(k+1

i

)
in Z/mZ.

Let d = gcd(p + 1,m). As p + 1 divides in Z/mZ all terms of the two sums on
the right side of (6) so does d. Since d divides m and k+ 1− (k− p) = p+1 and f
is congruence preserving, d also divides f(k+ 1)− f(k− p). Using equality (6), we
conclude that d divides in Z/mZ the last term ak+1. Using Bézout’s identity, let
u, v be such that u(p+ 1)+ vm = d. Then u(p+ 1) ≡ d (mod m), and hence p+ 1
divides d in Z/mZ. As d divides ak+1 in Z/mZ, we conclude that p+1 divides ak+1

in Z/mZ.
This ends the proof of the induction in the inductive step, and hence also the

proof of Claim 2 and of the “only if” part of the Theorem.

Proof of the “if” part of Theorem 1.7. Assume f =
∑k=n−1

k=0 ak Pk and that all
of the ak’s are divisible by lcm(k) in Z/mZ. We can write f in the form f(n) =
∑n

k=0 cklcm(k)

(
n

k

)
. We prove that f is congruence preserving, i.e., if 0 ≤ b < a ≤
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n− 1 and d divides both m and a− b then d also divides f(a)− f(b). Observe that

f(a)− f(b) =

(
b∑

k=0

cklcm(k)
((a

k

)
−
(
b

k

)))
+

a∑

k=b+1

cklcm(k)

(
a

k

)
.

By Lemma 3.3, a− b divides each term of the first sum. Consider the terms of the
second sum. For b + 1 ≤ k ≤ a, we have 0 ≤ a − k < a − b ≤ a and Lemma 3.1

(used with a, k and a−b in place of n, k and p) shows that a−b divides lcm(k)

(
a

k

)
.

Thus, a− b divides f(a)− f(b).

3.2. On a Family of Generators

We now sharpen the degree of the rat-polynomial representing a congruence pre-
serving function Z/nZ → Z/mZ. We first state some properties of the lcm function
in N.

Lemma 3.5. Let m ≥ 1 be an integer with prime factorization m = pα1
1 · · · pαℓ

ℓ .

Then lcm(k) = u
∏ℓ

i=1 p
αi,k

i , where u is coprime with m and αi,k = max{βi | pβi
i ≤

k}.

Definition 3.6. Let m ≥ 1 be an integer with prime factorization m = pα1
1 · · · pαℓ

ℓ .
We let gpp(m) = max

{
pαi
i | i ∈ {1, . . . , ℓ}

}
be the greatest power of prime dividing

m in N.

Lemma 3.7. The number gpp(m) is the least integer k such that m divides lcm(k).

Example 3.8. We have gpp(8) = 8, gpp(12) = 4 and gpp(14) = 7. The successive
values of the residues in Z/mZ of lcm(k) are

k 1 2 3 4 5 6 7 8
lcm(k) in Z/8Z 1 2 2 4 4 4 4 0
lcm(k) in Z/12Z 1 2 6 0 0 0 0 0
lcm(k) in Z/14Z 1 2 6 12 4 4 0 0

.

For all ℓ ≥ gpp(m), lcm(ℓ) is zero in Z/mZ.

Remark 3.9. 1. Either gpp(m) = m or gpp(m) ≤ m/2.
2. In general, gpp(m) is greater than λ(m), the least k such that m divides k! (a
function considered in [3]): for m = 8, gpp(m) = 8 whereas λ(m) = 4.

Using Lemma 3.7, we can get a better version of Theorem 1.7.

Theorem 3.10. A function f : Z/nZ → Z/mZ is congruence preserving if and
only if it is associated in the sense of Definition 1.5 with a rational polynomial
P =

∑d−1
k=0 ak

(x
k

)
where d = min(n, gpp(m)) and such that lcm(k) divides ak in

Z/mZ for all k < d.
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Proof. For k ≥ gpp(m), m divides lcm(k) hence the coefficient ak is 0.

Theorem 3.11. (i) Every congruence preserving function f : Z/nZ → Z/mZ is
rat-polynomial with degree less than gpp(m).
(ii) The family of rat-polynomial functions

F = {lcm(k)Pk | 0 ≤ k < min(n, gpp(m))}

generates the set of congruence preserving functions Z/nZ → Z/mZ.
(iii) F is a basis of the set of congruence preserving functions if and only if m has
no prime divisor p < min(n,m) (in case n ≥ m this means that m is prime).

