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Abstract
Arc Kayles is a combinatorial game played on a graph. We give nim-sequences for
Arc Kayles on varying classes of graphs including: equimatchable graphs, path
graphs, cycle graphs, and wheel graphs. Lastly, we provide an automatic periodicity
check for generalized star graphs with three rays (two fixed) and conjecture about
the period for generalized star graphs with one ray fixed to two vertices, a second
ray fixed to n vertices (in an equivalence class modulo 34) and the third ray varying
to infinity.

1. Introduction

Graph theoretic combinatorial games became of interest within the last several
decades as a means to model complex networks. One well studied graph game is
called Node Kayles. Node Kayles is a combinatorial game on a graph. Players
take turns choosing a single vertex such that it does not repeat, and is not adjacent
to, any previously chosen vertices. The last player to move wins. Together, players
are forming a maximal independent set. Node Kayles is well studied in [4, 6, 8, 14],
including analysis on varying graph classes as well as complexity results.

A natural extension is to consider the edge counterpart of this game which is
called Arc Kayles.

1This author was supported by NSERC and I-Cureus. This work was completed while this
author was at the School of Mathematics and Statistics at Carleton University.

2This author was supported by NSERC.
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Definition 1. Arc Kayles is a combinatorial game on a graph. Players take
turns choosing a single edge such that it does not repeat, and is not adjacent to,
any previously chosen edges. The last player to move wins.

Choosing an edge is the same as deleting that edge and its incident vertices since
adjacent edges cannot be chosen during game play. Throughout this paper, we
consider edge deletion to make the remaining options for the next player clear.

Arc Kayles was first introduced by Schaefer in 1978 [14] and to date very little
is known about the game (see [12] for some discussion about complexity). Here, we
analyze Arc Kayles on the wheel graph and generalized star graphs, determining
their Grundy values and nim-sequences. For the generalized star graphs we present
an automatic periodicity check, motivated by octal games described in [1].

Definition 2. A maximal matching is a set of edges, M , from a graph, �, in which
the following two properties hold:

1. no two edges share a vertex; and

2. no additional edges from � can be added to the set without violating the first
condition.

The game of Arc Kayles ends when there are no more moves. Hence the proof
of Lemma 1 is immediate.

Lemma 1. The end state of a game of Arc Kayles is a maximal matching.

The paper proceeds as follows. In Section 2 we begin by giving necessary back-
ground. In Section 3 we examine Arc Kayles on equimatchable graphs, path
graphs, and cycle graphs; determining outcome classes and nim-sequences. In Sec-
tion 4, we take a non-standard approach to solving Arc Kayles played on the
wheel graph. Next, in Section 5 we examine a generalized star as motivated by [6]
and present an automatic periodicity check motivated by [1]. We conclude by dis-
cussing future directions for research.

2. Background

A path is a connected, acyclic graph in which all vertices have degree at most two.
We denote a path on n vertices by Pn. A cycle is a connected graph where every
vertex has degree 2. We denote a cycle on n vertices by Cn.

Arc Kayles is an impartial game since both players have the same options from
all positions. Impartial games have two outcome classes: the game is a P-position
if the second (previous) player can force a win; otherwise, it is an N -position, which
means the next (first) player can force a win.
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The minimum excluded value (mex) of a set of non-negative integers is the least
non-negative integer which does not occur in the set. For example, mex{1, 3, 4} = 0.
An option H of a game G is a subgame of G which can be reached in exactly one
move. The value (or nim-value or Grundy value) of an impartial game, denoted by
G, is determined by the mex of the values of its options. If the next player does
not have a move, the game position has value 0. There is a natural connection
between the impartial game outcome classes and their G-values: if the G-value for
a game G is 0, then G is a previous player win (or a P-position); otherwise, it is an
N -position.

Sometimes, making a move in a game splits the game into disjoint boards. Such
a game is the disjunctive sum of two (or more) games. Consider two games G
and H, their disjunctive sum is denoted by G + H. The value of a disjunctive
sum of impartial games is the sum of the values of each component, in binary,
without carrying. This is denoted by � (XOR in computer science). For example,
suppose we were playing the game G + H, where G and H are games. Then
G (G + H) = G (G)� G (H).

Fixing all parameters of a game G and letting one vary, we calculate G (G (n)),
for all n � 0. Arranging these G-values in a sequence for a particular game G is
called the nim-sequence of G. Throughout this paper we write G(�) or G(�n) to
represent the value of the game of Arc Kayles played on a specific graph �, and
if there is a parameter varying, this is specified by n.

