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Abstract
The nth partial sum of the Maclaurin series for ea/b, where a and b are integers,
becomes an integer when multiplied by n!bn. This integer is related to many com-
binatorial properties of interest and is also directly tied to an exact computation
of �

�
n, a

b

�
, where � is the incomplete gamma function. This paper presents very

short formulas that give this integer exactly when |a|  2. For larger a the method
extends and while not as fast as the smaller cases, it is an improvement on existing
computational methods. The cases a = ±1 were known for many b-values. The
approach here extends the general idea to all rationals by making use of a congru-
ence to overcome the error inherent in the truncation of the Maclaurin series. A
side-e↵ect of the investigation is a new analytic lower bound on the number of times
a prime a appears in a factorial: n

a�1 � loga(n + 1).

1. Introduction

Let en(z) =
Pn

k=0
zk

k! be the partial sum for the Maclaurin series of ez; [·] is the
rounding (or nearest integer) function where half-integers are rounded to the nearest
even integer; a and b always denote integers, with b � 0 and gcd(a, b) = 1; n denotes
a nonnegative integer. Clearly bnn!en

�
a
b

�
is an integer� � �call it Kn

�
a
b

�
, often

abbreviated to just K���since all denominators in the sum are cleared. Here we
investigate short and e�cient formulas that give K’s exact value. Table 1 shows
several of these sequences together with their location in the On-Line Encyclopedia
of Integer Sequences [1].

The main result here is that very simple “round formulas” for K exist when
a = ±1 or ±2, b is any nonzero integer, and n is any positive integer. When the
numerator is ±1, the formula is remarkably simple:

⇥
bnn!e±1/b

⇤
; for a = ±2 it

is a little more complicated but can still be called a one-liner. In these cases the
computational load is the single high-precision evaluation of the rational power of
e . There are extensions to a = ±3 and greater, but their improvement over the
method of brute-force addition is modest: an n-step algorithm is reduced to one



INTEGERS: 16 (2016) 2

using about n
loga n steps. Here the computational load becomes the evaluation of a

large congruential residue.
Many special cases when a = ±1 were known (e.g., Kn

��1
2

�
by S. Plou↵e

[3] and M. van Hoeij [1, A000354]), but we here provide a general method for
Kn

�±1
b

�
as well as a similarly e�cient formula for Kn

�±2
b

�
. By the classic identity

n!en(z) = ez�(n + 1, z), where � is the incomplete gamma function (defined as
�(n, z) =

R1
z e�ttn�1dt), any formula for Kn

�
a
b

�
yields a similar formula that

expresses �
�
n + 1, a

b

�
in symbolic form as Kn

�
a
b

�
e�a/bb�n.

0 1 1 1 2 6 24 120 720 A000142
1 1 1 2 5 16 65 326 1957 A000522
1 2 1 3 13 79 633 6331 75973 A010844
1 3 1 4 25 226 2713 40696 732529 A010845
1 4 1 5 41 493 7889 157781 3786745 A056545
1 5 1 6 61 916 18321 458026 13740781 A056546
1 6 1 7 85 1531 36745 1102351 39684637 A056547

�1 1 1 0 1 2 9 44 265 A000166
�1 2 1 1 5 29 233 2329 27949 A000354
�1 3 1 2 13 116 1393 20894 376093 A000180
�1 4 1 3 25 299 4785 95699 2296777 A001907
�1 5 1 4 41 614 12281 307024 9210721 A001908
�1 6 1 5 61 1097 26329 789869 28435285 ������

2 1 1 3 10 38 168 872 5296 A010842
2 3 1 5 34 314 3784 56792 1022320 A097817
2 5 1 7 74 1118 22376 559432 16783024 A097821

�2 1 1 �1 2 �2 8 8 112 A000023
�2 3 1 1 10 82 1000 14968 269488 ������
�2 5 1 3 34 502 10056 251368 7541104 ������

3 1 1 4 17 78 393 2208 13977 A053486
3 2 1 5 29 201 1689 17133 206325 ������
3 4 1 7 65 807 12993 260103 6243201 ������
3 5 1 8 89 1362 27321 683268 20498769 ������

�3 1 1 �2 5 �12 33 �78 261 A010843
�3 2 1 �1 5 3 105 807 10413 ������
�3 4 1 1 17 177 2913 58017 1393137 ������
�3 5 1 2 29 408 8241 205782 6174189 ������

Table 1. n!bnen

�
a
b

�
for |a|  3, 1  b  6, and 0  n  6.