Proof. Assertions (i) and (ii) are restatements of Theorem 3.10. Let us prove (iii).

“Only If” part. Asssume m has a prime divisor p < min(n,m) and let p be the
least one. Then lcm(p) = pa with a coprime with m, and hence lcm(p) ̸= 0 in
Z/mZ. Since Pp(p) = 1 this shows that lcm(p)Pp is not the null function. However
(m/p) lcm(p) = 0 in Z/mZ, and hence (m/p) lcm(p)Pp is the null function. As
(m/p) ̸= 0 in Z/mZ, this proves that F cannot be a basis.

“If” part. Assume that m has no prime divisor p < min(n,m). We prove that F
is (Z/mZ)-linearly independent. Suppose that the (Z/mZ)-linear combination L =∑min(n,gpp(m))−1

k=0 ak lcm(k)Pk is the null function Z/nZ → Z/mZ. By induction on
k = 0, . . . ,min(n, gpp(m))− 1 we prove that ak = 0.
• Basic cases k = 0, 1. From L(0) = a0 and L(1) = a0 + a1 we deduce a0 = a1 = 0.
• Induction step. Assuming k ≥ 2 and ai = 0 for i = 0, . . . , k − 1, we prove that
ak = 0. Observe that Pℓ(k) =

(k
ℓ

)
= 0 for k < ℓ < n. Since ai = 0 for i = 0, . . . , k−1,

and Pk(k) = 1 we get L(k) = ak lcm(k ). As k < min(n, gpp(m)) ≤ min(n,m) and
m has no prime divisor p < min(n,m), the numbers lcm(k) and m are coprime.
Thus, lcm(k) is invertible in Z/mZ and equality L(k) = ak lcm(k) = 0 implies
ak = 0.

4. Counting Congruence Preserving Functions

We now compute the number of congruence preserving functions Z/nZ → Z/mZ.
As two different rational polynomials correspond to different functions by Proposi-
tion 1.6 (uniqueness of the representation by a rational polynomial), the number of
congruence preserving functions Z/nZ → Z/mZ is equal to the number of polyno-
mials representing them.

Proposition 4.1. Let CP(n,m) be the number of congruence preserving functions
Z/nZ → Z/mZ. Let m = pe11 pe22 · · · peℓℓ be the decomposition of m in powers of
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primes. Let I = {i | peii < gpp(m)} and J = {i | peii ≥ gpp(m)}. Then

CP(n,m) =

⎧
⎪⎨

⎪⎩

p
p1+p2

1+···+p
e1
1

1 × · · ·× p
pℓ+p2

ℓ+···+p
eℓ
ℓ

ℓ if n ≥ gpp(m),
∏
i∈I

p
pi+p2

i+···+p
ei
i

i ×
∏
i∈J

p
pi+p2

i+···+p
⌊logp n⌋
i +n(e−⌊logp n⌋)

i if n < gpp(m).

Equivalently, writing E(p,α) instead of pα for better readability, we have

CP(n,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ℓ∏
i=1

E(pi,
ei∑

k=1
pki ) if n ≥ gpp(m),

∏
i∈I

E(pi,
ei∑

k=1
pki )×

∏
i∈J

E(pi, (
⌊logp n⌋∑
k=1

pki ) + n(e − ⌊logp n⌋)) if n < gpp(m).

Corollary 4.2. For n ≥ gpp(m), CP(n,m) does not depend on n.

Proof of Proposition 4.1. By Theorem 3.10, we must count the number of n-tuples
of coefficients (a0, . . . , an−1), with, for k = 0, . . . , n − 1, ak being a multiple of
lcm(k) in Z/mZ.

Claim 1. For m = pe11 pe22 · · · peℓℓ , for all n, CP(n,m) =
∏ℓ

i=1 CP(n, p
ei
i ).

Proof of Claim 1. Let E(r, k) be the set of multiples in Z/rZ of lcm(k) and λ(r, k)
be the cardinal of E(r, k). The Chinese remainder theorem shows that the map
ρ : z )→

(
z (mod peii )

)
i=1,...,ℓ

is an isomorphism and also that ρmaps the setE(m, k)

onto the Cartesian product P =
∏ℓ

i=1 E(peii , k). Indeed, let (ti)i=1,...,ℓ ∈ P . For
each i = 1, . . . , ℓ, there is 0 ≤ qi < peii such that ti ≡ qi lcm(k) (mod peii ). Applying
the Chinese remainder theorem, there are 0 ≤ t, q < m such that t ≡ ti (mod peii )
and q ≡ qi (mod peii ). Then t ≡ q lcm(k) (mod m), and hence ρ(t) = (ti)i=1,...,ℓ.
This proves that λ(m, k) =

