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Abstract
It is the main purpose of this paper to give an elementary proof of Miki’s identity
for Bernoulli numbers by making use of a certain linear recurrence relation obtained
from either Faulhaber’s formula for the power sum of the first k positive integers or
special expressions of the nth harmonic number Hn = 1 + 1

2 + · · · + 1
n .

1. Introduction

Let Bn be the nth Bernoulli number defined by the generating function

f(t) :=
t

et � 1
=
1X

n=0

Bn

n!
tn (|t| < 2⇡). (1.1)

It is easy to find the values B0 = 1, B1 = �1/2, B2 = 1/6, B3 = 0, B4 = �1/30, and
so on. Since f(t) + t/2 is an even function, B2n+1 = 0 for all n � 1. Furthermore,
we see that (�1)n�1B2n > 0 for all n � 1 by observing Euler’s formula related to
the values of the Riemann zeta function at positive even integers.

Various types of linear and nonlinear recurrence relations for these numbers have
been studied for a long time. Among them, the most basic linear one is

nX
i=0

✓
n + 1

i

◆
Bi = 0 (n � 1), B0 = 1. (1.2)

We now define S0(0) := 1 and Sn(k) := 1n +2n + · · · + kn for integers n � 0 and
k � 1. Then, as is well-known, Faulhaber’s formula states that

Sn(k � 1) =
1

n + 1

n+1X
i=1

✓
n + 1

i

◆
kiBn+1�i =

n+1X
i=1

1
i

✓
n

i� 1

◆
kiBn+1�i. (1.3)

This formula itself can be proved without di�culty by considering the functional
identity f(t)(ekt � 1) = t

Pk�1
j=0 ejt and comparing the coe�cients of tn+1 on both
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sides after expanding into the Maclaurin power series. However, we should note that
(1.3) is also an important consequence of the Euler-Maclaurin summation formula.
Obviously, (1.3) reduces to (1.2) when k = 1.

On the other hand, the most basic quadratic recurrence relation (i.e., convolution
identity) is the following one usually attributed to Euler:

nX
i=0

✓
n

i

◆
BiBn�i = �nBn�1 � (n� 1)Bn (n � 1). (1.4)

This identity can be also derived in the same way as for (1.3) by using the functional
identity f2(t) = (1� t)f(t)� t d

dtf(t).
There are various kinds of extensions and generalizations of (1.2) and (1.4).

However, they are mostly constructed from one type of convolutions with binomial
or multinomial coe�cients. Many such examples can be found in the handbook [11]
or the classic books [16, 14]. See also [1, 4, 5, 6] for lacunary recurrence relations,
in which some of the preceding Bernoulli numbers are missing.

Surprisingly, Miki [13] proved in 1978 an unusual identity using p-adic methods,
in which two di↵erent types of convolutions are combined. Namely,

n�2X
i=2

BiBn�i

i(n� i)
�

n�2X
i=2

✓
n

i

◆
BiBn�i

i(n� i)
=

2HnBn

n
(n � 4), (1.5)

where Hn is the nth harmonic number defined by

Hn := 1 +
1
2

+ · · · +
1
n

. (1.6)

Note that (1.5) is significant only for an even n � 4, because both sides vanish if
n � 5 is odd. A simple and elementary proof of (1.5) based on Crabb’s intelligible
idea in [7] can be found in [2, 3].

Subsequently, inspired by Miki’s identity, Matiyasevich discovered the following
convolution identity with the aid of the computer software system Mathematica and
announced it as “Identity #0120” on his website [12] (1997) without proof:

n�2X
i=2

BiBn�i

i
�

n�2X
i=2

✓
n

i

◆
BiBn�i

i
= HnBn (n � 4). (1.7)

As will be easily seen in Theorem 2.4 below, this identity is actually equivalent
to (1.5) (see also Pan and Sun’s proof in [15, p.158]).

