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Abstract
This paper is concerned with the diophantine system,

Ps1
i=1 xr

i =
Ps2

i=1 yr
i , r =

1, 2, . . . , k, where s1 and s2 are integers such that the total number of terms on
both sides, that is, s1+s2, is as small as possible. We define �(k) to be the minimum
value of s1+s2 for which there exists a nontrivial solution of this diophantine system.
We show that �(k) � 2k for any arbitrary positive integer k. We also find several
nontrivial solutions of the aforementioned diophantine system and thereby prove
that �(k) = 2k when k = 2, 3, 4 or 5.

1. Introduction

The Tarry-Escott problem of degree k consists of finding two distinct sets of
integers {x1, x2, . . . , xs} and {y1, y2, . . . , ys} such that

sX
i=1

xr
i =

sX
i=1

yr
i , r = 1, 2, . . . , k. (1)

It is well-known that for a non-trivial solution of (1) to exist, we must have s �
(k + 1) [12, p. 616]. Solutions of (1) with the minimum possible value of s, that is,
with s = k + 1, are known as ideal solutions of the problem.

This paper is concerned with finding solutions in integers of the related diophan-
tine system,

s1X
i=1

xr
i =

s2X
i=1

yr
i , r = 1, 2, . . . , k, (2)

where s1 and s2 are integers such that the total number of terms on both sides,
that is, s1 + s2, is minimum.

Without loss of generality, we may take s1  s2. A solution of the system of
equations (2) will be said to be trivial if yi = 0 for s2 � s1 values of i and the
remaining integers yi are a permutation of the integers xi.
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We define �(k) to be the minimum value of s1 + s2 for which there exists a
nontrivial solution of the diophantine system (2).

According to a well-known theorem of Frolov [12, p. 614], if xi = ai, yi = bi, i =
1, 2, . . . , s, is any nontrivial solution of the diophantine system (1), and d is an
arbitrary integer, then xi = ai + d, yi = bi + d, i = 1, 2, . . . , s, is also a solution of
(1). Taking d = �a1, we immediately get a solution of (2) with s1 = s� 1, s2 = s.
Thus, if an ideal solution of (1) is known for any specific value of k, then �(k) 
2k + 1.

Ideal solutions of (1) are known for k = 2, 3, . . . , 9 ([1], [3], [4], [5], [9, pp. 52, 55-
58], [11], [13, pp. 41-54], [14], [15]) as well as for k = 11 [6]. Thus, for these values
of k, we have �(k)  2k + 1.

In Section 2 of this paper, we show that �(k) � 2k for any arbitrary positive
integer k. In Section 3 we find several nontrivial solutions of (2) when 2  k  5
and show that �(k) = 2k when k = 2, 3, 4 or 5.

2. A Lower Bound for �(k)

Theorem 1. For any arbitrary positive integer k, we have �(k) � 2k.

Proof. We first note that if there is a nontrivial solution of the diophantine system
(2) in which the sum s1 + s2 is minimum, then all the integers xi and yi must be
nonzero and the sets {xi} and {yi} must be disjoint since any zero terms and any
terms common to both sides can simply be excluded to obtain another nontrivial
solution of the diophantine system (2) with a smaller value of s1 + s2.

We also note that if there exists a nontrivial solution of the diophantine system
(2) with s1 = s2 = s, Frolov’s theorem immediately gives another nontrivial solution
of (2) with s1 = s� 1, s2 = s. Thus, if s1 + s2 is to be minimum, there is no loss
of generality in taking s1 < s2. Accordingly, we will henceforth always consider the
diophantine system (2) with s1 < s2.

It is trivially true that �(1) = 3. Thus, the theorem is true for k = 1. We now
show that if there exists a nontrivial solution of the diophantine system (2) with
k � 2 and s1 < s2 and such that all of the integers xi, yi are nonzero, then

s2 � k + 1, (3)

and
s1 � k � 1. (4)

We will consider any solution of the diophantine system (2) with s1 < s2 as a
solution of the diophantine system,

s2X
i=1

xr
i =

s2X
i=1

yr
i , r = 1, 2, . . . , k, (5)
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in which the s2 � s1 terms xs1+1, xs1+2, . . . , xs2 are all 0.
Thus, any solution of the diophantine system (2) with s2 < k+1, yields a solution

of (5) where s2 < k + 1, and by a theorem of Bastien (as quoted by Dickson [10, p.
712]), such a solution is necessarily trivial. It follows that for a nontrivial solution
of (2) to exist, we must have the relation (3).

