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Abstract
Using a simple basis of rational polynomial-like functions Py, ..., P,_1 for the free
module of functions Z/nZ — Z/mZ, we characterize the subfamily of congruence
preserving functions as the set of linear combinations of the products lem(k) Py
where lem(k) is the least common multiple of 2,...,k (viewed in Z/mZ). As a
consequence, when n > m, the number of such functions is independent of n.

1. Introduction

The notion of a congruence preserving function on rings of residue classes was
introduced in Chen [3] and studied in Bhargava [1].

Definition 1.1. Let m,n > 1. A function f : Z/nZ — Z/mZ is said to be
congruence preserving if for all d dividing m

for all a,b€{0,...,n—1} a=b (mod d) implies f(a) = f(b) (mod d). (1)

Remark 1.2. 1. If n € {1,2} or m = 1 then every function Z/nZ — Z/mZ is
trivially congruence preserving.
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2. Observe that since d is assumed to divide m, equivalence modulo d is a congruence
on (Z/mZ,+, x). However, since d is not supposed to divide n, equivalence modulo
d may not be a congruence on (Z/nZ,+, x).

Example 1.3. 1. For functions Z/6Z — Z/3Z, condition (1) reduces to the condi-
tions f(3) = f(0) (mod 3), f(4) = f(1) (mod 3), f(5) = f(2) (mod 3).

2. For functions Z/6Z — Z/87Z, condition (1) reduces to f(2) = f(0) (mod 2),
73)= F(1) (mod 2), f(4) = £(0) (mod 4), f(5) = /(1) (mod 4).

In this paper, we characterize congruence preserving functions Z/nZ — Z/mZ.
We denote by Z the set of integers and by N the set of nonnegative integers
(including zero).

Definition 1.4. The unary lem function N — N maps 0 to 1 and k > 1 to the least
common multiple of 1,2,... k.

A natural way to associate with each map from N to Z a map from Z/nZ to
Z/mZ is to restrict F' to {0,--- ,n — 1} and take its values modulo m.

Definition 1.5. With each map F : N — Z, we associate the map f : Z/nZ —
Z/mZ defined by f = m,, o F o1y, where mp,(z) = x (mod m), and ¢,,(2) is the
unique element of m,; '(z) N {0,...,n — 1}.

Definition 1.5 is best pictured by the commutativity of diagram (2).

L (2)

A

2/nZ — = 2)m7

Applying Definition 1.5 to binomial coefficients, we obtain a basis of the (Z/mZ)-
module of functions Z/nZ — Z/mZ.

Proposition 1.6. Let Py : Z/nZ — Z/mZ be associated with the N — N binomial
function x — (i) For every function f : Z/nZ — Z/mZ there is a unique sequence
(ao,-..,an—1) of elements of Z/mZ such that

k=n—1

f = ag Pk . (3)
k=

(e}

In other words, the family {Py, ..., P,—1} is a basis of the (Z/mZ)-module of func-
tions Z/nZ — Z/mZ.

Our main result can be stated as
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Theorem 1.7. A function f : Z/nZ — Z/mZ is congruence preserving if and only
if, for each k = 0,...,n — 1, in equation (3) the coefficient ay is a multiple of the
residue of lem(k) in Z/mZ.

The paper is organized as follows.

Proposition 1.6 is proved in Section 2 where, after recalling Chen’s notion of a
polynomial function Z/nZ — Z/mZ (cf. [3]), we extend it to a notion of a rational
polynomial function.

The proof of our main result, Theorem 1.7, is given in Section 3. We adapt the
techniques of our paper [2], exploiting similarities between Definition 1.1 and the
condition studied in [2] for functions f : N — Z (namely, z—y divides f(x)— f(y)
for all z,y € N). As a consequence of Theorem 1.7, the number of congruence
preserving functions is independent of n for n > m and even for n > gpp(m)
(the greatest prime power dividing m). Also, every congruence preserving function
f:Z/nZ — Z/mZ is a rational polynomial for a polynomial of degree strictly less
than the minimum of n and gpp(m).

