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Abstract
Let S = {a1, a2, . . . , an} be a set of nonzero integers such that for any nonempty
subset T of S, the product of all the elements in T is not a perfect square. Then
the density of the set of primes p for which the ai’s are quadratic non-residues

modulo p, but not primitive roots modulo p, is at least
1

2n(q � 1)qm
, where m is a

non-negative integer with m  n and q is the least odd prime which does not divide
ai for all i = 1, 2, . . . , n.

1. Introduction

Let S = {a1, a2, . . . , an} be a set of nonzero integers which are not perfect squares.
In 1968, M. Fried [5] proved that there are infinitely many primes p for which a is a
quadratic residue modulo p for every a 2 S. Further, he provided a necessary and
su�cient condition for the ai’s to be quadratic non-residues modulo p. In 2011, R.
Balasubramanian, F. Luca and R. Thangadurai [1] calculated the exact density of
such primes in Fried’s results. More recently, S. Wright ([15, 16]) also considered
the above result qualitatively. In 1976, K. R. Matthews [11] proved, assuming the
generalized Riemann hypothesis holds, that given nonzero integers a1, a2, . . . , an,
there exists a real nonnegative constant C = C(a1, a2, . . . , an) such that

| {p  x : ordpai = p� 1,8i = 1, 2, . . . , n} | = C li(x) + O

✓
(log log x)2

n�1

(log x)2

◆
,

where ordp(ai) = min
�
k 2 N : ak

i ⌘ 1 (mod p)
 
. Matthews [11] generalized the

result of Hooley [8] which confirms Artin’s primitive root conjecture, under the
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assumption of generalized Riemann hypothesis. This conjecture is still unsolved.
For the state of the art, we refer to a survey article of P. Moree [12].

In this paper, we consider a similar problem for the non-residues which are not
primitive roots modulo prime p. It is easy to check that every non-residue modulo
prime p is a primitive root modulo p if and only if p is a Fermat prime. Conjecturally,
there are only finitely many Fermat primes. Hence for almost all the primes p, the
set of non-residues modulo p has an element which is not a primitive root modulo
p. The distribution of these residues was considered in [7] and [10]. Here, we prove
the following theorem.

Main Theorem. Let S = {a1, a2, . . . , an} be a finite set of nonzero integers such
that for any nonempty subset T of S, the product of all the elements in T is not
a perfect square. Let q > 2 be the least prime such that q - a1a2 . . . an. Then the
density of the set of primes p for which the ai’s are quadratic non-residues but not

primitive roots modulo p, is at least
1

2n(q � 1)qm
, where m is a non-negative integer

with m  n.

2. Preliminaries

We require the following basic results.

Lemma 1 ([13]). Let a be a nonzero integer and let p and q be odd primes.
Then, p ⌘ 1 (mod q) and a(p�1)/q ⌘ 1 (mod p) if and only if p splits completely in
Q(⇣q, a1/q), where ⇣q is a primitive q-th root of unity.

Lemma 2. (Linearly disjointness)

(2.1) ([9]) Let L and M be finite extensions over Q and let LM be their compositum
over Q. Let p be a rational prime. Then p splits completely in both L and M
if and only if p splits completely in LM .

(2.2) ([3]) Let L and M be finite extensions over Q with L\M = Q. If one of them
is a normal extension over Q, then L and M are linearly disjoint over Q.

(2.3) ([6]) Let L and M be finite extensions over Q and let LM be their compositum
over Q. Then [LM : Q] = [L : Q][M : Q] if and only if L and M are linearly
disjoint over Q .

(2.4) ([6]) Let {Li : i 2 I} be a linearly disjoint family of Galois extensions over Q
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and let
Y
i2I

Li be the compositum of Li’s over Q. Then

Gal

 Y
i2I

Li/Q
!
⇠=
Y
i2I

Gal(Li/Q).

Lemma 3 ([1]). Let S = {a1, a2, . . . , an} be a finite set of nonzero integers. Let
↵S be the number of subsets T of S including the empty set such that |T | is even
and

Q
t2T t is a perfect square, and let �S be the number of subsets T of S such

that |T | is odd and
Q

t2T t is a perfect square. If K = Q(
p

a1,
p

a2, . . . ,
p

an), then
we have [K : Q] = 2n�k, where k is the non-negative integer given by the relation
2k = ↵S + �S.

Lemma 4 ([14]). Let n1, n2, . . . , nt be odd positive integers and let a1, a2, . . . , at

be nonzero pairwise co-prime integers where ai is ni-powerfree for all i = 1, 2, . . . , t.
Then

[Q(a1/n1
1 , a1/n2

2 , . . . , a1/nt
t ) : Q] = n1n2 . . . nt.