The integer K often has interesting combinatorial interpretations. For exam-
ple, let T (n) be the number of permutations of {1, . . . , n} having at least one
transposition [1, A000266]. Let T c(n) count the permutations having no transpo-



INTEGERS: 16 (2016) 3

sition: T c(n) = n! � T (n). Then, with m =
⌅

n
2

⇧
, T c(n) = n!

Pm
k=0(�1)k 1

2kk! =
n!

2mm!Km

��1
2

�
, where the first equality is a standard exercise using the principle of

inclusion and exclusion [2]. Here is a sampling of some others (see the corresponding
entries at [1], as listed in Table 1).

• Kn(1) counts the total number of ordered tuples using distinct elements of
{1, 2, . . . , n}, where the tuple’s length is from 0 to n, inclusive.

• Kn(�1) gives the number of derangements of an n-element set: permutations
with no fixed point (also known as subfactorial (n)).

• Kn

�
1
2

�
is the number of ways to sort a spreadsheet with n columns.

• Kn

��1
2

�
is the number of ways to choose a permutation of {1, 2, . . . , n} and

choose k elements (0  k  n) that are not fixed points of the permutation.
Here are some general properties of K; we do not use these, but list them for

completeness.

• Asymptotics: Kn(z) ⇠ n!bnez. (This is because en(z) is asymptotic to ez.)

• Recurrence: Kn

�
a
b

�
= bnKn�1

�
a
b

�
+ an. (Proof: Follows directly from the sum

in the definition.)

• Integral characterization: Kn

�
a
b

�
= �

�
n + 1, a

b

�
= ea/bbn

R1
a/b e�ttndt. (Proof:

Integration by parts shows that the integral satisfies the same recurrence as K.)

• The exponential generating function of the sequence
�
Kn

�
a
b

��
n�0

is f = eax

1�bx .
(Proof:
@n

x (f) = f n! bn

(1�bx)n

Pn
k=0

(1�bx)k

k!

�
a
b

�k; at x = 0 this is n!bn
Pn

k=0
1
k!

�
a
b

�k.)

• Kn(a) is the permanent of the n ⇥ n matrix with a + 1 at each diagonal entry
and 1 in all other entries. (Proof: Use the definition of the permanent and classify
the permutations according to how many fixed points each has.)

The starting point is a simple theorem showing that, under certain conditions,
the integer K can be expressed by a very short formula.

Theorem 1. Suppose a 2 Z, b, n 2 N, b � 1, and b(n + 1) > |a|, and |a|n+1

b(n+1)�|a| 
1
2 . Then

(Round Formula) Kn

�
a
b

�
= bnn!en

�
a
b

�
=
⇥
bnn!ea/b

⇤
Proof. The tail of the Maclaurin series for ez after the nth term is

P1
j=1

zn+j

(n+j)! . Mul-

tiplication by bn n! gives bn
P1

j=1
n!zn+j

(n+j)! , which is strictly less than bn
P1

j=1
zn+j

(n+1)j .

This last, setting z = a/b, is a convergent geometric series with sum |an+1|
(n+1)b�|a| .