It is the main purpose of this paper to prove (1.7), in Section 2, by developing
and utilizing the following linear recurrence relation for Bernoulli numbers which is
as a matter of fact equivalent to Faulhaber’s formula (1.3):

n�1X
i=1

Bi

iki
�

n�1X
i=1

✓
n

i

◆
Bi

iki
=

1
kn

kX
j=1

(k � j)n

j
�Hk + Hn (n, k � 1). (1.8)
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In Section 3, we deal with (1.8) once more from the point of view of harmonic
numbers independently of (1.3) and show that (1.8) can be rederived by making use
of special expressions of Hn.

As a result, we are able to give, in this paper, two kinds of quite elementary
proofs of (1.8) (and eventually of (1.7)) without any use of intricate tools.

In particular, taking k = 1 in (1.8), we have the simple recurrence relation

n�1X
i=1

Bi

i
�

n�1X
i=1

✓
n

i

◆
Bi

i
= �1 + Hn, (1.9)

which is of course equivalent to (1.3) with k = 1 and hence to (1.2). Considering
the form of this identity, we perceive that (1.9) is just a linear version of (1.7), or
equivalently, of (1.5). By the way, a third-order analogue of (1.5) can be found in
the recent papers [9, 8] as well as [10]. However, to the best of our knowledge, it
seems that more higher-order analogues of (1.5) are not known as yet.

2. Discussion Based on Faulhaber’s Formula

The von Staudt-Clausen theorem asserts that if n � 2 is even, then

Bn +
X

p�1 | n

1
p
2 Z, (2.1)

where the sum is taken over all primes p satisfying p� 1 | n. Therefore, from (2.1)
we obtain immediately

pBn ⌘
(
�1 (mod p), if p� 1 | n;
0 (mod p), otherwise.

(2.2)

Based on (2.2), we can evaluate Sn(p� 1) as follows:

Lemma 2.1. Let p be an odd prime and n � 0 be an integer. Then we have

Sn(p� 1) ⌘
(
�1 (mod p), if p� 1 | n;
0 (mod p), otherwise

(2.3)

and

Sn(p� 1) ⌘

8>>><
>>>:

p� 1 (mod p2), if n = 0;

�np

2
(mod p2), if n � 3 and p� 1 | n� 1;

pBn (mod p2), otherwise.

(2.4)
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Proof. It is confirmed by direct calculation that S0(p � 1) = p � 1, S1(p � 1) =
(p� 1)p/2 ⌘ �p/2 ⌘ pB1 (mod p2) and

S2(p� 1) =
1
6
(p� 1)p(2p� 1) ⌘ p

6
⌘ pB2 (mod p2);

so (2.4) is valid for n = 0, 1 and 2. Next, assuming n � 3, put k = p in (1.3):

Sn(p� 1) =
n+1X
i=1

1
i

✓
n

i� 1

◆
piBn+1�i. (2.5)

For i � 3, if p - i, then piBn+1�i/i = pi�1 (pBn+1�i/i) ⌘ 0 (mod p2) by (2.2).
Otherwise, if i = par � 3 with a � 1, r � 1 and p - r, then

1
i
pi =

1
r
ppar�a � 1

r
p3a�a � 1

r
p2;

and thus from (2.5),

Sn(p� 1) ⌘ pBn +
np2

2
Bn�1 (mod p2). (2.6)

This congruence reduces to (2.3) modulo p by (2.2) including also the cases of
n = 0, 1 and 2. If n � 3 is odd, then Bn = 0. Hence we get from (2.6) and (2.2),

Sn(p� 1) ⌘ np2

2
Bn�1 ⌘

8<
:
�np

2
(mod p2), if p� 1 | n� 1;

0 ⌘ pBn (mod p2), otherwise.

On the other hand, if n � 4 is even, then Bn�1 = 0; so (2.6) gives Sn(p� 1) ⌘ pBn

(mod p2). Summarizing these results, we conclude that Sn(p� 1) ⌘ pBn (mod p2)
for all n � 1 unless n = 0 or p� 1 | n� 1 for n � 3.