In Section 4 we use our main theorem to count the congruence preserving func-
tions Z/nZ — Z/mZ. We thus get an expression equivalent to that obtained by
Bhargava in [1] and which makes apparent the fact that, for n > gpp(m) (hence for
n > m), this number depends only on m and is independent of n.

2. Representing Functions Z/nZ — 7Z/mZ by Rational Polynomials

In [3, 1], congruence preserving functions Z/nZ — 7Z/mZ are introduced and studied
together with an original notion of polynomial function Z/nZ — Z/mZ.

Definition 2.1 (Chen [3]). A function f : Z/nZ — Z/mZ is polynomial if it is
associated (in the sense of Definition 1.5) with a function F' : N — Z given by a
polynomial in Z[X].

Polynomial functions Z/nZ — Z/mZ are obviously congruence preserving. Are
all congruence preserving functions polynomial? Chen [3] observed that this is not
the case for some values of n,m, for instance n = 6, m = 8. He also proves that
a stronger identity holds for infinitely many ordered pairs (n,m) : every function
Z/nZ — Z]mZ is polynomial if and only n is not greater than the first prime factor
of m (in particular, this is the case when n = m and m is prime, cf. Kempner [4]).
Using counting arguments, Bhargava [1] characterizes the ordered pairs (n,m) such
that every congruence preserving function f : Z/nZ — Z/mZ is polynomial.

Some polynomials in Q[X] (i.e., polynomials with rational coefficients) happen
to map integers into integers.
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Definition 2.2. For k € N, let P, € Q[X] be the following polynomial:

Pu(a) = (k) | by ]Sc i)

We will use the following examples later on:

Py(z) =1, Pi(z) = z, Py(z) = z(z — 1)/2, P3s(z) = z(z —1)(z — 2)/6, Ps(z) =
z(x —1)(x —2)(z — 3)/24, Ps(x) = x(z — 1)(x — 2)(z — 3)(x — 4)/120.

In [5], Pélya used the Py’s to give the following very elegant and elementary char-
acterization of polynomials in Q[X] mapping integers to integers.

Theorem 2.3 (Pélya). A polynomial in Q[X] is integer-valued on Z if and only if
it can be written as a Z-linear combination of the polynomials Py, k=0,1,2,.. ..

It turns out that the representation of functions N — 7Z as Z-linear combinations
of the Py’s used in [2] also fits in the case of functions Z/nZ — Z/mZ : every such
function is a (Z/mZ)-linear combination of the Pj’s.

Definition 2.4. 1. A function f : Z/nZ — Z/mZ is rat-polynomial if is associated
in the sense of Definition 1.5 with some polynomial in Q[X].

2. The degree of a rat-polynomial function is the smallest degree of an associated
polynomial in Q[X].

3. We denote by P, the rat-polynomial function Z/nZ — Z/mZ associated with
the polynomial P} of Definition 2.2 in the sense of Definition 1.5. When there is no
ambiguity, P, will be denoted simply as Pj.

Remark 2.5. In Definition 2.4, the polynomial crucially depends on the choice
of representatives of elements of Z/nZ: e.g., for n = m = 6, 0 = 6 (mod 6) but
0 = P,(0) # P5(6) =3 (mod 6). The chosen representatives for elements of Z/nZ
will always be 0,1,...,n — 1.

We now prove the representation result by the P’s.

Proof of Proposition 1.6. Let us start with uniqueness. We have f(0) = ag, and
hence ag is f(0). We have f(1) = ag + a1, and hence a1 = f(1) — f(0). By
induction, letting Qr = Zﬁi]g*l a¢ Py, and noting that Py(k) = 1, we have f(k) =
Qr(k) + ap Py (k) = Qr(k) + ai, and hence a, = f(k) — Qi (k). We thus are able to
determine ay, in Z/mZ.

For existence, argue backwards to see that this sequence suits. O

Remark 2.6. The evaluation of aj, Py(x) in Z/mZ has to be done as follows: for

x an element of Z/nZ, we consider it as an element of {0,...,n — 1} C N and we
1 _

evaluate Py(z) = o Hfzol (x—1) as an element of Z, then we consider the remainder

modulo m, and ﬁnélly we multiply the result by aj in Z/mZ. For instance, for



INTEGERS: 16 (2016) )

3 X2

n =m = 8, we have 4 P5(3) = 4 x

4x3x2 0
to evaluate it as 4 P»(3) = ———— = — = 0, which does not correspond to our

= 4 x 3 = 4, but we might be tempted

definition. However, dividing a by a factor of the denominator is allowed.