Therefore
��bnn!ea/b � bnn!en

�
a
b

��� < |a|n+1

b(n+1)�|a| 
1
2 . Because bnn!en

�
a
b

�
is an inte-

ger, the proof is complete. 2
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2. The Case a = ±1

When a = ±1, the condition of Theorem 1 holds in almost all cases. Note that
initial cases (n  2) are quite trivial: K0

�
a
b

�
= 1, K1

�
a
b

�
= a + b, and K2

�
a
b

�
=

(a + b)2 + b2.

Corollary 2. Suppose a = ±1, n is a positive integer, b 2 N with b 6= 0, and (b, n) 6=
(1, 1). Then bnn!en

�
a
b

�
=
⇥
bnn!ea/b

⇤
and �

�
n + 1, a

b

�
=
⇥
bnn!ea/b

⇤
b�ne�a/b.

Proof. Use Theorem 1; because a = ±1, the restrictive inequality holds for all n.
The excluded case means that either n � 2 or b � 2, and for such values the critical
quantity |a|n+1

b(n+1)�|a| = 1
b(n+1)�1 is less than 1

2 . 2

To compute Kn

�±1
b

�
in Mathematica when n � 2, one just uses Round

⇥
n!bnea/b

⇤
.

And �n

�±1
b

�
is given by Round

⇥
n!bnea/b

⇤
b�ne�a/b.

We can now compute instantaneously the exact number of permutations with
no transposition, as first noted in [3] and [1, A000266, A000354].

Corollary 3. If m =
⌅

n
2

⇧
, then T c(n) = n!

2mm!

h
2mm!p

e

i
.

Proof. Use Corollary 2 with a = �1 and b = 2. Then

T (n) = n!
mP

k=1

(�1)k+1

2kk!

= �n!
mP

k=1

�
�1

2

�k 1
k!

= n!� n!
mP

k=0

�
�1

2

�k 1
k!

= n!� n!
m!2m Km

��1
2

�
= n!� n!

2mm!

h
2mm!p

e

i
2

3. The Case a = ±2

Next we turn to the case a = ±2 with b odd. The integer K has certain arithmetic
properties that will allow us to overcome the uncertainty caused by the Maclaurin
series truncation. As in Theorem 1’s proof, the Maclaurin error is bounded in
absolute value by |a|n+1

b(n+1)�|a| , or 2n+1

b(n+1)�2 ; the direction of the error is determined
by the sign of a and the parity of n: it is negative if and only if a < 0 and n is
even. So this determines an interval in which K lies; when |a| = 1, the interval has
length at most 1/2. For larger a the error can be much larger, but for a = ±2, we
can appeal to a simple congruence condition on K to overcome the error.
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When a is prime, we use pn(a) for the exponent of a in n!. We start by inves-
tigating upper and lower analytic bounds on pn(a). The proof of Lemma 4 when
a � 3 was provided by Robert Israel (Univ. of British Columbia) and is included
with his permission.

Lemma 4. If n is a positive integer and a is prime, then
l

n
a�1 � loga(n + 1)

m


pn(a) 
j

n�1
a�1

k
.

Proof. Let D = {dj} be the set of base-a digits of n; then |D| = L, where L =
b1 + loga nc and aL�1  n < aL. Let � = ⌃ D. Recall the Legendre formula [5]
that pn(a) = n��

a�1 . This immediately gives the upper bound.
The lower bound follows from �  (a � 1) loga(n + 1), which is the same as

a�/(a�1)  n + 1. Define F , considered as a real-valued function of the dj , to be

F (d1, . . . , dL) = (a� 1) loga

�
1 + ⌃L�1

j=0 dja
j
�
� ⌃L�1

j=0 dj .

Then the inequality we seek is equivalent to F (d1, . . . , dL) � 0. But F is a concave
function and so its minimum must occur at an extreme point of [0, a� 1]L, i.e., at
the vector where each entry is either 0 or a�1. Now, if such a vector has one or more
entries equal to 0, then the claimed inequality holds because a�/(a�1)  aL�1  n,
which means that F � 0. If none are 0 then all are a� 1, which means n = aL � 1;
then a�/(a�1) = aL = n + 1, which again means F � 0. Hence F � 0 holds in all
cases. 2

�-�

� - ����(�+�)

� � � �� 	�

�


�

	�

	

�

��
�
��
��
�
�	
�!

