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Abstract
In this paper we introduce a version of multivariable Laguerre polynomials irre-
ducible over the rationals. We also prove, for such polynomials in two variables, a
congruence property, which is similar to the one obtained by Carlitz for the classical
Laguerre polynomials in one variable.

1. Introduction

The generalized Laguerre polynomials in one variable are defined for an arbitrary
integer n � 0 and a parameter ↵ > �1 by Rodrigues’ relation (see, for example, [4],
Section 1.4.2):

L↵
n(x) =

1
n!

exx�↵ · Dn
�
e�xxn+↵

�
, where Dn :=

dn

dxn
.

In this paper we will consider only non-negative integer values for the parameter
↵, i.e., we assume from now on that ↵ 2 N0 = N [ {0}. Expanding the definition
of L↵

n(x) using the n-fold product rule and the Pochhammer symbol defined for all
x 2 R by

(x)0 = 1, (x)n =
nY

i=1

(x + i� 1) for all n 2 N,

one immediately comes to the following explicit formulas ([4], Section 1.4.2):

L↵
n(x) =

nX
j=0

(↵ + 1)n · (�n)j

(↵ + 1)j · n!
· xj

j!
=

nX
j=0

(�1)j

j!
·
✓

n + ↵

n� j

◆
· xj . (1)
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It was established by Schur in 1929 (see [8]) that Ln(x) = L0
n(x) are irreducible

over the rationals for all n 2 N. Recently this result was generalized by Filaseta and
Lam who proved that for all but finitely many n 2 N, the polynomials L↵

n(x), where
↵ is a rational number which is not a negative integer, are irreducible over Q (see
[6]). Note that reducible L↵

n do exist, for example, L2
2(x) = 1/2(x�2)(x�6). One of

the key characteristics of the Laguerre polynomials L↵
n(x) (with a fixed ↵ > �1) is

that they are orthogonal over the interval (0,1) with respect to the weight function
!(x) = e�xx↵ (see Chapter 1 of [4]). They also satisfy other interesting properties,
including the one due to Carlitz (see [3]), who proved in 1954 that for all n,m 2 N,
and a rational number ↵ that is integral (mod m),

(n + m)!L↵
n+m(x) ⌘ n!L↵

n(x) · m!L↵
m(x) (mod m). (2)

There are various examples of families of orthogonal polynomials in several vari-
ables, and certain properties of the following multivariable Laguerre polynomials
have been studied in [4] and [2]:

L↵1,...,↵r
n1,...,nr

(x1, . . . , xr) = L↵1
n1

(x1) · L↵2
n2

(x2) · . . . · L↵r
nr

(xr). (3)

Such multivariable Laguerre polynomials are orthogonal with respect to the weight
function, which is the product of the corresponding weight functions x↵1

1 · . . . · x↵r
r ·

e�(x1+...+xr) over the domain, which is the cartesian product of the corresponding
domains Rd

+ = {(x1, . . . , xr) | 0 < xj < 1, j 2 {1, 2, . . . , r}} (see [2] and [4],
Section 2.3.5). It is also clear from (3) that such multiple Laguerre polynomials are
reducible as soon as they have more than one variable.

In this paper, we introduce a version of multivariable Laguerre polynomials
Ln1,...,nr(x1, . . . , xr), which are irreducible over the rationals and prove that such
Laguerre polynomials in two variables satisfy a congruence relation similar to (2).

The rest of this paper is divided up as follows. In Section 2, we introduce our
version of Laguerre polynomials in x and y using Rodrigues’ formula with partial
derivatives and derive the corresponding explicit formulas similar to (1). In Section
3, we establish several auxiliary lemmas and use them to give another proof of
the congruence (2) of Carlitz. Section 4 contains a proof of the corresponding
congruence for two-variable Laguerre polynomials (see (12) below). In Section 5,
we o↵er our version of multivariable Laguerre polynomials in an arbitrary number
of variables and discuss their irreducibility over Q.