First of all, we argue a mutual relationship between (1.3) and (1.8), and prove
that they are as a matter of fact equivalent.

Theorem 2.2. For integers n, k � 1, (1.3) is equivalent to (1.8).

Proof. Since B0 = 1 and 1
i

� n
i�1

�
= 1

n+1�i

� n
n�i

�
(1  i  n), (1.3) can be rewritten

by exchanging i for n + 1� i as

Sn(k � 1) =
nX

i=1

1
i

✓
n

i� 1

◆
kn+1�iBi +

kn+1

n + 1
.

So dividing by kn+1, we get, since Sn(k � 1) =
Pk

j=1(k � j)n,

nX
i=1

✓
n

i� 1

◆
Bi

iki
=

1
kn+1

kX
j=1

(k � j)n � 1
n + 1

. (2.7)
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Using (2.7) instead of (1.3), we will prove below that (2.7) is equivalent to (1.8).
(i) (2.7) ) (1.8): Changing the notation n to m in (2.7), take m = 1, 2, ..., n� 1

and add up all of them. Then we obtain
n�1X
m=1

mX
i=1

✓
m

i� 1

◆
Bi

iki
=

n�1X
m=1

1
km+1

kX
j=1

(k � j)m �
n�1X
m=1

1
m + 1

=
1
k

kX
j=1

 
n�1X
m=0

✓
k � j

k

◆m

� 1

!
� (Hn � 1)

=
1
k

kX
j=1

((k � j)/k)n � 1
((k � j)/k)� 1

� 1
k

kX
j=1

1� (Hn � 1)

= � 1
kn

kX
j=1

(k � j)n � kn

j
�Hn.

(2.8)

Since
Pn�1

r=0

� r
i�1

�
=
�n

i

�
; and so

Pn�1
r=i

� r
i�1

�
=
�n

i

�
� 1 (0  i < n), the first part of

(2.8) becomes
n�1X
m=1

mX
i=1

✓
m

i� 1

◆
Bi

iki
=

n�1X
i=1

n�1X
r=i

✓
r

i� 1

◆
Bi

iki
=

n�1X
i=1

✓
n

i

◆
Bi

iki
�

n�1X
i=1

Bi

iki
.

So that (2.8) leads to

n�1X
i=1

✓
n

i

◆
Bi

iki
�

n�1X
i=1

Bi

iki
= � 1

kn

kX
j=1

(k � j)n � kn

j
�Hn

= � 1
kn

kX
j=1

(k � j)n

j
+ Hk �Hn,

which coincides with (1.8) by changing the signs of all terms.
(ii) (1.8) ) (2.7): Conversely, assuming that (1.8) holds for n, k � 1 , we have

n+1X
i=1

✓
n + 1

i

◆
Bi

iki
�

nX
i=1

✓
n

i

◆
Bi

iki

=

0
@n+1X

i=1

Bi

iki
� 1

kn+1

kX
j=1

(k � j)n+1 � kn+1

j
�Hn+1

1
A

�

0
@ nX

i=1

Bi

iki
� 1

kn

kX
j=1

(k � j)n � kn

j
�Hn

1
A

=
Bn+1

(n + 1)kn+1
+

1
kn+1

kX
j=1

(k � j)n � 1
n + 1

.

(2.9)
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Since
�n+1

i

�
=
�n

i

�
+
� n
i�1

�
and 1

n+1

�n+1
i

�
= 1

i

� n
i�1

�
(1  i  n), the first part of

(2.9) can be written as

n+1X
i=1

✓
n + 1

i

◆
Bi

iki
�

nX
i=1

✓
n

i

◆
Bi

iki
=

n+1X
i=1

⇢✓
n

i

◆
+
✓

n

i� 1

◆�
Bi

iki
�

nX
i=1

✓
n

i

◆
Bi

iki

=
Bn+1

(n + 1)kn+1
+

nX
i=1

✓
n

i� 1

◆
Bi

iki
.