Corollary 2.7. 1. Every function f : Z/nZ — Z/mZ is rat-polynomial with degree
less than n.

2. The family of rat-polynomial functions {P; | k =0,1,...,n—1} is a basis of the
(Z/mZ)-module of functions Z/nZ — Z/mZ.

Example 2.8. The function f: Z/6Z — Z/6Z such that f(0) = 0, f(1) = 3,
f(2)=4, f(3) =3, f(4) =0, f(5) =1, is represented by the rational polynomial

-1
Pi(x) =3z+4 % which can be simplified to Py(z) = 3z —x(x—1) on Z/6Z.

Example 2.9. The function f: Z/6Z — Z/8Z given by Chen [3] as a non-polynomial
congruence preserving function, namely the function such that f(0) =0, f(1) = 3,
f(2)=4, f(3) =1, f(4) =4, f(5) =7, is represented by the rational polynomial
with coefficients ag = 0, a1 = 3, as = 6, az = 2, ag = 4, as = 4. Thus,
-1 —1 -2 -1 -2 -3
PR S P (CEL PR CED CEL (L

(= 1)(z=2)(z—-3)(xz—4)

142

z(x —1)(x —2)(z - 3)
2

8
3z+3z(z—1)+z(x—1)(x—2)+

. x(x — 1)(3:—22) x 3)(3:—4).

3. Characterizing Congruence Preserving Functions Z/nZ — Z/mZ

Congruence preserving functions f: Z/nZ — Z/mZ can be characterized by a sim-
ple condition on the coeflicients of the rat-polynomial representation of f given in
Proposition 1.6.

3.1. Proof of Theorem 1.7

For proving Theorem 1.7 we will need some relations involving binomial coefficients
and the unary lcm function; these relations are stated in the next three lemmata.
The proofs are elementary but technical and can be found in our paper [2].

Lemma 3.1. If 0 <n—k < p <n then p divides 1cm(k)(2) in N.

Lemma 3.2. If k <b then n divides A, = lem(k) ((bzn) — (Z)) in N.
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The following is an immediate consequence of Lemma 3.2 (set a = b+ n).
(1)) in N
Besides these lemmata which deal with divisibility on integers, we shall use a

classical result in Z/mZ. For x,y € Z we say x divides y in Z/mZ if and only if
the residue class of  divides the residue class of y in Z/mZ.

Lemma 3.3. Ifa > b and k < b, then a — b divides lem(k) ((Z) -

Lemma 3.4. Let 1 < ¢q,...,cp < m and let ¢ be their least common multiple in
N. If c1,...,c all divide a in Z/mZ then so does c.

Proof. 1t suffices to consider the case k = 2 since the passage to any k is done
via a straightforward induction. Let ¢ = c¢1b7 = cobs with by, bs coprime. Let
t,u be such that a = ¢1t = cou in Z/mZ. Then a = ¢t = cou (mod m). Using
Bézout’s identity, let o, 8 € Z be such that ab; + fba = 1. Then c(ta + uf) =
cibita 4+ cobsuf = aaby + afiby (mod m), and hence c(ta + uf) = a (mod m),
proving that ¢ divides a in Z/mZ. O

Proof of the “only if” part of Theorem 1.7. Assume f : Z/nZ — Z/mZ is con-
gruence preserving and consider its decomposition f(z) = ZZ;& ay P (x) given by
Proposition 1.6. We show that lem(k) divides ay in Z/mZ for all k < n. The cases
k=0 and k =1 are trivial since lem(0) = lem(1) = 1.

Claim 1. For all 2 < k < n, k divides ay, in Z/mZ.

Proof. Recall that f(k) = Z?:_Ol a; (If) = Zf:o a; (f) since (’f) =0 fori> k. We
argue by induction on k > 2.