3. Well-behaved Graph Classes

A graph, �, is equimatchable if every maximal matching, M , is maximum. Hence,
all maximal matchings for an equimatchable graph have the same size. The winner
of a game of Arc Kayles on such a graph is therefore determined by the parity of
a maximal matching in �.

Theorem 1. The value of a game of Arc Kayles played on an equimatchable
graph �, where M is the maximal matching at the end state of the game, is given
by

G (�) =
⇢

1 if |M| ⌘ 1 (mod 2)
0 otherwise

Proof. Follows directly from Lemma 1 and Definition 2.

If a graph has the property that all maximal matchings have the same parity then
its Grundy value is simple to calculate. The following proposition shows that these
graphs are all, in fact, equimatchable. This contrasts with the case of independent
sets. Graphs where all maximal independent sets have the same size are called
well-covered [10]. Graphs where all maximal independent sets have the same parity
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are called parity graphs and are not equivalent to well-covered graphs [2, 5]. We
outline the proof of our proposition, the details are left to the reader.

Proposition 1. Let � be a graph such that all maximal matchings have the same
parity. Then � is equimatchable.

Sketch of proof. Let � be a graph and � has the property that all maximal match-
ings have the same parity. Suppose M1 and M2 are maximal matchings and without
loss of generality |M1| < |M2|. Consider the symmetric di↵erence of the matchings,
M14M2 = {e 2 E(�) : e is in only one of the matchings}. All connected compo-
nents of M14M2 are either vertices, paths or cycles and edges in the paths and
cycles alternate between the two matchings. An augmenting path is a path com-
ponent in M14M2. Since |M1| < |M2|, an augmenting path, P , must exist, which
begins and ends with edges from M2. Use this to augment matching M1 to produce
M 0

1 = M14P . Since M1 and M2 were maximal, M 0
1 is maximal too but has parity

opposite to M1 and M2. The result follows.

Complete graphs, Kn, and complete bipartite graphs Km,n are both equimatch-
able classes of graphs. For characterizations of equimatchable graphs, see [7, 11, 13,
15]. For other games which utilize equimatchable graph theory, see [9].

Arc Kayles played on path graphs results in several di↵erent options: removing
end edges results in a path on n � 2 vertices, while removing intermediate edges
results in a disjunctive sum of paths.

A line graph of a graph � is the graph produced from switching all edges of �
to vertices and these vertices are connected by an edge if the corresponding edges
were adjacent in �. Choosing an edge in � corresponds exactly to choosing a vertex
in the line graph of �.

Arc Kayles on paths has the same nim-sequence as that of Berlekamp et al. [3]
for Node Kayles on paths. Indeed, while playing Node Kayles players are
deleting a vertex and its neighbours, while in Arc Kayles players are deleting an
edge and its incident vertices. This is the same as playing Node Kayles on the
line graph. This proves the next theorem.

Theorem 2. Arc Kayles on � is Node Kayles on the line graph of �.

Corollary 1. Arc Kayles played on paths, Pn, has pre-period length 53, period
length 34.

The nim-sequence for Arc Kayles on paths is shown in Table 1.
Up to isomorphism, there is one move from Cn; to Pn�2. The value for Cn is 1

if G(Pn�2) = 0 and 0 otherwise. The positions with value 1 of the nim-sequence for
Cn within the pre-period are n 2 {3, 7, 11, 17, 23, 27, 31, 37} with pre-period length
38. The period length is 34. Positions with value 1 within the periodic portion of
the nim-sequence are
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t! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s #
0 0 0 1 1 2 0 3 1 1 0 3 3 2 2 4 0 5
17 2 2 3 3 0 1 1 3 0 2 1 1 0 4 5 2 7
34 4 0 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5
51 5 2 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7
68 4 8 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5
85 5 9 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7

Table 1: Nim-sequence for Arc Kayles on paths, Pn, where n = s + t [3].

n 2 {41 + 34i, 45 + 34i, 57 + 34i, 61 + 34i, 65 + 34i, i 2 N}.

This proves the following result.

Proposition 2. Let n � 3. The nim-sequence for cycles is given by

G (Cn) =
⇢

1 if n 2 S
0 otherwise

where,

S = {3, 7, 11, 17, 23, 27, 31, 37, 41 + 34i, 45 + 34i, 57 + 34i, 61 + 34i, 65 + 34i, i 2 N}.