We will now prove the relation (4). It is obvious that for a nontrivial solution of
(2) to exist, we must have s1 � 1, so the relation (4) is true when k = 2. We now
proceed to establish the relation (4) when k � 3.

We assume that there exists a solution of (2) with s1 < k � 1 and s2 � k + 1
where k � 3 and such that all the integers xi and yi are nonzero. We will use the
elementary symmetric functions in the variables x1, x2, . . . , xs2 as well as in the
variables y1, y2, . . . , ys2 defined by the following relations:

p1 = x1 + x2 + · · · + xs2 =
s2X

u=1

xu, q1 = y1 + y2 + · · · + ys2 =
s2X

u=1

yu,

p2 =
X
u<v

xuxv, q2 =
X
u<v

yuyv,

p3 =
X

u<v<w

xuxvxw, q3 =
X
u<v

yuyvyw,

...
ps2 = x1x2 · · ·xs2 , qs2 = y1y2 · · · ys2 .

It follows from Newton’s theorem [2, p. 297] on sums of powers of the roots of
an equation that the sums of powers

Ps2
i=1 xr

i , r = 1, 2, . . . , k, can be expressed in
terms of the elementary symmetric functions pr, r = 1, 2, . . . , k, and vice versa.
There exist similar relations between the sums of powers

Ps2
i=1 yr

i , r = 1, 2, . . . , k,
and the elementary symmetric functions qr, r = 1, 2, . . . , k. Thus, the diophantine
system (5) is equivalent to the following diophantine system:

pr = qr, r = 1, 2, . . . , k. (6)

Our assumption that there exists a solution of (2) with s1 < k�1 and s2 � k+1,
implies the existence of a solution of (5) in which xs1+1, xs1+2, . . . , xs2 , are all 0.
This in turn implies the existence of a solution of (6) in which xs1+1, xs1+2, . . . , xs2 ,
are all 0. When r > s1, each summand of the elementary symmetric function pr

contains 0 as a factor and is thus necessarily 0, and hence we get pr = 0. Specifically,
we get pk�1 = 0 and pk = 0. It now follows from (6) that qk�1 = 0 and qk = 0.
Thus, the nonzero integers yi, i = 1, 2, . . . , s2, satisfy an equation of the type,

ys2 � q1y
s2�1 + q2y

s2�2 + · · · + (�1)s2qs2 = 0, (7)

in which at least two consecutive coe�cients, namely the coe�cients of yk and yk�1

are 0. This is, however, impossible in view of De Gua’s rule [2, p. 90] according
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to which a polynomial equation of type (7) with two or more consecutive zero
coe�cients must have at least two imaginary roots.

It follows that we cannot have a nontrivial solution of (2) with s2 � k + 1 and
s1 < k� 1. Thus, for a nontrivial solution of (2) to exist when k � 3, we must have
s2 � k + 1 and s1 � k � 1. This proves the relation (4) when k � 3.

We have now proved the relations (3) and (4) when k � 2. Combining these two
relations, we get �(k) � 2k when k � 2. As we have already noted that the theorem
is true when k = 1, the theorem is proved for any arbitrary positive integer k.

3. Determination of �(k)

In the next four subsections, we will find solutions of the diophantine system
(2) with s1 = k� 1, s2 = k + 1 when k = 2, 3, 4 and 5 respectively, and thus prove
that �(k) = 2k for these values of k.

We note that all the equations of the diophantine system (2) are homogeneous,
and therefore, any solution of (2) in rational numbers may be multiplied through
by a suitable constant to obtain a solution of (2) in integers.

3.1.

It follows from Theorem 1 that �(2) � 4. We will show that �(2) = 4 by solving
the diophantine system (2) with s1 = 1, s2 = 3 and k = 2. On eliminating x1 from
the two equations of this diophantine system, we get,

y1y2 + y2y3 + y3y1 = 0. (8)

The complete solution of Equation (8) is readily obtained and this immediately
yields the following simultaneous identities:

(p2 + pq + q2)r = (p2 + pq)r + (pq + q2)r + (�pq)r, r = 1, 2, (9)

where p and q are arbitrary parameters. This shows that �(2) = 4.

3.2.