Base case k = 2. If 2 does not divide m then 2 and m are coprime, and hence 2
is invertible and divides ag in Z/mZ. Assume 2 divides m. As 2 divides 2—0 and f
is congruence preserving, 2 also divides f(2) — f(0) = 2a1 + a2, and hence 2 divides
ag.

Inductive step. Let 2 < k < m — 1. The inductive hypothesis ensures that ¢
divides a; in Z/mZ for every £ < k. Let ay = £q; (mod m) for 0 < £ < k. We prove
that k 4+ 1 divides ag4+1 in Z/mZ. First, observe that

(k+1ﬁh+-<§i<kjl)a0-+aM1

1=2

k
(k +1)a; + <Z <k’; 1)iqi> +aps1  (mod m)

1=2

k
(/C + 1)&1 + <Z(/€ + 1) <Z i{: 1> qi> +om + ar41 (4)

1=2

f(k+1) = f(0)

f(k+1) = f(0)
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for some «. Let d = ged(k + 1,m). Since d divides m and k+ 1 — 0 and f is
congruence preserving, d also divides f(k 4+ 1) — f(0). Using equality (4), we see
that d divides the last term a1 of the sum. Using Bézout’s identity, let u,v be
such that u(k+1) +vm = d. Then u(k+1) = d (mod m), and hence k+ 1 divides
d in Z/mZ. Since d divides ay41, we conclude that k4 1 divides a1 in Z/mZ. O

Claim 2. (i) For all2 <p < k <mn, p divides ay, in Z/mZ.
(i) For all 2 < k < n, lem(k) divides ay, in Z/mZ.

Proof. Assertion (ii) is a direct application of Lemma 3.4 and assertion (7). We
prove (i) by induction on p > 2. Both the base case and the inductive step of this
induction are proved by induction on k.

Base case p = 2. We have to prove that 2 divides ay for all £ > 2. If 2 does not
divide m, then 2 is invertible and divides all numbers in Z/mZ. Assume now that
2 divides m. We argue by induction on k > 2.

Base case. Apply Claim 1: 2 divides as.

Inductive step. Let k < n — 1. Assuming that 2 divides a; for all 2 <14 < k, we
prove that 2 divides agy1. Two cases can occur.

Subcase 1: k41 is odd. Then 2 divides k and hence, by congruence preserva-
tion, 2 divides f(k+1) — f(1). As f(k+1)— f(1) = ka1 + (Zf:2 ai(’“ﬂ)) + apt1,

7

and 2 divides k and also, by the induction hypothesis, 2 divides a; for 2 < i < k,
we see that 2 divides aj41.

Subcase 2: k+ 1 is even. By congruence preservation, 2 divides f(k + 1) —

f(0)=(k+1)a1+ (Zf:g a; (kﬂ)) +agy1. Since 2 divides k+1 and a; for 2 <i < k

?
(induction hypothesis), we infer that 2 divides aj1.

Inductive step. Let 2 < p < n — 1 and assume that
for all ¢ < p and all ¢ such that ¢ < ¢ < n, g divides ay in Z/mZ. (5)

By induction on £ > p + 1, we prove that p + 1 divides a; for all k such that
p+1<k<n.
Base case k=p+ 1. Apply Claim 1: p+ 1 divides ap1.

Inductive step. Let k < n— 1. Assuming that p+ 1 divides a; in Z/mZ for all i
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such that p+ 1 < i < k, we prove that p + 1 divides axy1 in Z/mZ. We have

f(k+1>—f<k—p>—]:§§ai(<kz+'l)‘(k;p»
+ zk: ai(k—;) +ak+1 (6)

i=k+1—p

We first look at the terms of the first sum on the right side of (6) corresponding
to 1 < ¢ < p. Applying (5) with ¢ = i, we see that ¢ divides a; in Z/mZ for all
¢ < min(p,i) = i. Using Lemma 3.4, we conclude that lem(i) divides a; in Z/mZ.
Observing that (k+1) = (k—p)+(p+1), we can apply Lemma 3.2 (with k—p, p+1
and 7 in place of b, n and k) and conclude that p+ 1 divides lem(¢) ((kjl) - (k;p))
in N. Thus, p + 1 divides a; ((kfl) - (k;p)) in Z/mZ.