4. Wheel Graphs

A wheel is a connected graph with one distinguished center node, surrounded by a
cycle where every node on the cycle is connected by one edge to the center node.

There are two moves for a general wheel graph, Wn, where n is the number of
vertices in the cycle surrounding the distinguished node and n � 3. One move is
to choose a spoke edge, which leaves a path on n � 1 vertices. The other move is
to choose a rim edge which leaves a fan graph with n � 2 vertices on the rim. We
refer to the fan graph as a pizza graph3, Pzn, since further breakdown of options by
removing more rim edges from a fan resembles a partially eaten pizza. Note: the
values for G (W0) ,G (W1) and G (W2) are 0 since we are not allowing multi-edges;
the graphs have no edges and the next player does not have a move.

Lemma 2. Let n � 3, then G (Pzn�2) � G (Pn�1).

Proof. We begin by breaking down the options of each game. From Pn�1, a player
may remove any edge. The set of moves are summarized as the set of disjunctive
sums of paths {Pn�3�i + Pi}, for 0  i  n�3. From Pzn�2 there are two possible

3Some other authors have used the term Fan-Star to describe the same graph.
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moves: a player may remove a spoke edge and obtain the same set of disjunctive
sums of paths as from Pn�1: {Pn�3�i + Pi}, for 0  i  n� 3. Otherwise, a player
may remove a rim edge and we obtain another pizza with one or two separate
smaller fans joined at the distinguished center node. This set of positions looks like
the following set: {Pzn�i�4,i}, for 0  i  n�4, where n� i�4 and i represent the
sizes of the rim edge paths of the fans. Since the set of options of Pzn�2 contains
the set of options of Pn�1, all these options are also contributing to the calculation
of the mex of Pzn�2. Therefore, G (Pzn�2) is at least as large as G (Pn�1).

Theorem 3. Let n � 3, then

G (Wn) =
⇢

1 if G (Pn�1) = 0
0 otherwise

Proof. Up to isomorphism there are only two options from any wheel graph and
hence we are only taking the mex of two values: mex {G (Pzn�2) ,G (Pn�1)}. By
Lemma 2, we know that G (Pzn�2) � G (Pn�1). There are three possibilities:

1. G (Pzn�2) � G (Pn�1) > 0 implying that G (Wn) = 0.

2. G (Pzn�2) > 1 > G (Pn�1) = 0 or G (Pzn�2) = G (Pn�1) = 0,
both implying that G (Wn) = 1.

3. G (Pzn�2) = 1,G (Pn�1) = 0 implying that G (Wn) = 2.

We show that Case 3 cannot occur. If G (Pn�1) = 0 we know all of its options
have G-value greater than 0. Recall that the options of Pn�1 are also options of
Pzn�2. If we can show that all the paths which have value 0 will have an option with
value equal to 1, we will have completed the proof. The path sequence is ultimately
periodic as shown in Section 3, so we only need to check the zero valued paths
within the pre-period and first period of the path nim-sequence; games contributing
to subsequent period values will, by definition, have the same values contributing to
their mex calculation as did its corresponding position (modulo the period length)
within the first period. Hence, there are a finite number of zero valued paths
(n = 6, 10, 16, 22, 26, 30, 36, 40, 44, 56, 60, 64, 74, 78) that we need to check. Recall
n denotes the number of vertices on the rim of the wheel, the number of vertices
on the corresponding path is one less. We know that the options from Pn�1 are
{Pi + Pn�i�3}. For 0  i  6, the Grundy values of Pi are (0, 0, 1, 1, 2, 0, 3). The
Grundy values required for Pn�i�3 to yield a sum of 1 are therefore (1, 1, 0, 0, 3, 1, 2)
for i in the same range. For n 2 (6, 10, 16, 22, 26, 30, 36, 40, 44, 56, 60, 64, 74, 78),
the values of i that establish that Pn�1 has an option with value 1 are therefore
i = (0, 0, 5, 6, 0, 0, 5, 0, 0, 6, 0, 0, 0, 0) respectively. This concludes the proof.
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5. Generalized Star Graphs

A star is a connected acyclic graph that has one distinguished center node with
degree n � 1 and all other vertices with degree 1. We call a graph a generalized
star if we allow for the possibility of all non-center vertices having degree at most
2.

We denote a generalized star graph with three rays as Sf,g,n, where f, g and n
are the number of vertices on each ray. When allowing one ray, n, to vary we denote
the class of generalized stars by Sf,g (n) or simply Sf,g to mean the nim-sequence
{G (Sf,g,n) : n = 1, 2, . . .}. Playing Arc Kayles on a generalized star graph with
three rays, we have the following decomposition.