2. Laguerre Polynomials in Two Variables

As we already wrote, the Laguerre polynomials in x are defined for an arbitrary
integer n � 0 and the parameter ↵ = 0 by Rodrigues’ relation Ln(x) = 1

n!e
x ·
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Dn (e�xxn). We apply this approach to define the Laguerre polynomials in two
variables as follows.

Definition 1. For all n,m 2 N0 let

Ln,m(x, y) :=
1

n! · m!
e(x+y)/2 · Dn+m

@

⇣
e(�x�y)/2xnym

⌘
,

where D@(f(x, y)) := fx(x, y) + fy(x, y).

Note 1: Since e(x+y)/2 · D@

�
e(�x�y)/2f(x, y)

�
= fx(x, y) + fy(x, y) � f(x, y), if it

happens that f(x, y) depends only on a single variable x, we obtain

e(x+y)/2 · D@

⇣
e(�x�y)/2f(x, y)

⌘
=

d

dx
f(x)� f(x) = ex · D

�
e�xf(x)

�
,

and hence naturally

Ln,0(x, y) =
1

n! · 0!
e(x+y)/2 · Dn

@

⇣
e(�x�y)/2xny0

⌘
= Ln(x), L0,m(x, y) = Lm(y).

By the same argument we also have

Ln,m(x, x) =
1

n! · m!
e(x+y)/2 · Dn+m

@

⇣
e(�x�y)/2xn+m

⌘
=
✓

n + m

n

◆
· Ln+m(x).

Before giving the explicit formulas for Ln,m(x, y) we prove the following formula.

Lemma 1. For all n, m, t 2 N0 we have

e
(x+y)

2 ·Dt
@

⇣
e

(�x�y)
2 xnym

⌘
=

min(t,m)X
i=0

✓
t

i

◆
· m!
(m� i)!

·
✓

exDt�i
�
e�xxn

�◆
·ym�i, (4)

where D = d
dx is as in the definition of the classical Laguerre polynomials.

Proof. We use induction on t; so suppose t = 0. Hence

e(x+y)/2 · Dt
@(e(�x�y)/2xnym) = xnym,

and the right-hand side of (4) also yields a single term xnym. Now assume that (4)
is true for t = k � 1. Then, by the induction hypothesis, we obtain

e
(x+y)

2 ·Dk
@

⇣
e

(�x�y)
2 xnym

⌘
= e

(x+y)
2 ·D@

⇣
e

(�x�y)
2 · e(x+y)/2 · Dk�1

@

⇣
e

(�x�y)
2 xnym

⌘⌘

= e
(x+y)

2 ·D@

✓
e

(�x�y)
2

✓min(k�1,m)X
i=0

✓
k � 1

i

◆
· m!
(m� i)!

·
✓

exDk�1�i
�
e�xxn

�◆
·ym�i

◆◆
.
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Since

e
(x+y)

2 D@

⇣
e

(�x�y)
2 g(x)yl

⌘
=
�
g0(x)�g(x)

�
yl+lg(x)yl�1 =exD(e�xg(x))yl+lg(x)yl�1

for all l 2 N, the above summation can be rewritten as

e
(x+y)

2 ·Dk
@

⇣
e

(�x�y)
2 xnym

⌘
=

min(k�1,m)X
i=0

✓
k � 1

i

◆
· m!
(m� i)!

·
✓

exDk�i
�
e�xxn

�◆
·ym�i

+
min(k�1,m)+1X

i=1

✓
k � 1
i� 1

◆
· m!
(m� i)!

·
✓

exDk�i
�
e�xxn

�◆
· ym�i,

where the expression m!/(m� i)! is to be interpreted as 0 if i = m + 1 in the last
sum. Using the identities✓

k � 1
0

◆
=
✓

k

0

◆
,

✓
k � 1
k � 1

◆
=
✓

k

k

◆
, and

✓
k � 1

i

◆
+
✓

k � 1
i� 1

◆
=
✓

k

i

◆
, for 1  i  k�1,

and combining the coe�cients of terms that have the same degree in y in the last
two summations, we see that the identity (4) holds true for t = k, which finishes
the induction.