Figure 1. The bounds on the power of 2 in n! in Lemma 4 are fairly sharp.

Next we find a universal congruence condition for Kn

�
a
b

�
.



INTEGERS: 16 (2016) 6

Lemma 5. For b 2 N and prime a 2 Z with gcd (a, b) = 1, let p = pn(a),
q = n!

ap , and L = mod (bnq, |a|). Then Kn

�
a
b

�
⌘ Lap

⇣
mod |a|p+1

⌘
; it follows that

Kn

�
a
b

�
⌘ 0 (mod |a|p).

Proof. We have Kn

�
a
b

�
=

Pn
k=0 akbn�k n!

k! . The proof will proceed by showing
that the first term in the sum is congruent to Lap

⇣
mod |a|p+1

⌘
while the others

are each divisible by ap+1. The first term is bnn! = bnapq. Then bnn! � Lap =
bnqap � Lap = ap (bnq � L), which is divisible by ap+1 by the definition of L;
therefore bnn! ⌘ Lap

⇣
mod |a|p+1

⌘
, as claimed. For the second result, it su�ce to

show that ak has at least one more a in it than does k!. This follows from the upper
bound of Lemma 4: pa(k)  k�1

a�1  k � 1. 2

Now we can use the two lemmas to derive an exact formula for Kn

�±2
b

�
. The

main point is that the Maclaurin error is about 2n+1 while the simple modulus ap

from Lemma 4 is about 1
n 2n. For the modulus to exceed the error, we need to

either find a larger modulus for a congruence condition or reduce the Maclaurin
error. The latter approach works well, where we simply add in one more term to
the partial sum to better estimate the truncation error.

Theorem 6 (The case a = ±2) Assume a = ±2 and b, n 2 N with n � 3, b odd,
and (b, n) 6= (1, 3). Let

r =

bnn!ea/b � an+1

(n + 1)b

�
,

m = 2dn�log2(n+1)e, and s = sign(a)n. Then Kn

�
a
b

�
= r � smodm(sr) and

�
�
n + 1, a

b

�
= e�a/bb�n (r � smodm(sr)).

Proof. By Lemma 4, m is a lower bound on the power of 2 in n!; therefore
Kn

�
a
b

�
⌘ 0(mod m). The theorem starts with r and then adjusts it, in the proper

direction, so that it becomes divisible by m. Note that the adjustment direction
depends only on the sign of a and not on the parity of n. Now, the truncation
error bound (see Thm. 1; the necessary inequality b(n + 1) > 2 always holds)
when using bnn!e±2/b for bnn!en

�±2
b

�
is 2n+1

b(n+1)�2 . But the enhanced form in The-
orem 6’s statement – using one additional series term – improves the bound to
B = bn

n+1

P1
j=1

1
(n+2)j

�
2
b

�n+1+j  2n+2

b(n+1)(b(n+2)�2) . Therefore B + 1
2 bounds the

di↵erence between r and Kn

�
a
b

�
. Because any interval of length m contains exactly

one integer divisible by m, the result follows from B + 1
2  m, which in turn follows

from the special case where b = 1.
By replacing dn� log2(n + 1)e with n� log2(n + 1) in m, it is easy to see that,

for b = 1 and any n � 4, we have B + 1
2  m. Details: B  m follows from

2n�log2(n+1) � 2n+2

(n+1)n + 1
2 , which follows from 2n�log2(n+1) � 2n+2

n2 , which is equiv-

alent to n � log2(n + 1) � n + 2 � (2 log2 n), which simplifies to 2  log2

⇣
n2

n+1

⌘
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or 4  n2

n+1 . This last is equivalent to n � 5. The inequality B + 1
2  m is easily

checked when n is 3 or 4 except for the case (b, n) = (1, 3), where it fails. 2

One can prove a version of Theorem 6 where the initial approximation is
the simpler r =

⇥
bnn!e±2/b

⇤
by using Lemma 5’s stronger congruence condition

Kn

�±2
b

�
⌘ 2p

�
mod2p+1

�
, where p = p2(n) (note that �2p ⌘ 2p

�
mod2p+1

�
. But

this requires the exact computation of p, which is avoided in Theorem 6. Aside:
Using the alternating error for the �2 case gives a smaller B of 2n+2

b2(n+1)(n+2) , but
this has no essential impact.