Substituting this into (2.9), we finally get

nX
i=1

✓
n + 1
i� 1

◆
Bi

iki
=

1
kn+1

kX
j=1

(k � j)n � 1
n + 1

,

which is exactly the same as (2.7), as desired.

Next, by making use of (1.8) we will prove Matiyasevich’s identity.

Theorem 2.3. For an integer n � 4, (1.7) holds.

Proof. As mentioned in Section 1, (1.7) is trivial for an odd n � 5. So in what
follows, assume that n � 4 is even. Multiplying (1.8) by kn,

n�1X
i=1

Bi

i
kn�i �

n�1X
i=1

✓
n

i

◆
Bi

i
kn�i =

kX
j=1

(k � j)n

j
� knHk + knHn. (2.10)

Take here k = 1, 2, ..., p for an odd prime p and add up all of them. Since pnHp ⌘ 0
(mod p2) if n � 4, we have

n�1X
i=1

Bi

i
Sn�i(p)�

n�1X
i=1

✓
n

i

◆
Bi

i
Sn�i(p)

=
pX

k=1

kX
j=1

(k � j)n

j
�

pX
k=1

knHk + Sn(p)Hn

=
p�1X
k=1

(p� k)nHk �
p�1X
k=1

knHk + Sn(p)Hn

=
p�1X
k=1

((p� k)n � kn)Hk + Sn(p)Hn

⌘ �np
p�1X
k=1

kn�1Hk + Sn(p)Hn (mod p2).

(2.11)
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The sum
Pp�1

k=1 kn�1Hk appearing in the last line of (2.11) can be evaluated modulo
p as follows: letting µ := (p� 1)/2 for short,

p�1X
k=1

kn�1Hk =
p�1X
k=1

1
k

p�1X
j=k

jn�1

=
µX

k=1

1
k

p�1X
j=k

jn�1 +
p�1X

k=µ+1

1
k

p�1X
j=k

jn�1

=
µX

k=1

1
k

p�1X
j=k

jn�1 +
µX

k=1

1
p� k

kX
j=1

(p� j)n�1

⌘
µX

k=1

1
k

0
@p�1X

j=k

jn�1 � (�1)n�1
kX

j=1

jn�1

1
A

⌘
µX

k=1

1
k

0
@p�1X

j=1

jn�1 + kn�1

1
A

⌘ HµSn�1(p� 1) + Sn�2(µ) (mod p).

(2.12)

Since p� 1 - n� 1 for an even n � 4, we have Sn�1(p� 1) ⌘ 0 (mod p) by (2.3). If
p� 1 - n� 2, then Sn�2(µ) ⌘ Sn�2(p� 1)/2 ⌘ 0 (mod p) again by (2.3); so the last
expression in (2.12) completely vanishes. Further, by (2.4) we have Bn�1 = 0 and
Sn�1(p) ⌘ Sn�1(p � 1) ⌘ pBn�1 ⌘ 0 (mod p2) for an even n � 4. Consequently,
since Sr(p) ⌘ Sr(p� 1) (mod p2) for all r � 2, by using (2.4) we can deduce from
(2.11) that

p
n�2X
i=2

BiBn�i

i
� p

n�2X
i=2

✓
n

i

◆
BiBn�i

i
⌘ pHnBn (mod p2),

and hence dividing by p,

n�2X
i=2

BiBn�i

i
�

n�2X
i=2

✓
n

i

◆
BiBn�i

i
⌘ HnBn (mod p).

This congruence holds for infinitely many odd primes p, and moreover, both sides
do not depend on p. These facts imply that (1.7) must unconditionally follow; and
thus the proof of Theorem 2.3 is now complete.

We note that the above proof of Theorem 2.3 shows us, by elementary methods,
how to transform a linear recurrence relation into a convolution identity in the
Bernoulli number case.