The next theorem gives the explicit formulas for Ln,m(x, y) (compare with (1)).

Theorem 1. For all n,m 2 N0 we have

Ln,m(x, y) =
mX

i=0

(�1)i

i!
·
✓

m + n

m� i

◆
·Li

n(x)·yi =
nX

s=0

(�1)s

s!
·
✓

n + m

n� s

◆
·Ls

m(y)·xs, and

Ln,m(x, y) =
mX

i=0

nX
s=0

(�1)i+s

i! · s! ·
✓

m + n

m� i

◆
·
✓

n + i

n� s

◆
· xs · yi. (5)

Proof. Using Lemma 1 and Formula (4) we can write

e
(x+y)

2 · Dn+m
@

⇣
e

(�x�y)
2 xnym

⌘
=

mX
j=0

✓
m + n

j

◆
m!

(m� j)!

✓
exDn+m�j

�
e�xxn

�◆
ym�j ,

which implies that for i := m� j 2 {0, . . . ,m},

Ln,m(x, y) =
1

n! · m!
·

mX
i=0

✓
m + n

m� i

◆
m!
i!

✓
exDn+i

�
e�xxn

�◆
yi

=
mX

i=0

1
i!

✓
m + n

m� i

◆✓
1
n!

exDn+i
�
e�xxn

�◆
yi. (6)
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Since for Laguerre polynomials in a single variable x (see [4], Section 1.4.2)

d

dx

�
L↵

k (x)
�

= �L↵+1
k�1(x) and L↵

k (x) = L↵+1
k (x)� L↵+1

k�1(x)

) exDt(e�xL↵
k (x)) = (�1)t · L↵+t

k (x)

we can continue Formula (6) and write

Ln,m(x, y) =
mX

i=0

1
i!

✓
m + n

m� i

◆✓
exDi

�
e�xLn(x)

�◆
yi =

mX
i=0

(�1)i

i!

✓
m + n

m� i

◆
Li

n(x)yi,

which gives the first formula in (5). The second formula follows either from the
symmetry or from an argument similar to the one we just gave. To obtain the third
formula recall that by (1),

Li
n(x) =

nX
s=0

(�1)s

s!
·
✓

n + i

n� s

◆
· xs

and hence

Ln,m(x, y) =
mX

i=0

nX
s=0

(�1)i+s

i! · s!

✓
m + n

m� i

◆✓
n + i

n� s

◆
· xs · yi,

as was required.

It is well-known (see [4], Sections 1.4.2 and 2.3.5) that Laguerre polynomials in
one variable satisfy the di↵erential equation

x · d2

dx2
L↵

n(x) + (↵ + 1� x) · d

dx
L↵

n(x) + n · L↵
n(x) = 0, (7)

and the multiple Laguerre polynomials L↵1,...,↵r
n1,...,nr

(x1, . . . , xr) (recall (3) above) satisfy
the partial di↵erential equation

rX
i=1

xi ·
@2

@x2
i

L↵1,...,↵r
n1,...,nr

+
rX

i=1

�
(↵i + 1� xi) · @

@xi
L↵1,...,↵r

n1,...,nr

�
+ n · L↵1,...,↵r

n1,...,nr
= 0.

Here is the corresponding analog for the Laguerre polynomial Ln,m(x, y).

Claim 1. For all n,m 2 N0, Ln,m(x, y) satisfies the following system of partial
di↵erential equations✓

Lxx Lxy

Lyx Lyy

◆
·
✓

x
y

◆
+
✓

Lx 0
0 Ly

◆
·
✓

1� x
1� y

◆
+
✓

L 0
0 L

◆
·
✓

n
m

◆
=
✓

0
0

◆
,

where we use the notation L for Ln,m(x, y), Lx for @
@xLn,m(x, y), Lxy for

@2

@x@y Ln,m(x, y), and so on.