Example. Suppose a = 2, b = 1, n = 20. Then r = 17976849421618128596
and m = 2d20�log2 21e = 65536. The rounded Maclaurin-polynomial-plus-one-
term error bound is about 9986.94, well under m. The true value of this error
is bnn!ea/b � n!bnen+1

�
a
b

�
⇠ 9939.51. The mod-m residue of r is 9940; this agrees

to the nearest integer with the true error. Indeed, this is the crux of the whole
method: the rounded error equals the mod-m value of r. Now r � modmr =
17976849421618118656 and so we conclude that the exact value of e20(2), the
Maclaurin polynomial, is

e20(2) =
17976849421618118656
2432902008176640000

,

where the denominator is 20!. In lowest terms this is

e20(2) =
68576238333199
9280784638125

,

which agrees with the sum of the 21 terms defining e20(2). And this gives �(21, 2) =
17976849421618118656

�
e2 . All this works quite quickly when n is large: K100000(2)

is an integer with 456575 digits and the formula finds it in well under one second.
For K106(2) the formula works in 30 seconds while the naive sum takes 21 minutes.
All timings here are using Mathematica on an Apple iMac with a 4 GHz processor.

Here is a Mathematica implementation of the formula for Kn

�±2
b

�
, where

n � 4 and b is odd. Note that mod(·) works on real numbers and since r �modmr
is divisible by m it follows that one can eliminate the Round operation from the
formula, as well as from the code that follows.

r � sMod
⇥
rs, 2dn�Log2[n+1]e⇤/.

n
r ! n!bnea/b � an+1

b(n+1) , s ! Sign[a]n
o

4. The Case |a| � 3

For prime a-values beyond 2 the method that works so well when |a|  2 fails
because the truncation error is roughly an while the power of a in n!, the crux of
the congruential method when |a|  2, is only about an/2. We can still extend the
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method so that it improves classic algorithms, but the gain is less striking than
in the smaller cases. The following method applies to any rational a

b , including
composite a.

For simplicity we will use the Lagrange error bound, which is valid in all cases:
B = e|a|/b |a|n+1

b(n+1) . We need a modulus m � B. If we try for one of the form
m = w!, then the smallest w is easy to find and it is generally (but not always) less
than n. For example, this method for K100000(3) has w = 12969 as the smallest
possible modulus, well under n. But for K900(1000) the smallest w that works
is 1187; being larger than n, it is useless. A good estimate of w� � �because
ln(n!) > n lnn � n, this estimate is never less than the smallest w and so can be
used directly in an algorithm� � �is

⌃
e1+W (log(B)/e)

⌥
, where W is the Lambert

W -function (which, combined with Stirling’s approximation ln(n!) ⇠ n lnn�n, can
serve as an approximate inverse to the factorial). This approximation gives 12969.2
and 1187.15 for the two preceding examples. Some asymptotic analysis shows that
w ⇠ n

loga n .
To finish, we need R, the mod-w! residue of Kn(a/b). With w and R in hand and

using s = sign(a)n+1 and r =
⇥
n!bnea/b

⇤
, we then have a single formula that applies

to all cases: Kn

�
a
b

�
= r � smodw!(s(r �R)). Because each of the initial n�w + 1

terms of the sum defining K are divisible by w!, computing R requires summing only
the terminal w terms of the sum, and this is where the time gain arises. The sum
computation for K100,000(3) requires 100000 additions, so the reduction to 12969
terms is a substantial savings.