A mutual relationship between (1.5) and (1.7) can be stated by the following:
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Theorem 2.4. For an integer n � 4, (1.5) is equivalent to (1.7).

Proof. By the symmetry of i and n� i, we can deduce from (1.7) that

n�2X
i=2

Bn�iBi

n� i
�

n�2X
i=2

✓
n

n� i

◆
Bn�iBi

n� i
= HnBn.

Adding this to (1.7), we have, since
�n

i

�
=
� n
n�i

�
(0  i  n),

n�2X
i=2

✓
1
i

+
1

n� i

◆
BiBn�i �

n�2X
i=2

✓
n

i

◆✓
1
i

+
1

n� i

◆
BiBn�i

= n
n�2X
i=2

BiBn�i

i(n� i)
� n

n�2X
i=2

✓
n

i

◆
BiBn�i

i(n� i)
= 2HnBn,

which gives (1.5) dividing by n, and vice versa.

3. Observation of (1.8) Based on Harmonic Numbers

In this section, we observe (1.8) once more, this time from the point of view of
harmonic numbers. As a result, it is possible to give another proof of (1.8) by
making use of special expressions of the nth harmonic number Hn.

At first, we present an unusual expression of Hn that is very important in our
subsequent discussions.

Lemma 3.1. For an integer n � 1 and a real or complex variable x, we have

Hn =
nX

i=1

xi

i
�

nX
i=1

✓
n

i

◆
(x� 1)i

i
. (3.1)

Proof. For brevity, let us denote by g(x) the right-hand side of (3.1). Then, using
the fact that

�n
i

�
=
Pn�1

m=0

� m
i�1

�
(1  i  n), we have

d

dx
g(x) =

nX
i=1

xi�1 �
nX

i=1

✓
n

i

◆
(x� 1)i�1

=
nX

i=1

xi�1 �
nX

i=1

n�1X
m=0

✓
m

i� 1

◆
(x� 1)i�1

=
nX

i=1

xi�1 �
nX

i=1

i�1X
j=0

✓
i� 1

j

◆
(x� 1)j

=
nX

i=1

xi�1 �
nX

i=1

xi�1 = 0,
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which implies that g(x) is a constant function. Since Hn = g(1) from the definition
in (1.6), we get immediately (3.1).

Incidentally, it may be worth mentioning that by taking arbitrary values for x in
(3.1), we can deduce various kinds of expressions of Hn. For instance,

x = 0 ) Hn =
nX

i=1

(�1)i�1

i

✓
n

i

◆
;

x = 1 ) Hn =
nX

i=1

1
i

(the definition in (1.6));

x = 2 ) Hn =
nX

i=1

1
i

✓
2i �

✓
n

i

◆◆
;

x = �1 ) Hn =
nX

i=1

(�1)i

i

✓
1�

✓
n

i

◆
2i

◆
;

x = 1/2 ) Hn =
nX

i=1

1
2ii

✓
1 + (�1)i�1

✓
n

i

◆◆
.

Returning to the main subject, we will give below another proof of (1.8) by
making use of special expressions of Hn obtained from (3.1).

Another proof of (1.8). Putting x = m/k in (3.1) for integers m,k � 1, we have

Hn =
nX

i=1

1
i

⇣m

k

⌘i
�

nX
i=1

✓
n

i

◆
1
i

⇣m

k
� 1
⌘i

.