Proof. The proof is a straightforward computation using our first two explicit for-
mulas in (5) and the di↵erential equation (7).
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3. Another Proof of the Congruence of Carlitz

In this section we prove several auxiliary results. Note that (p, q) stands for the
greatest common divisor of p and q, and (x)n = x · (x + 1) · . . . · (x + n� 1) denotes
the Pochhammer symbol.

Lemma 2. Let p, q, u, v and n be integers such that either p or q is non-zero and
n � 0. Then

(x)n ⌘ (x + up + vq)n (mod (p, q))

Proof. Since (p, q) divides both p and q we have x+ i ⌘ x+up+vq+ i (mod (p, q)),
for all integer i � 0.

Lemma 3. For all m,n 2 N0, q 2 N, p 2 Z \ {0}, and i 2 {q, . . . ,m + q} we have
the following congruence modulo the gcd of p and q.
✓

m

m + q � i

◆
· (n+ p+ i� q +1)m�(i�q) ⌘

✓
m + n

m + q � i

◆
· (i� q� p+1)m�(i�q) (8)

Proof. Lemma 2 implies that, modulo the gcd of p and q, that
✓

m

m + q � i

◆
· (n + p + i� q + 1)m�(i�q) ⌘

✓
m

m + q � i

◆
· (n + i� q + 1)m�(i�q),

and also✓
m + n

m + q � i

◆
·(i�q+1)m�(i�q) ⌘

✓
m + n

m + q � i

◆
·(i�q�p+1)m�(i�q) (mod (p, q)).

Since✓
m + n

m + q � i

◆
· (i� q + 1)m�(i�q) =

(m + n)!
(m� (i� q))!(i� q + n)!

· (i� q + 1) · . . . · (m)

=
m! · (m + 1) · . . . · (m + n)

(m� (i� q))!(i� q)! · (i� q + 1) · . . . · (i� q + n)
· (i� q + 1)m�(i�q)

=
✓

m

m + q � i

◆
· (i� q + n + 1)m�(i�q),we see that the lemma holds.

Corollary 1. For all m, s 2 N0, q 2 N, and i 2 {q, . . . ,m + q} we have, modulo q,
that

(m+ q� i)! ·
 

m
m + q � i

!
·
 

m + s
m + q � i

!
⌘ (m+ q� i)! ·

 
m + q

m + q � i

!
·
 

m + s + q
m + q � i

!
. (9)
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Proof. Using the notation from Lemma 3, and assuming that p = �q and n = s+ q
with s 2 N0, we obtain

(n + p + i� q + 1)m+q�i = (m + q � i)! ·
✓

m + s

m + q � i

◆
, and

(i� q � p + 1)m+q�i = (m + q � i)! ·
✓

m + q

m + q � i

◆
.

Hence we can rewrite Lemma 3, modulo q, as

(m+q� i)! ·
✓

m

m + q � i

◆
·
✓

m + s

m + q � i

◆
⌘ (m+q� i)! ·

✓
m + q

m + q � i

◆
·
✓

m + s + q

m + q � i

◆
,

which is what we had to show.

Please notice that, for example if m = 3, q = 6, s = 5, and i = 6, then for the
binomial factors from (9) we have

✓
3
3

◆
·
✓

3 + 5
3

◆
�
✓

3 + 6
3

◆
·
✓

3 + 6 + 5
3

◆
⌘ 2 (mod 6);

so the factor (m + q � i)! in (9) is necessary to guarantee the equality.

Lemma 4. For all n,m 2 N0 and q 2 N,

n!Lm+q
n (x) ⌘ n!Lm

n (x) (mod q).

Proof. Using Formula (1) we obtain

n!Lm+q
n (x) =

nX
j=0

n!(�1)j

j!

✓
n + m + q

n� j

◆
xj , n!Lm

n (x) =
nX

j=0

n!(�1)j

j!

✓
n + m

n� j

◆
xj ,

and since we also have

n!
j!