1. A player may remove an edge incident to the center node. This can happen
in three ways and produces the following three outcomes:

(a) Pf�2 + Pg�1 + Pn�1

(b) Pf�1 + Pg�2 + Pn�1

(c) Pf�1 + Pg�1 + Pn�2.

2. A player may remove the second edge from the center vertex on any of the
rays. These will give the following three outcomes:

(a) Pf�3 + Pg+n�1

(b) Pg�3 + Pf+n�1

(c) Pn�3 + Pf+g�1.

3. A player may remove any other edge from any of the rays. These will leave a
disjunctive sum of a generalized star and a path:

(a) Sf�i�2,g,n + Pi, 0  i  f � 2

(b) Sf,g�i�2,n + Pi, 0  i  g � 2

(c) Sf,g,n�i�2 + Pi, 0  i  n� 2.

The decomposition shows that there are many values contributing to the mex
calculation of the current game position. We now present a method to implement
an automatic check for periodicity for this graph class. This check is motivated
by work presented in [1] and [3] with regards to Subtraction and octal games.
For notational simplicity, bS is the expected pre-period associated with the current
generalized star Sf,g,n and S is its expected period. Similarly we reserve bD for the
pre-period and D for the period for other nim-sequences with respect to a class of
graphs denoted by D.
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Theorem 4 (Automatic check for periodicity). Let f and g be positive in-
tegers. Suppose Sf 0,g0 is periodic, where f 0  f , g0  g and f 0 + g0 < f + g. If
G (Sf,g,n) = G

⇣
Sf,g,n+S

⌘
for all bS  n  bI + 2I + 2, then Sf,g is periodic with

bI = max

⇢bS + bPf,g,n,
⇣bSf�j�2,g,n

⌘f�2

j=0
,
⇣bSf,g�j�2,n

⌘g�2

j=0
, bPf,g�j�2,n � P, bP

�

and
I = LCM

n
S,

�
Sf,g�2�j

�g�2

j=0
,
�
Sf�2�j,g

�f�2

j=0
, P

o
.

Proof. Recall that the path nim-sequence is periodic (presented in Section 3). The
value of a generalized star Sf,g,n is determined by the minimum excluded value of
its options. We want to show that if n is large enough and G (Sf,g,n) = mex (T ) and
G

⇣
Sf,g,n+S

⌘
= mex (S), then T = S. Hence the nim-sequences of the following

options need to be periodic:

1. Pf�2 + Pg�1 + Pn�1

2. Pf�1 + Pg�2 + Pn�1

3. Pf�1 + Pg�1 + Pn�2

4. Pf�3 + Pg+n�1

5. Pg�3 + Pf+n�1

6. Pn�3 + Pf+g�1

7. Sf�i�2,g,n + Pi, 0  i  f � 2

8. Sf,g�i�2,n + Pi, 0  i  g � 2

9. Sf,g,n�i�2 + Pi, 0  i  n� 2

Their common period will be S.
We now check that each option has a periodic nim-sequence. First consider

options 1, 2, 3 as listed above. These options are paths where two of the summands
of paths are fixed and the third (involving n) is varying. This is equivalent to taking
the nim-sequence of the path (which we know to be periodic) and adding the same
constant to every entry. If n is larger than bP +P +1, then G (Pn�1) = G

�
Pn+S�1

�
,

and so G (Pn�1)�G (Pf�2)�G (Pg�1) = G
�
Pn+S�1

�
�G (Pf�2)�G (Pg�1). These

nim-sequences are periodic with period length 34. The same holds for option 2
(indices are switched and the proof is the same). For option 3, the only di↵erence is
that n must be larger than bP + P + 2. This shows that when n is su�ciently large,
the Grundy values of the first three positions are all contained in both T and in S.
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The nim-sequence for options 4, 5 involving n + f � 1 and n + g � 1, is a path
nim-sequence shifted by f � 1 and g � 1 respectively. The second component of
the nim-addition is a fixed length path and so the same explanation as the first set
{1, 2, 3} of path options applies. Lastly, the sixth option consists of a path nim-
sequence (shifted by three) being nim-added to a constant. This also reduces to the
earlier cases with the slight modification that n must be as large as bP + P + 3. All
three options are periodic with period length 34. Once again, n must be larger thanbP + P + 3. And so, the Grundy values of the three options {4, 5, 6} are in both T
and S.