We now turn to the terms of the first sum on the right side of (6) corresponding
top+1 <i < k—p (if there are any). Each of these terms is divisible by p + 1
in Z/mZ, because the induction hypothesis on k ensures that p + 1 divides a; in
Z/mZ whenever p+ 1 <i < k.

Consider next the terms of the second sum on the right side of (6). For those
terms corresponding to values of i such that p + 1 < ¢ < k, divisibility by p + 1 in
Z/mZ follows from the fact that, by the induction hypothesis on k, p+ 1 divides a;.
It remains to look at the terms associated with the ¢’s such that K4+ 1 —p <i<p
(there are such i’s in case k+1 —p < p+1). For such i’s we have 0 < (k+1) —¢ <
(k+1)—p<p+1<k+1and Lemma 3.1 (used with k+ 1,7 and p+ 1 in place of
n,k and p) implies that p + 1 divides lem(¢) (ki‘l). Now, for such #’s, the induction
hypothesis (5) on p shows that lem(i) divides a; in Z/mZ. A fortiori, p + 1 divides
a;(*') in Z/mZ.

Let d = ged(p + 1,m). As p+ 1 divides in Z/mZ all terms of the two sums on
the right side of (6) so does d. Since d divides m and k+1— (k—p) =p+1 and f
is congruence preserving, d also divides f(k+ 1) — f(k — p). Using equality (6), we
conclude that d divides in Z/mZ the last term aj11. Using Bézout’s identity, let
u, v be such that u(p+ 1) +vm = d. Then u(p+ 1) =d (mod m), and hence p+ 1
divides d in Z/mZ. As d divides aj41 in Z/mZ, we conclude that p+ 1 divides agy1
in Z/mZ.

This ends the proof of the induction in the inductive step, and hence also the
proof of Claim 2 and of the “only if” part of the Theorem. O

Proof of the “if” part of Theorem 1.7. Assume f = :zg_l ar P, and that all
of the ay’s are divisible by lem(k) in Z/mZ. We can write f in the form f(n) =

n
> oreo crlem(k) i) We prove that f is congruence preserving, i.e., if 0 < b < a <
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n — 1 and d divides both m and a — b then d also divides f(a) — f(b). Observe that

fla) = f(b) = <kzbo cklcm(k)((z> - (Z))) + za: crlem(k) (Z)

k=b+1

By Lemma 3.3, a — b divides each term of the first sum. Consider the terms of the
second sum. For b+ 1 < k < a, we have 0 < a—k < a—b < a and Lemma 3.1
(used with a, k and a—b in place of n, k and p) shows that a —b divides lem(k) (Z) )

Thus, a — b divides f(a) — f(b). O

3.2. On a Family of Generators

We now sharpen the degree of the rat-polynomial representing a congruence pre-
serving function Z/nZ — Z/mZ. We first state some properties of the lem function
in N.

Lemma 3.5. Let m > 1 be an integer with prime factorization m = p{* ---py*.
Then lem(k) = u]_[lep?’”k, where u is coprime with m and o, = max{S; | pf <
Definition 3.6. Let m > 1 be an integer with prime factorization m = p" - - - pj*.

We let gpp(m) = max {pf‘ ie{l,... ,6}} be the greatest power of prime dividing
m in N.

Lemma 3.7. The number gpp(m) is the least integer k such that m divides lem(k).

Example 3.8. We have gpp(8) = 8, gpp(12) = 4 and gpp(14) = 7. The successive
values of the residues in Z/mZ of lem(k) are

k 1 23 4 5 6 7 8
lem(k) inZ/82Z |1 2 2 4 4 4 4 0
lem(k)inZ/12Z |1 2 6 0 0 0 0 O
lem(k) mZ/14Z |1 2 6 12 4 4 0 0

For all £ > gpp(m), lem(?) is zero in Z/mZ.

Remark 3.9. 1. Either gpp(m) = m or gpp(m) < m/2.
2. In general, gpp(m) is greater than A(m), the least k such that m divides k! (a
function considered in [3]): for m = 8, gpp(m) = 8 whereas A(m) = 4.