Lemma 5 ([14]). Let m be a nonzero square-free integer. Let

m0 =
⇢

|m| if m ⌘ 1 (mod 4)
4|m| otherwise.

Then Q(
p

m) ✓ Q(⇣n) if and only if n is a multiple of m0.

Lemma 6 ([4]). Let M = Q(
p

a) be a quadratic extension over Q. Then p does

not split in M if and only if
✓

a

p

◆
= �1, where

✓
·
p

◆
denotes the Legendre symbol.

Theorem 7 ([6]). (Chebotarev Density Theorem) Let K/Q be a Galois extension
with Galois group Gal(K/Q). Let C be a given conjugacy class in Gal(K/Q). For
any rational prime p, let �p be the Frobenius element in Gal(K/Q). Then the

relative density of the set of primes {p | �p 2 C} is
|C|

[K : Q]
.

To prove our main theorem, we need the following proposition.

Proposition 8. Let a1, a2, . . . , an be any distinct nonzero integers and let p and q
be odd primes. Then, p ⌘ 1 (mod q) and a(p�1)/q

i ⌘ 1 (mod p) for all i = 1, 2, . . . , n
if and only if p splits completely in Q(⇣q, a

1/q
1 , a1/q

2 , . . . , a1/q
n ), where ⇣q is a primitive

q-th root of unity.
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Proof. First we assume that p ⌘ 1 (mod q) and a(p�1)/q
i ⌘ 1 (mod p) holds for

all i = 1, 2, . . . , n. Then by Lemma 1, p splits completely in Q(⇣q, a
1/q
i ) for all

i = 1, 2, . . . , n. Hence by Lemma 2 (2.1), p splits completely in their compositum
Q(⇣q, a

1/q
1 , a1/q

2 , . . . , a1/q
n ).

Conversely, let us assume that p splits completely in Q(⇣q, a
1/q
1 , a1/q

2 , . . . , a1/q
n ).

Since it is the compositum of Q(⇣q, a
1/q
1 ) , Q(⇣q, a

1/q
2 ), . . . , Q(⇣q, a

1/q
n ), by Lemma 2

(2.1), we see that p splits completely in those subfields of Q(⇣q, a
1/q
1 , a1/q

2 , . . . , a1/q
n ).

Hence by Lemma 1, we see that p ⌘ 1 (mod q) and a(p�1)/q
i ⌘ 1 (mod p) for all

i = 1, 2, . . . , n.

We compute the degree of the extension Q(⇣q, a
1/q
1 , a1/q

2 , . . . , a1/q
n ) over Q for any

odd prime q. Denote Q(⇣q, a
1/q
1 , a1/q

2 , . . . , a1/q
n ) by Lq,n. We know that Lq,n is a

Galois extension over Q as it is both normal and separable extension over Q.

Lemma 9. [Lq,n : Q] = (q� 1)qm, where m is a non-negative integer with m  n.

Proof. Let P be the set of all prime numbers. For each i = 1, 2, . . . , n, let Pi =

{p 2 P : p | ai}. Then P =
n[

i=1

Pi is a finite subset of P and we let P = {p1, p2, . . . , pt}.

Then we see that

Lq,n ✓ Q(⇣q, p
1/q
1 , p1/q

2 , . . . , p1/q
t ), where pi 2 P for all i = 1, 2, . . . , t.

Let L0
q,t := Q(p1/q

1 , p1/q
2 , . . . , p1/q

t ). Then by Lemma 3, we have, [L0
q,t : Q] = qt.

Since [Q(⇣q) : Q] = (q� 1), we see that L0
q,t \Q(⇣q) = Q. Since Q(⇣q)/Q is a Galois

extension, by Lemma 2 (2.2), we conclude that Q(⇣q) and L0
q,t are linearly disjoint

over Q. Hence by Lemma 2 (2.3), we have [L0
q,tQ(⇣q) : Q] = qt(q � 1).

Since Lq,n ✓ L0
q,tQ(⇣q), we see that [Lq,n : Q] | qt(q � 1). Also, since Q(⇣q) ✓

Lq,n, we have (q � 1) | [Lq,n : Q]. As [Lq,n : Q]  qn(q � 1), we conclude that
[Lq,n : Q] = (q � 1)qm, where m is a non-negative integer with m  n.