The seventh and eighth options listed rely on the breakdown of the fixed rays f
and g respectively. We examine the seventh option in detail, the eighth is symmetric.
There are finitely many options of the form {Sf�j�2,g,n + Pj}f�2

j=0 . The generalized
stars considered in this set rely on di↵erent generalized star classes with respect to
g which we consider to have already been determined. Hence, in order to determine
the periodicity of the current class, we need to be large enough with respect to all
of the previously calculated classes already attaining periodicity and the periodicity
of all classes involved have to be synchronized. And so, we need

n � max

⇢⇣bSf�j�2,g,n

⌘f�2

j=0

�
+ LCM

n�
Sf�j�2,g,n

�f�2

j=0

o
.

If n is su�ciently large then the Grundy values will be contained in both T and
S.

Lastly, the first terms of the options Sf,g,n�j�2+Pj , 0  j  n�2, remain within
the same generalized star class and we look back at previously calculated positions
and nim-add a path of the appropriate length. We consider two cases:

Case 1: Suppose n � j � 2 > bS + I. Since n � j � 2 > bS + I, n � j �
2 � I > bS, the nim-sequence of Sf,g,n is already showing signs of periodicity.
And so, G

⇣
Sf,g,n�j�2+S

⌘
= G (Sf,g,n�j�2). This implies that adding a con-

stant to both positions will give the same value. Hence G
⇣
Sf,g,n�j�2+S + Pj

⌘
=

G (Sf,g,n�j�2 + Pj). Thus the Grundy values of these positions appear in both T
and S.

Case 2: Suppose n � j � 2  bS + I. If n > bI + 2I + 2, then j > bP + I and
G

⇣
Pj+S

⌘
= G (Pj). Then G

⇣
Sf,g,n�j�2 + Pj+S

⌘
= G (Sf,g,n�j�2 + Pj). Thus the

Grundy values of these positions appear in both T and S.
When n > bI + 2I + 2, we conclude that S = T , where

bI = max

⇢bS + bPf,g,n,
⇣bSf�j�2,g,n

⌘f�2

j=0
,
⇣bSf,g�j�2,n

⌘g�2

j=0
, bPf,g�j�2,n � P, bP

�

and
I = LCM

n
S,

�
Sf,g�j�2,n

�g�2

j=0
,
�
Sf�j�2,g,n

�f�2

j=0
, P

o
.
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We have investigated the nim-sequences when f = 2, g fixed and the third ray
varying o↵ to infinity. Based on our preliminary results it appears as though all
classes g (mod 34) have a stabilizing pre-period (see Table 2) meaning that each
class (mod 34) eventually has a stable period also.

The quasi-pre-period for a generalized star with a ray g (mod 34) is the value of
g at which the pre-period for that class of generalized stars becomes stable in n.

Conjecture 1. For all g > quasi-pre-period, and n > pre-period length shown in
Table 2, the G-value of Arc Kayles played on S2,g,n is equal to the value shown
in Table 5, where g and n are modulo 34 in the lookup table.

Let us look at an example to understand how the lookup tables (Table 2 and 5)
work. Consider S2,750,673. This is a generalized star with one ray fixed with 2
vertices, a second ray fixed with 750 vertices and a third ray fixed with 673 vertices.
Now, 750 ⌘ 2(mod 34) and 673 ⌘ 27(mod 34). In Table 2 we see that g = 750 is
beyond the value where this class modulo 34 becomes stable in n; it is far enough,
because in that column g = 274 is the value at which this class is stable for n.
Also, our value for n, namely n = 673, is beyond this last irregularity since for this
stabilized class h = 459 was the last irregularity. Proceed to Table 5 and look up
the value of S2,750,673 which will be found at the intersection of row 2 and column
27. Hence, we conjecture that G (S2,750,673) = 47.