Using Lemma 3.7, we can get a better version of Theorem 1.7.

Theorem 3.10. A function f: Z/nZ — Z/mZ is congruence preserving if and
only if it is associated in the sense of Definition 1.5 with a rational polynomial
P = Z;(l) ar(}) where d = min(n, gpp(m)) and such that lem(k) divides ay, in
Z/mZ for all k < d.
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Proof. For k > gpp(m), m divides lem(k) hence the coefficient ay, is 0. O

Theorem 3.11. (i) Every congruence preserving function f : Z/nZ — Z/mZ is
rat-polynomial with degree less than gpp(m).
(it) The family of rat-polynomial functions

F = {lem(k)P, | 0 < k < min(n, gpp(m))}

generates the set of congruence preserving functions Z/nZ — Z/mZ.
(iii) F is a basis of the set of congruence preserving functions if and only if m has
no prime divisor p < min(n,m) (in case n > m this means that m is prime).

Proof. Assertions (i) and (ii) are restatements of Theorem 3.10. Let us prove (%ii).

“Only If” part. Asssume m has a prime divisor p < min(n,m) and let p be the
least one. Then lem(p) = pa with a coprime with m, and hence lem(p) # 0 in
Z/mZ. Since P,(p) = 1 this shows that lem(p) P, is not the null function. However
(m/p)lem(p) = 0 in Z/mZ, and hence (m/p)lem(p) P, is the null function. As
(m/p) # 0 in Z/mZ, this proves that F cannot be a basis.

“If” part. Assume that m has no prime divisor p < min(n,m). We prove that F
is (Z/mZ)-linearly independent. Suppose that the (Z/mZ)-linear combination L =
Ekm:i%(n’gpp(m))fl ax lem(k) Py is the null function Z/nZ — Z/mZ. By induction on
k=0,...,min(n, gpp(m)) — 1 we prove that a = 0.

e Basic cases k =0,1. From L(0) = ag and L(1) = ag + a; we deduce ag = a3 = 0.
e Induction step. Assuming k > 2 and a; = 0 for i = 0,...,k — 1, we prove that
ar = 0. Observe that Py(k) = (’Z) =0fork<f¢<n. Sincea; =0fori=0,...,k—1,
and Py(k) = 1 we get L(k) = aglem(k). As k < min(n, gpp(m)) < min(n,m) and
m has no prime divisor p < min(n, m), the numbers lem(k) and m are coprime.
Thus, lem(k) is invertible in Z/mZ and equality L(k) = aglem(k) = 0 implies
ap — 0. O

4. Counting Congruence Preserving Functions

We now compute the number of congruence preserving functions Z/nZ — Z/mZ.
As two different rational polynomials correspond to different functions by Proposi-
tion 1.6 (uniqueness of the representation by a rational polynomial), the number of
congruence preserving functions Z/nZ — Z/mZ is equal to the number of polyno-
mials representing them.

Proposition 4.1. Let CP(n,m) be the number of congruence preserving functions
Z/nZ — Z/mZ. Let m = p{'ps®---p;* be the decomposition of m in powers of
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primes. Let T = {i | p{" < gpp(m)} and J = {i | pi* > gpp(m)}. Then

p1+pi+--+pyt

. Py X oo et T‘ J if n > gpp(m),
P(n,m) = ogp -
( ) ) H I 24 pit XH pHrp, +tp; +n(e—|log, n]) ’Lf n< gpp(m).

i€ ieJ

Equivalently, writing E(p, ) instead of p* for better readability, we have

ﬁ E(pi,i pY) if n> gpp(m),
CP(TL, m) =<7 [log, 7]

I E(:.>S 95 xTTE s, ( 3 p8) +nle - [log, n])) if n < gpp(m).

i€ k=1 i€J k=1

Corollary 4.2. For n > gpp(m), CP(n,m) does not depend on n.

Proof of Proposition 4.1. By Theorem 3.10, we must count the number of n-tuples
of coefficients (ag,...,an—1), with, for &k = 0,...,n — 1, a) being a multiple of
lem(k) in Z/mZ.