We summarize the method in the following theorem.

Theorem 7. For any integers a, b, n with b � 1, n � 0, and a and b relatively
prime, Kn

�
a
b

�
= r � smodw!(s(r � R)), where s = sign(a)n+1, a1 = |a|, B0 =

a1/ b + (n + 1) ln a1 � ln b � ln(n + 1) , r =
⇥
n!bnea/b

⇤
, w =

⌃
e1+W (B0/e)

⌥
, and

R = modw!

⇣
n!bn

Pn
k=n�w+1

�
a
b

�k 1
k!

⌘
.

While some reduction in the modulus is possible by taking additional congru-
ences into account, the gain is small. The simple algorithm just described requires
about one second to compute K100000(3). Direct computation of the Maclaurin
polynomial takes ten seconds.

Here is Mathematica code that works for all rationals (though when |a|  2 the
work of the earlier sections should be used instead). It is fairly simple and is faster
than known algorithms.

• K[a, b, n] computes Kn

�
a
b

�
by simple addition of n + 1 terms.

• KTailModFactorial[a, b, n,w] computes modw!

�
Kn

�
a
b

��
by addition of the rele-

vant tail terms only.

• KGeneral[a, b, n] computes Kn

�
a
b

�
(assuming gcd(a, b) = 1) by using a factorial

congruence to overcome the truncation error. If a < 0, the alternating series error
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is used; otherwise either the geometric series bound is used (when it converges) or
the Lagrange bound. And the Round in the definition of r has been dropped, since
the modular reduction of noninteger values of r yields the same thing.

K[a , b , n ]:=K
⇥
Numerator

⇥
a
b

⇤
, Denominator

⇥
a
b

⇤
, n
⇤
/;GCD[a, b] 6= 1;

K[a , b , n ]:=Module [{sum, t}, sum = t = n!bn;
Do[sum+=(t*=a/(bk)), {k, n}]; sum] ;

KTailModFactorial[a , b , n , w ]:=Module [{n0, t, ⇢ = 0},�
n0 = n� w + 1; t = PowerMod[a, n0, w!]n!bw�1

�
n0!;

Do[⇢+=t; t*=a/(b(k + 1)), {k, n0, n}]; Mod[⇢, w!])];

KGeneral[a , b , n ]:=Module
⇥�
a1 = Abs[a], s = Sign[a]n+1, L, logB, w, r

 
,

L = (n + 1)Log[a1];
logB = Which[a < 0, L� Log[b(n + 1)], a1 � b(n + 1),

a/b + L� Log[b(n + 1)], True, L� Log[b(1 + n)� a1]];
If

⇥
LogGamma[n] < logB,K[a, b, n], w =

⌃
e1+ProductLog[logB/e]

⌥
;

s = Sign[a]n+1; r = bnn!ea/b;
r � sMod[s(r � KTailModFactorial[a, b, n,w]), w!]] /; GCD[a, b] == 1

KGeneral[3, 1, 100000]//Short//Timing

{1.12787, 56726164053140014101900918 << 456523 >> 14370403877621612232600001}

For K106(3) the preceding code takes 90 seconds to find the 5.5-million-digit
integer; the modulus defining the number of terms in the tail sum is w = 104102.

There are a number of tricks that can be used to improve the algorithm. One
can reduce the truncation error interval by adding more terms or considering a lower
bound on the error as well, and one can consider additional congruences (such as,
when a is prime, the one from Lemma 5); but these ideas improve things only a
little. So the question remains whether there are formulas or algorithms that would
compute the symbolic value of Kn(z) for any rational z more quickly than the
modular method of Theorem 7.

Acknowledgements. The author thanks Simon Plou↵e and the late Jonathan
Borwein for some valuable suggestions, and Robert Israel for finding the key idea
in the proof of Lemma 4 in the general case.
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