✓
n + m + q

n� j

◆
=
✓

n

j

◆
·(m+q+j+1)n�j and

n!
j!

✓
n + m

n� j

◆
=
✓

n

j

◆
·(m+j+1)n�j ,

we see that this lemma follows from Lemma 2 that implies (m + q + j + 1)n�j ⌘
(m + j + 1)n�j (mod q).

Now we give a direct proof of Carlitz’s identity for the classical Laguerre poly-
nomials.

Corollary 2. (see [3]) For all n, i 2 N0 and p 2 N the following congruence holds.

(n + p)!Li
n+p(x) ⌘ n!Li

n(x) · p!Li
p(x) (mod p)
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Proof. First observe that p!Li
p(x) ⌘ (�1)pxp (mod p) (compare with (4.6) of [3]).

Indeed,

p!Li
p(x) =

pX
t=0

(�1)t · p!
t!

·
✓

p + i

p� t

◆
xt

= p ·
p�1X
t=0

(�1)t(t + 1)p�1�t ·
✓

p + i

p� t

◆
xt + (�1)pxp ⌘ (�1)pxp (mod p).

Therefore it is enough to show that

(n + p)!Li
n+p(x) ⌘ (�1)pxp · n!Li

n(x) (mod p). (10)

We do it by comparing the coe�cients of xt on both sides of (10). Suppose first
that t 2 {0, . . . , p� 1}. Then, the coe�cient on the right-hand side of (10) is zero.
The corresponding coe�cient on the left-hand side of (10) is

(�1)t (n + p)!
t!

✓
n + p + i

n + p� t

◆
= (�1)t

✓
n + p + i

n + p� t

◆
(p� 1)!

t!
·p·. . .·(p+n) ⌘ 0 (mod p).

Assume now that t 2 {p, . . . , n + p}. Using (1) again, we see that the coe�cients of
xt on the left and right-hand sides of (10) are respectively

(�1)t · (n + p)!
t!

·
✓

n + p + i

n + p� t

◆
and (�1)p ·(�1)t�p · n!

(t� p)!
·
✓

n + i

n + p� t

◆
. (11)

Canceling (�1)t on both sides we can rewrite these coe�cients as

(n+p� t)! ·
✓

n + p

n + p� t

◆
·
✓

n + p + i

n + p� t

◆
and (n+p� t)! ·

✓
n

n + p� t

◆
·
✓

n + i

n + p� t

◆
.

Applying Corollary 1 with n = m, p = q, t = i, and i = s we deduce that these
coe�cients are congruent (mod p). This finishes our proof of the Identity (2).

4. Main Theorem

Theorem 2. For all n,m 2 N0 and p, q 2 N we have the following congruence
modulo the gcd of p and q (compare with (2) above).

(n + p)!(m + q)!Ln+p,m+q(x, y) ⌘ n!m!Ln,m(x, y) · p!q!Lp,q(x, y) (12)

Proof. We will compare the corresponding coe�cients of xtyi on both sides of the
congruence. Similarly to the one variable case we have p!q!Lp,q(x, y) ⌘ (�1)p+qxpyq

(mod (p, q)). Indeed, using our third formula in (5) we have

p!q!Lp,q(x, y) =
qX

i=0

pX
t=0

(�1)i+tp!q!
i!t!

·
✓

p + q

q � i

◆✓
p + i

p� t

◆
xtyi,
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so if i + t < p + q then gcd(p, q) | p!q!/i!t! since either i < q or t < p. If i = q and
t = p, the coe�cient of xpyq equals (�1)p+q, and hence

n!m!Ln,m(x, y) · p!q!Lp,q(x, y) ⌘ (�1)p+qxpyq · n!m!Ln,m(x, y) (mod (p, q)). (13)

If we take the coe�cient of xtyi in (n + p)!(m + q)!Ln+p,m+q(x, y) with t < p or
i < q we will have

(�1)i+t (n + p)!(m + q)!
t!i!