Claim 1. For m = pi'p5* - --py*, for all n, CP(n,m) = Hle CP(n,p;").

Proof of Claim 1. Let E(r, k) be the set of multiples in Z/rZ of lem(k) and A(r, k)
be the cardinal of E(r,k). The Chinese remainder theorem shows that the map
p:z— (2 (mod pf))z _____ 18 anisomorphism and also that p maps the set E(m, k)

onto the Cartesian product P = Hi:l E(p;*, k). Indeed, let (t;)i=1,.., € P. For
eachi=1,...,¢, thereis 0 < ¢; < p§* such that t; = ¢;lem(k) (mod pj*). Applying
the Chinese remainder theorem, there are 0 < ¢,¢q < m such that ¢ = ¢; (mod p;*)
and ¢ = ¢; (mod p;*). Then t = glem(k) (mod m), and hence p(t) = (t;)i=1,....c.
This proves that A\(m, k) = Hle A(pit, k) for each k. Thus, the number CP(n,m)

of n-tuples (ag, . ..,an—1) such that lem(k) divides a, is equal to
¢ ¢
m) = H)\(m,k): HH)\(pf, HHAP% , 7HCP(n,pf"’). O
k<n k<ni=1 i=1k<n i=1

Claim 1 reduces the problem to that of counting the congruence preserving func-
tions Z/nZ — Z/p;*Z. We will use Theorem 3.10 to this end.

Claim 2. Letting ¢ = |log, n]| (and using the E(p,a) notation for p*), we have

CPnpt) = A Eop 78+ ) ifn > p°,
E(p,p+p*+---+p'+(e—0n) ifp' <n<pc.

Proof of Claim 2. By Theorem 3.10, as gpp(p¢) = p%, letting v = inf(n, p¢), we have
CP(n,p®) = CP(v,p°®) = [[,_ ! _o A»°, k). As we noted in the proof of Claim 1, for
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p? < k < p/TL the order A\(p®, k) of the subgroup generated by lem(k) in Z/p°Z is
p¢~J, and there are p?+1 — pJ such k’s. For k =0, lem(0) = 1 yields A(p©, 0) = p°.
o If n > p© then CP(n,p%) = CP(*,p°) = p* [T o TTL,, " p°7 = p™ with

e—1
M = et (e=HW =p)=p+p"+-- +p°
=0

e If n < p° then p’ < n < p° and

CP(n,p°) = TIhZo Mp°, k)
_ 1 . e B )
pe(Hﬁztl) Z];:p.’/ ' pe_”)(l_[k:;e pet) = pM with

-1 n—1
M = e—i—Z(e—j)(ij -p)+ Z(e—e)
7=0 k=p*

= (e=0p'+(+p*+ - +p)+(n—pe—10
= (p+p°+-+p)+nle-1) O
This finishes the proof of Proposition 4.1. O

Remark 4.3. In [1] the number of congruence preserving functions Z/nZ — Z/p¢Z
is shown to be equal to E(p,en — 22;11 min{e, |log, k|}). For pt < k < pith,
we have [log, k| = i, and hence min{e, |log, k]} = [log, k| for k < p® and
min{e, |log, k|} = e for k > p°. Thus, we have
e if n > p°, then
Sopi min{e, |log, k| } = 0! [log, k| + S5, e = 3525 i (7 = p) + e(n — p°)
= —(p+---+p°®)+ep®+e(n—p®), and hence en—zz;ll min{e, [log, k|} = p+---+p°.
This coincides with our counting in Claim 2.
e if n < p° and [ = [log, n|, then, similarly,

i log, k| = 35570 [log, k| + 3757 [log, k) = 3252007+ —p?) + £(n—p") =
—(p+---+p") +nt, and hence en — 22;11 |log, k] =p+--- +p+ (e — £)n. Again,
this coincides with our counting in Claim 2.

5. Conclusion

We proved that the rational polynomials lem(k) Py generate the Z/mZ submodule
of congruence preserving functions Z/nZ — 7Z/mZ. When n is larger than the
greatest prime power dividing m, the number of functions in this submodule is
independent of n. An open problem is the existence of a basis of this submodule.
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