Summing up over m = 1, 2, ..., p for an odd prime p,

pHn =
nX

i=1

1
iki

pX
m=1

mi �
nX

i=1

✓
n

i

◆
1

iki

pX
m=1

(m� k)i. (3.2)

We now evaluate two double sums on the right-hand side individually modulo p2.
Since S1(p) ⌘ pB1 + p (mod p2) and Si(p) ⌘ Si(p � 1) ⌘ pBi (mod p2) for i � 2
by (2.4), the first double sum can be calculated as follows:

nX
i=1

1
iki

pX
m=1

mi =
nX

i=1

1
iki

Si(p) ⌘ p
nX

i=1

Bi

iki
+

p

k
(mod p2). (3.3)

Next, for evaluating the second double sum modulo p2, we first calculate the inner
sum

Pp
m=1(m� k)i (1  k  p� 1). Since (�a)i ⌘ (p� a)i � ip(�a)i�1 (mod p2)
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for integers a, i � 1, by using (2.4) we obtain

pX
m=1

(m� k)i =
k�1X
m=1

(m� k)i + (k � k)i +
pX

m=k+1

(m� k)i

⌘
k�1X
m=1

(p + m� k)i � ip
k�1X
m=1

(m� k)i�1 +
pX

m=k+1

(m� k)i

⌘
 

k�1X
m=1

(p + m� k)i +
pX

m=k+1

(m� k)i

!
� ip

k�1X
m=1

(m� k)i�1

⌘ Si(p� 1)� ip
k�1X
m=1

(m� k)i�1

⌘ pBi � ip
k�1X
j=1

(�j)i�1 (mod p2).

(3.4)

As the second step, put x = �j/k (j, k � 1) in the familiar identity

nX
i=1

✓
n

i

◆
xi�1 =

(x + 1)n � 1
x

(x 6= 0)

to deduce the identity

nX
i=1

✓
n

i

◆✓
� j

k

◆i�1

=
(�j/k + 1)n � 1

�j/k
=

kn � (k � j)n

jkn�1
.

Take here j = 1, 2, ..., k and add up all of them. Then we get, dividing by k,

nX
i=1

✓
n

i

◆
1
ki

kX
j=1

(�j)i�1 =
1
k

kX
j=1

nX
i=1

✓
n

i

◆✓
� j

k

◆i�1

=
1
k

kX
j=1

kn � (k � j)n

jkn�1

= Hk �
1
kn

kX
j=1

(k � j)n

j
.

(3.5)

Making use of (3.4) in conjunction with (3.5), the second double sum is eventually
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evaluated modulo p2 as follows:

nX
i=1

✓
n

i

◆
1

iki

pX
m=1

(m� k)i ⌘ p
nX

i=1

✓
n

i

◆
Bi

iki
� p

nX
i=1

✓
n

i

◆
1
ki

k�1X
j=1

(�j)i�1

⌘ p
nX

i=1

✓
n

i

◆
Bi

iki
� p

nX
i=1

✓
n

i

◆
1
ki

0
@ kX

j=1

(�j)i�1 � (�k)i�1

1
A

⌘ p
nX

i=1

✓
n

i

◆
Bi

iki
� p

nX
i=1

✓
n

i

◆
1
ki

kX
j=1

(�j)i�1 +
p

k

nX
i=1

✓
n

i

◆
(�1)i�1

⌘ p
nX

i=1

✓
n

i

◆
Bi

iki
+ p

0
@ 1

kn

kX
j=1

(k � j)n

j
�Hk

1
A+

p

k
(mod p2).

(3.6)

Substituting (3.3) and (3.6) simultaneously into (3.2) and dividing it by p, we get

Hn ⌘
nX

i=1

Bi

iki
�

nX
i=1

✓
n

i

◆
Bi

iki
� 1

kn

kX
j=1

(k � j)n

j
+ Hk (mod p).

As it is similar to the proof of (1.7) in Theorem 2.3, this congruence also holds
for infinitely many odd primes p and both sides do not depend on p; so that (1.8)
follows unconditionally, as desired.

At the end of this paper, we wish to incidentally mention that the first sum on
the left-hand side of (1.8) is just the partial sum of the infinite series appearing in
the well-known asymptotic formula

Hk ⇠ log k + � +
1
2k
�
1X

i=1

B2i

2ik2i

⇠ log k + � �
1X

i=1

Bi

iki
(k !1),

where � := limk!1 (Hk � log k) is the Euler-Mascheroni constant.
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