·
✓

m + q + n + p

m + q � i

◆
·
✓

n + p + i

n + p� t

◆
,

and if, for example, t < p then the integer (n+p)!
t! is divisible by p, and hence by

gcd(p, q). Since (m+q)!
i! ,

�m+q+n+p
m+q�i

�
, and

�n+p+i
n+p�t

�
are all integers, gcd(p, q) divides

the coe�cient of xtyi. If t � p but i < q the proof is similar since q | (m+q)!
i! . So to

prove Theorem 2 it is enough to show that the coe�cients of xtyi on the left-hand
side and the right-hand side of (12) are congruent (mod (p, q)) for all p  t  n+p
and q  i  m + q.

Thus we assume from now on that t 2 {p, . . . , n + p} and i 2 {q, . . . ,m + q}.
According to the first formula from our Theorem 1, the coe�cient of yi on the
left-hand side of (12) is

(�1)i (n + p)!(m + q)!
i!

✓
m + q + n + p

m + q � i

◆
· Li

n+p(x),

which is, due to the Identity (2),

⌘ (�1)i+p (m + q)!
i!

✓
m + q + n + p

m + q � i

◆
· n!Li

n(x) · xp (mod p).

Now, let us fix j = i�q 2 {0, . . . , m}. Then the coe�cient of yq+j on the left-hand
side of (12) is

⌘ (�1)q+j+p (m + q)!
(j + q)!

✓
m + q + n + p

m� j

◆
· n!Lq+j

n (x) · xp (mod (p, q)).

Using (13), modulo (p, q), the coe�cient of yq+j on the right-hand side of (12) is the
product of (�1)p+q · xp · n! · m! with the coe�cient of yj in Ln,m(x, y). Therefore,
according to Theorem 1, this coe�cient of yq+j is

(�1)p+q · xp · n! · m! · (�1)j

j!
·
✓

m + n

m� j

◆
· Lj

n(x).

By Lemma 4 then, it su�ces to show that

(m + q)!
(j + q)!

✓
m + q + n + p

m� j

◆
⌘ m!

j!

✓
m + n

m� j

◆
(mod (p, q)),
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which can be rewritten as

(q + j + 1)m�j
(q + n + p + j + 1)m�j

(m� j)!
⌘ (j + 1)m�j

(n + j + 1)m�j

(m� j)!
(mod (p, q)).

To prove this last congruence we note that the product of any N consecutive integers
is divisible by N ! so (j + 1)m�j/(m � j)! 2 Z and apply Lemma 2 twice to write,
modulo (p, q)

(q + j + 1)m�j
(q + n + p + j + 1)m�j

(m� j)!
⌘ (j + 1)m�j

(q + n + p + j + 1)m�j

(m� j)!

= (q + n + p + j + 1)m�j
(j + 1)m�j

(m� j)!
⌘ (n + j + 1)m�j

(j + 1)m�j

(m� j)!
(mod (p, q)),

and the theorem follows.

5. More Variables, Irreducibility, and Other Related Questions

First let us generalize our Definition 1 from Section 2 to more than two variables.

Definition 2. For all r 2 N and ni 2 N0 with i 2 {1, 2, . . . , r} let

Ln1,...,nr(x1, . . . , xr) :=

 
rY

i=1

1
ni!

!
· es/r · Dd

@

 
e�s/r

rY
i=1

(xi)
ni

!
,

where

s :=
rX

i=1

xi, d :=
rX

i=1

ni and D@(f(x1, . . . , xr)) :=
rX

i=1

@f(x1, . . . , xr)
@xi

.

Note 2: Here we have

es/r · D@

⇣
e�s/rf(x1, . . . , xr)

⌘
=

rX
i=1

@f(x1, . . . , xr)
@xi

� f(x1, . . . , xr)

and if it happens that f(x1, . . . , xr) depends on less than r variables, say only on
variables x1, . . . , xr�1, we obtain (for the same s as above)

es/r · D@

⇣
e�s/r · f(x1, . . . , xr�1)

⌘
=

r�1X
i=1

@f(x1, . . . , xr�1)
@xi

� f(x1, . . . , xr�1)

= e(s�xr)/(r�1) · D@

⇣
e�(s�xr)/(r�1) · f(x1, . . . , xr�1)

⌘
,
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and hence naturally

Ln1,...,nr�1,0(x1, . . . , xr) =

 
r�1Y
i=1

1
ni!