Remark. In the paper [2], the following result was proved. Let S = {a1, a2, . . . , an}
be a set of nonzero integers. Then for any odd prime q, [Lq,n : Q] = (q � 1)qn,
provided for any nonempty subset T of S, the product of all the elements in T is
not a q-th power of an integer. In particular, if ai’s are pairwise coprime square-free
integers, we get the same degree as above.
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3. Proof of Main Theorem

Let P be the set of all prime numbers and let Pi = {p 2 P : p | ai} for all i =
1, 2, . . . , n. Then

P =
n[

i=1

Pi = {p1, p2, . . . , pt}

is a finite subset of P. Let q be the least odd prime such that q 62 P.

Consider the number fields Lq = Q(a1/q
1 , a1/q

2 , . . . , a1/q
n , ⇣q) and Mi = Q(

p
ai) for

all i = 1, 2, . . . , n. Since for any nonempty subset T of S, the product of all the
elements in T is not a perfect square, we have [Q(

p
a1,
p

a2, . . . ,
p

an) : Q] = 2n, by
Lemma 3. Also from Lemma 2 (2.3), it is clear that the compositum M1 · · ·Mj�1

and Mj are linearly disjoint over Q for j = 2, 3, . . . , n. Hence {Mj}n
j=1 is a linearly

disjoint family over Q.

Let M = M1M2 · · ·Mn be the compositum of Mj ’s over Q. Since the Mj ’s
are Galois extensions over Q, we see that M is a Galois extension over Q. Since
{Mj}n

j=1 is a linearly disjoint family of Galois extensions over Q, by Lemma 2 (2.4),
we have

Gal(M/Q) ⇠= Gal(M1/Q)⇥ Gal(M2/Q)⇥ · · ·⇥ Gal(Mn/Q).

Now consider the compositum of Lq and M and let L = LqM .

We claim that Lq\M = Q. To see this, assume for a contradiction that Lq\M 6=
Q. Since any subfield of M containing Q contains a quadratic extension, we see that
Q(
p

d) ✓ Lq \M , where d = pn1
1 pn2

2 . . . pnt
t with ni = 0 or 1 for all i = 1, 2, . . . , t.

By Lemma 5, Q(
p

d) * Q(⇣q). Hence, Q(
p

d) and Q(⇣q) are linearly disjoint over
Q. Therefore, [Q(

p
d, ⇣q) : Q] = 2(q � 1). Since Q(

p
d, ⇣q) ✓ Lq and by Lemma 9,

[Lq : Q] = qm(q�1) with m  n, we arrive at a contradiction as 2(q�1) - qm(q�1).
So, Lq \M = Q.

Since Lq and M both are Galois extensions over Q, by Lemma 2 (2.4),

Gal(L/Q) ⇠= Gal(Lq/Q)⇥Gal(M/Q).

Thus,
Gal(L/Q) ⇠= Gal(Lq/Q)⇥ Gal(M1/Q)⇥ · · ·⇥ Gal(Mn/Q).

Consider the set

R={p 2 P :p splits completely in Lq, p does not split in Mi for all i = 1, 2, . . . , n} .

Let p be a prime unramified in L. Then p 2 R if and only if the Frobenius element
�p 2 Gal(L/Q) is equal to (1,�1,�1, . . . ,�1). This is because the first projection
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is trivial if and only if p splits completely in Lq, and the (i + 1)-th projection is
non-trivial if and only if p does not split in Mi and hence it is �1 as its Galois
group is of order 2. Also, note that when �p = (1,�1,�1, . . . ,�1), the conjugacy
class of �p contains only one element which is nothing but �p itself. Therefore, by

the Chebotarev Density Theorem (Theorem 7), the density of R is
1

[L : Q]
.

By Lemma 2 (2.2, 2.3) and the above claim, we conclude that [L : Q] = [Lq :
Q][M : Q] = 2nqm(q�1), where m is a non-negative integer with m  n. Therefore,

the density of R is
1

2n(q � 1)qm
.

By Proposition 8, p splits completely in Lq if and only if p ⌘ 1 (mod q) and

a(p�1)/q
i ⌘ 1 (mod p) for all i = 1, 2, . . . , n.

Also, by Lemma 6, we have that p does not split in Mi if and only if
✓

ai

p

◆
= �1 for all i = 1, 2, . . . , n.

Therefore, for any prime p in R, we have that, a1, a2, . . . , an are quadratic non-
residues but not primitive roots modulo p.

Since the set R is contained in the set of primes for which a1, a2, . . . , an are
quadratic non-residues but not primitive roots modulo p, the theorem follows. 2
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this problem and for making necessary corrections throughout this paper. Also we
want to thank Bruce Landman for his helpful suggestions for improving this paper.
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