It follows from Theorem 1 that �(3) � 6. We will prove that �(3) = 6 by obtaining
nontrivial solutions of the diophantine system (2) with s1 = 2, s2 = 4 and k = 3,
that is, of the system of equations,

x1 + x2 = y1 + y2 + y3 + y4, (10)
x2

1 + x2
2 = y2

1 + y2
2 + y2

3 + y2
4 , (11)

x3
1 + x3

2 = y3
1 + y3

2 + y3
3 + y3

4 . (12)
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If (a, b, c) is any Pythagorean triple satisfying the relation a2 + b2 = c2, it is
easily seen that a solution in integers of the simultaneous equations (10), (11) and
(12) is given by (x1, x2, y1, y2, y3, y4) = (c, �c, a, �a, b, �b).

Next we obtain a more general parametric solution of the simultaneous equa-
tions (10), (11) and (12). We will use a parametric solution of the simultaneous
diophantine equations,

x + y + z = u + v + w,

x3 + y3 + z3 = u3 + v3 + w3,
(13)

given by Choudhry [7, Theorem 1, p. 61]. From this solution, on writing x1 =
x, x2 = y, y1 = u, y2 = v, y3 = w, y4 = �z, we immediately derive the following
solution of the simultaneous equations (10) and (12) in terms of arbitrary parameters
p, q, r and s:

x1 = pq � pr + qr � (p� q � r)s,
x2 = �pq + pr + qr + (p� q + r)s,
y1 = pq + pr � qr + (p� q + r)s,
y2 = pq � pr + qr + (p + q � r)s,
y3 = �pq + pr + qr � (p� q � r)s,
y4 = �pq � pr + qr � (p + q � r)s.

(14)

Substituting the above values of xi, yi in (11), we get, after necessary transpo-
sitions, the following quadratic equation in s:

2(p + q � r)2s2 + (12p2q � 4p2r � 4pq2 � 4pqr

+ 4pr2 + 4q2r � 4qr2)s + 2(pq + pr � qr)2 = 0. (15)

On taking r = p + q, the coe�cient of s2 in Equation (15) vanishes, and we can
then readily solve Equation (15) for s, and we thus obtain the following solution of
the simultaneous equations (10), (11) and (12) in terms of arbitrary parameters p
and q:

x1 = (3p4 � 2p3q � p2q2 + q4)q, x2 = (p4 � p2q2 � 2pq3 + 3q4)p,

y1 = (p4 � p2q2 + 2pq3 � q4)p, y2 = 2pq(p� q)(p2 � pq � q2),
y3 = �(p4 � 2p3q + p2q2 � q4)q, y4 = 2pq(p� q)(p2 + pq � q2).

(16)

As a numerical example, taking p = 2, q = 1, we get the solution,

29r + 22r = 30r + 4r + (�3)r + 20r, r = 1, 2, 3.

We note that more parametric solutions of the system of equations (10), (11)
and (12) can be obtained by solving Equation (15) in di↵erent ways, for example,
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by choosing p, q, r such that the constant term in Equation (15) vanishes and then
solving this equation for s, or by choosing p, q, r such that the discriminant of
Equation (15), considered as a quadratic equation in s, becomes a perfect square,
and then solving this equation for s.

As we have obtained nontrivial solutions of the system of equations (10), (11)
and (12), we get �(3)  6, and on combining this result with the relation �(3) � 6
obtained from Theorem 1, we get �(3) = 6.

3.3.

We will now obtain parametric solutions of the diophantine system,

3X
i=1

xr
i =

5X
i=1

yr
i , r = 1, 2, 3, 4. (17)

We write,

x1 = 4uv + w + 1, x2 = �4uv + w � 1,
x3 = �8u2 + 8uv + 4u� 2, y1 = 4u� 2,
y2 = �4u, y3 = 4uv + w � 1,
y4 = �4uv + w + 1, y5 = �8u2 + 8uv + 4u,

(18)

where u, v, w are arbitrary parameters.
It is readily verified that the values of xi, yi given by (18) satisfy Equation (17)

when r = 1 and r = 2. Further, on substituting these values of xi, yi in Equa-
tion (17) and taking r = 3, we get the condition,

4u3 � 8u2v + 4uv2 � 4u2 + 4uv � vw + u� v = 0. (19)

On solving Equation (19), we get,

w = (4u3 � 8u2v + 4uv2 � 4u2 + 4uv + u� v)/v. (20)