∏ℓ
i=1 λ(p

ei
i , k) for each k. Thus, the number CP(n,m)

of n-tuples (a0, . . . , an−1) such that lcm(k) divides ak is equal to

CP(n,m) =
∏

k<n

λ(m, k) =
∏

k<n

ℓ∏

i=1

λ(peii , k) =
ℓ∏

i=1

∏

k<n

λ(peii , k) =
ℓ∏

i=1

CP(n, peii ). ✷

Claim 1 reduces the problem to that of counting the congruence preserving func-
tions Z/nZ → Z/peii Z. We will use Theorem 3.10 to this end.

Claim 2. Letting ℓ = ⌊logp n⌋ (and using the E(p,α) notation for pα), we have

CP(n, pe) =

{
E(p, p+ p2 + · · ·+ pe) if n ≥ pe,

E(p, p+ p2 + · · ·+ pℓ + (e− ℓ)n) if pℓ ≤ n < pe.

Proof of Claim 2. By Theorem 3.10, as gpp(pe) = pe, letting ν = inf(n, pe), we have
CP(n, pe) = CP(ν, pe) =

∏ν−1
k=0 λ(p

e, k). As we noted in the proof of Claim 1, for
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pj ≤ k < pj+1, the order λ(pe, k) of the subgroup generated by lcm(k) in Z/peZ is
pe−j , and there are pj+1 − pj such k’s. For k = 0, lcm(0) = 1 yields λ(pe, 0) = pe.

• If n ≥ pe then CP(n, pe) = CP(pe, pe) = pe
∏e−1

j=0

∏pj+1−1
k=pj pe−j = pM with

M = e+
e−1∑

j=0

(e− j)(pj+1 − pj) = p+ p2 + · · ·+ pe

• If n < pe then pℓ ≤ n < pe and

CP(n, pe) =
∏n−1

k=0 λ(p
e, k)

= pe(
∏ℓ−1

j=0

∏pj+1−1
k=pj pe−j)(

∏n−1
k=pℓ pe−ℓ) = pM with

M = e+
ℓ−1∑

j=0

(e − j)(pj+1 − pj) +
n−1∑

k=pℓ

(e− ℓ)

= (e − ℓ)pℓ + (p+ p2 + · · ·+ pℓ) + (n− pℓ)(e− ℓ)
= (p+ p2 + · · ·+ pℓ) + n(e− ℓ) ✷

This finishes the proof of Proposition 4.1.

Remark 4.3. In [1] the number of congruence preserving functions Z/nZ → Z/peZ
is shown to be equal to E(p, en −

∑n−1
k=1 min{e, ⌊logp k⌋}). For pi ≤ k < pi+1,

we have ⌊logp k⌋ = i, and hence min{e, ⌊logp k⌋} = ⌊logp k⌋ for k ≤ pe, and
min{e, ⌊logp k⌋} = e for k ≥ pe. Thus, we have
• if n ≥ pe, then∑n−1

k=1 min{e, ⌊logp k⌋} =
∑pe−1

k=1 ⌊logp k⌋+
∑n−1

k=pe e =
∑e−1

j=0 j(p
j+1−pj)+ e(n−pe)

= −(p+· · ·+pe)+epe+e(n−pe), and hence en−
∑n−1

k=1 min{e, ⌊logp k⌋} = p+· · ·+pe.
This coincides with our counting in Claim 2.
• if n < pe, and l = ⌊logp n⌋, then, similarly,
∑n−1

k=1⌊logp k⌋ =
∑ℓ−1

k=1⌊logp k⌋+
∑n−1

k=l ⌊logp k⌋ =
∑ℓ−1

j=0 j(p
j+1 − pj) + ℓ(n− pℓ) =

−(p+ · · ·+ pℓ)+nℓ, and hence en−
∑n−1

k=1⌊logp k⌋ = p+ · · ·+ pℓ +(e− ℓ)n. Again,
this coincides with our counting in Claim 2.

5. Conclusion

We proved that the rational polynomials lcm(k)Pk generate the Z/mZ submodule
of congruence preserving functions Z/nZ → Z/mZ. When n is larger than the
greatest prime power dividing m, the number of functions in this submodule is
independent of n. An open problem is the existence of a basis of this submodule.
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