· 1
0!

!
· es/r · Dd

@

 
e�s/r ·

r�1Y
i=1

(xi)ni · x0
r

!

= Ln1,...,nr�1(x1, . . . , xr�1).

By a similar argument for x1 = x2 = · · · = xr = x, we also obtain

Ln1,...,nr(x, x, . . . , x) =

 
rY

i=1

1
ni!

!
· es/r · Dd

@

⇣
e�s/r · xd

⌘
= (n1, n2, . . . , nr)! · Ld(x),

where
(n1, n2, . . . , nr)! =

(n1 + n2 + . . . + nr)!
n1! · n2! · . . . · nr!

is the multinomial coe�cient.
Now we discuss the irreducibility of Ln1,...,nr(x1, . . . , xr).

Lemma 5. For all r 2 N and ni 2 N0 with i 2 {1, . . . , r} the polynomials
Ln1,...,nr(x1, . . . , xr) are irreducible over the rationals.

Proof. We will use the strong principle of mathematical induction on the number
of variables r. The base case when r = 1 is due to Schur (see [8]), so let’s assume
that the corresponding Laguerre polynomials in k variables will be irreducible over

Q for all k 2 {1, . . . , r � 1}. Suppose further
rQ

i=1
ni 6= 0 and Ln1,...,nr(x1, . . . , xr) =

f(x1, . . . , xr) · g(x1, . . . , xr), where deg f(x1, . . . , xr) > 0,deg g(x1, . . . , xr) > 0, and
both f and g are polynomials with rational coe�cients. Then, according to our
Note 2 above, substituting x1 = . . . = xr = x we get

f(x, . . . , x) · g(x, . . . , x) = Ln1,...,nr(x, . . . , x) = (n1, . . . , nr)! · Ld(x).

Since Ld(x) is irreducible for all d 2 N we must have either deg f(x, . . . , x) = 0 or
deg g(x, . . . , x) = 0. Assuming without loss of generality that deg f(x, . . . , x) = 0 we
get deg g(x, . . . , x) = deg Ld(x) = d. Since deg g(x, . . . , x)  deg g(x1, . . . , xr) we
deduce from the last equality that deg Ln1,...,nr(x1, . . . , xr) = d  deg g(x1, . . . , xr),
which contradicts the assumption that deg f(x1, . . . , xr) > 0. If one of ni = 0, our
polynomial Ln1,...,nr(x1, . . . , xr) reduces to the one in number of variables less than
r, which is irreducible by the induction assumption.

As we have mentioned in the introduction, this is the main distinction of our
version of multivariable Laguerre polynomials from those considered in [2] and [4].

Laguerre polynomials in one variable have many interesting combinatorial prop-
erties. For example, Even and Gillis in 1976 showed that an integral of a product
of the Laguerre polynomials and e�x can be interpreted as permutations of a set of
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objects of di↵erent “colors” (derangements). Using rook polynomials Rn(x), Jack-
son gave a shorter proof of the result Even and Gillis obtained (see [5] and [7]).
These polynomials satisfy

Rn(x) =
nX

k=0

rk · xk = n!xn · Ln(�1/x),

where rk stands for the rook number that counts the various ways of placing k
non-attacking rooks on the full n⇥n board. We would like to close this paper with
a general question: Do Ln,m(x, y) have any combinatorial properties similar to
those of Ln(x)? In particular, the two-dimensional rook numbers and their certain
properties can be generalized to three and higher dimensions (see, for example, [1]),
so one can ask if

n!xn · m!ym · Ln,m(�1/x,�1/y)
has a natural interpretation in terms of rook numbers for three-dimensional boards.
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