Finally, we substitute the values of xi, yi given by (18) in Equation (17), and
take r = 4, and use the value of w given by (20) to get the condition,

u2(2u� 1)2{24uv2 � 2(4u� 1)2v + 3u(2u� 1)2} = 0. (21)

While equating the first two factors of Equation (21) to 0 leads to trivial results,
on equating the last factor to 0, we get a quadratic equation in v which will have
a rational solution if its discriminant 4(�32u4 + 32u3 + 24u2 � 16u + 1) becomes a
perfect square. We thus have to solve the diophantine equation,

t2 = �32u4 + 32u3 + 24u2 � 16u + 1. (22)
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Now Equation (22) is a quartic model of an elliptic curve, and we use the bira-
tional transformation given by,

t = (X3 � 36X2 + 36X � 72Y + 432)/(4X + Y � 12)2,
u = (X � 12)/(4X + Y � 12),

(23)

and,
X = (4u2 � 8u + t + 1)/(2u2),
Y = (8u3 + 12u2 � 4ut� 12u + t + 1)/(2u3),

(24)

to reduce Equation (22) to the Weierstrass model which is given by the cubic equa-
tion,

Y 2 = X3 � 36X. (25)

It is readily seen from Cremona’s well-known tables [8] that (25) is an elliptic
curve of rank 1 and its Mordell-Weil basis is given by the rational point P with co-
ordinates (X, Y ) = (�3, 9). There are thus infinitely many rational points on the
elliptic curve (25) and these can be obtained by the group law. Using the relations
(23), we can find infinitely many rational solutions of Equation (22) and thus obtain
infinitely many integer solutions of the diophantine system (17).

While the point P leads to a trivial solution of the diophantine system (17), the
point 2P yields the solution,

(�74)r + 124r + 78r = 126r + (�72)r + (�20)r + 70r + 24r, r = 1, 2, 3, 4,

and the point 3P leads to the solution,

(�40573)r + 66494r + 118981r = (�15181)r + 119510r + 63756r

+ (�37835)r + 14652r, r = 1, 2, 3, 4.

In view of the above solutions of the diophantine system (17), it follows that
�(4)  8, and on combining with the result �(4) � 8 which follows from Theorem 1,
we get �(4) = 8.

3.4.

We will now obtain parametric solutions of the diophantine system,

4X
i=1

xr
i =

6X
i=1

yr
i , r = 1, 2, 3, 4, 5. (26)

We will use a parametric solution of the diophantine system,

6X
i=1

Xr
i =

6X
i=1

Y r
i , r = 1, 2, 3, 4, 5, (27)
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to obtain two parametric solutions of the diophantine system (26).
A solution of the simultaneous equations

P3
i=1 Xr

i =
P3

i=1 Y r
i , r = 2, 4, in terms

of arbitrary parameters m, n, x and y, given by Choudhry [5, p. 102], is as follows:

X1 = (m + 2n)x� (m� n)y, X2 = �(2m + n)x� (m + 2n)y,

X3 = (m� n)x + (2m + n)y, Y1 = (m� n)x� (m + 2n)y,

Y2 = �(2m + n)x� (m� n)y, Y3 = (m + 2n)x + (2m + n)y,

(28)

It immediately follows that a parametric solution of the diophantine system (27) is
given by (28) and

X4 = �X3, X5 = �X2, X6 = �X1,

Y4 = �Y3, Y5 = �Y2, Y6 = �Y1.
(29)

We choose the parameters x and y such that X3 = 0 and immediately obtain the
following parametric solution of the diophantine system (26):

x1 = m2 + mn + n2, x2 = m2 + mn + n2,

x3 = �m2 �mn� n2, x4 = �m2 �mn� n2,

y1 = m2 � n2, y2 = �m2 � 2mn,

y3 = 2mn + n2, y4 = �2mn� n2,

y5 = m2 + 2mn, y6 = �m2 + n2,

(30)

where m and n are arbitrary parameters.
To obtain a second solution of the diophantine system (26), we again use the

parametric solution of the diophantine system (27) given by (28) and (29). We now
choose the parameters x, y such that we get X2 = X3, and then apply the theorem
of Frolov mentioned in the Introduction, taking d = �X3. We thus get a solution
of the diophantine system (26) which may be written as follows:

x1 = 3m2 + 3mn + 3n2, x2 = 2m2 + 2mn + 2n2,

x3 = �m2 �mn� n2, x4 = 2m2 + 2mn + 2n2,

y1 = 3m2 + 3mn, y2 = �3mn,

y3 = 3mn + 3n2, y4 = 2m2 �mn� n2,

y5 = 2m2 + 5mn + 2n2, y6 = �m2 �mn + 2n2,

(31)

where m and n are arbitrary parameters.
As a numerical example, taking m = 2, n = 1 in (31), we get the solution,

21r + 14r + (�7)r + 14r = 18r + (�6)r + 9r + 5r + 20r + (�4)r, r = 1, 2, 3, 4, 5.

The two parametric solutions (30) and (31) of the diophantine system (26) are
rather special since in both of them, the ratios xi/xj of the integers on the left-hand
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side are all fixed. We now show that there exist infinitely many other solutions of
the diophantine system (26) that are not generated by these parametric solutions.

We write,
x1 = uv2 + (6u3 � 12u2 + 32u� 32)v

+ 9u5 � 36u4 � 336u2 + 96u3 + 240u,

x2 = (2u� 2)v2 + (12u3 � 48u2 + 40u� 16)v
+ 18u5 � 126u4 � 288u2 + 264u3 + 96,

x3 = �x1, x4 = �x2,

(32)

and
y1 = (2u� 2)v2 + (12u3 � 48u2 + 48u)v

+ 18u5 � 126u4 � 144u2 + 288u3 + 96u� 96,
y2 = uv2 + (6u3 � 12u2 � 32u + 32)v

+ 9u5 � 36u4 + 240u2 � 96u3 � 144u,

y3 = 2v2 + (24u2 � 40u + 16)v
+ 54u4 � 264u3 + 96u + 192u2 � 96,

y4 = �y3, y5 = �y2, y6 = �y3.

(33)

With these values of xi, yi, it is readily seen that (26) is identically satisfied for
r = 1, 3, 5. Further,

4X
i=1

x2
i �

6X
i=1

y2
i = �8(9u4 � 72u3 + 24u2 + 96u� 48� v2)2, (34)

4X
i=1

x4
i �

6X
i=1

y4
i = �8(9u4 � 72u3 + 24u2 + 96u� 48� v2)4. (35)

It follows that a solution of the diophantine system (26) will be given by (32)
and (33) if we choose u, v such that

v2 = 9u4 � 72u3 + 24u2 + 96u� 48. (36)

Now Equation (36) represents the quartic model of an elliptic curve, and the bira-
tional transformation given by

u = (6X + 2Y � 12)/(3X � 24),
v = (4X3 � 96X2 + 84X � 144Y + 832)/{3(X � 8)2},

(37)

and,
X = (9u2 � 36u + 3v + 4)/8,
Y = (27u3 � 162u2 + 9uv + 36u� 18v + 72)/16,

(38)
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reduces Equation (36) to the Weierstrass form of the elliptic curve which is as
follows:

Y 2 = X3 � 21X � 20. (39)

We again refer to Cremona’s database of elliptic curves, and find that (39) rep-
resents an elliptic curve of rank 1 and its Mordell-Weil basis is given by the rational
point P with co-ordinates (X, Y ) = (�3, 4). There are thus infinitely many rational
points on the elliptic curve (25) and these can be obtained by the group law. Using
the relations (37), we can find infinitely many rational solutions of Equation (36)
and thus obtain infinitely many solutions of the diophantine system (26). While
the point P leads to a trivial solution of the diophantine system (26), the point 2P
yields the solution,

241r + 218r + (�241)r + (�218)r = 266r + 143r + 120r

+ (�266)r + (�143)r + (�120)r, r = 1, 2, 3, 4, 5.

The solutions of the diophantine system (26) obtained in this Section show that
�(5)  10, and on combining with the result �(5) � 10 which follows from Theo-
rem 1, we get �(5) = 10.

4. Concluding Remarks

We have shown that �(k) = 2k when k = 2, 3, 4 or 5. When k � 6, we have noted
in the Introduction that the existence of ideal solutions of (1) for k = 6, 7, 8, 9 and
11 implies that �(k)  2k + 1 for these values of k. Combining this with the result
of Theorem 1, we get

2k  �(k)  2k + 1 when k = 6, 7, 8, 9 or 11.

It would be of interest to determine the precise values of �(k) for these values of
k.
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