If Conjecture 1 is true, it means that there is indeed an ultimate generalized star
S2,g,n which is completely determined by smaller generalized star classes (as was
hoped for Node Kayles in [6]) for Arc Kayles. At this time, it is unclear how
to prove this conjecture as even the first step of proving boundedness a priori of
the nim-sequence is hard. This will be further discussed in the future directions
section.
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t! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s#
0 52 52 52 196 52 156 349 232 301 191 249 181 190 383 232 188 388
34 349 249 249 249 215 245 216 250 165 256 250 388 258 248 249 250 261
68 279 249 283 204 241 260 383 301 165 261 459 388 301 232 283 279 244
102 336 320 283 204 283 260 349 248 285 299 388 388 294 232 249 250 272
136 313 388 312 228 283 396 349 313 279 283 388 388 260 232 343 333 271
170 313 388 459 221 283 396 349 345 313 283 388 388 396 232 299 252 373
204 316 388 459 340 261 275 349 388 313 283 275 388 459 232 303 461 280
238 333 388 326 340 261 338 349 459 301 283 388 320 459 232 367 461 340
272 299 388 459 340 283 338 349 459 313 351 388 349 459 374 316 337 408
306 299 388 459 340 283 338 349 459 313 351 388 349 459 340 303 461 340
340 299 388 459 340 283 338 392 459 313 351 388 349 459 374 303 461 340
374 461 388 459 340 283 338 392 459 301 351 388 349 459 374 303 461 340
408 461 388 459 340 283 338 392 459 301 351 388 349 459 340 329 461 340
442 461 388 459 340 283 338 392 459 301 351 388 349 459 340 329 461 340
476 461 388 459 340 283 338 392 459 301 351 388 349 459 340 329 461 340
510 461 388 459 340 283 338 392 459 301 351 388 349 459 340 329 461 340
544 461 388 459 340 283 338 392 459 301 351 388 349 459 340 329 461 340
578 461 388 459 340 283 338 392 459 301 351 388 349 459 340 329 461 340
612 461 388 459 340 283 338 392 459 301 351 388 349 459 340 329 461 340

t! 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
s#
0 190 283 170 250 261 349 125 349 249 162 191 249 177 303 178 245 232
34 197 249 245 388 246 249 383 349 249 241 204 284 212 245 250 349 245
68 349 388 258 260 283 245 383 349 388 260 301 349 246 250 333 314 264
102 316 283 258 245 280 280 250 396 388 294 459 349 333 250 314 349 320
136 306 303 272 250 280 301 250 396 388 273 459 303 459 298 300 349 388
170 459 283 459 333 333 396 388 396 286 340 461 383 459 250 333 358 459
204 374 283 258 301 280 260 388 349 255 336 461 383 459 298 333 459 367
238 326 341 258 301 283 459 388 459 337 329 388 383 301 298 333 459 459
272 348 341 256 392 261 443 388 459 303 341 388 383 301 298 333 459 459
306 313 341 256 392 261 443 388 459 255 374 388 303 392 284 333 459 459
340 313 443 309 392 261 443 388 459 255 341 388 303 392 284 333 459 459
374 313 443 309 392 261 443 388 459 255 374 388 303 392 284 333 459 459
408 313 443 309 392 261 443 388 459 255 374 388 303 392 284 333 459 459
442 313 443 309 392 261 443 388 459 255 374 388 303 392 284 333 459 459
476 313 443 309 392 261 443 388 459 255 374 388 303 392 284 333 459 459
510 313 443 309 392 261 443 388 459 255 374 388 303 392 284 333 459 459
544 313 443 309 392 261 443 388 459 255 374 388 303 392 284 333 459 459
578 313 443 309 392 261 443 388 459 255 374 388 303 392 284 333 459 459
612 313 443 309 392 261 443 388 459 255 374 388 303 392 284 333 459 459

Table 2: Pre-period lengths for generalized star graphs Sf,g,n; f = 2, g = s + t and
n goes to infinity.
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n0 ! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
g0 #
0 6 8 8 1 26 4 28 3 13 29 41 42 27 13 33 12 8 1 45 29 3 24
1 8 1 1 9 0 23 8 26 0 4 23 2 6 22 15 5 5 9 3 3 34 5
2 8 1 1 2 0 37 1 43 0 28 52 20 18 4 38 5 43 39 3 50 27 1
3 1 9 2 3 14 26 2 4 8 14 5 20 4 8 5 18 41 3 8 5 13 3
4 26 0 0 14 1 2 4 14 14 5 43 4 16 5 31 4 4 24 2 19 36 0
5 4 23 37 26 2 4 12 6 13 7 4 42 5 9 33 7 19 2 9 4 16 28
6 28 8 1 2 4 12 1 29 7 4 8 2 17 4 4 21 5 51 3 15 37 5
7 3 26 43 4 14 6 29 4 12 46 14 44 7 58 49 13 43 43 54 44 37 29
8 13 0 0 8 14 13 7 12 8 5 26 23 3 5 5 4 4 12 2 6 9 4
9 29 4 28 14 5 7 4 46 5 5 53 7 24 1 48 4 0 31 1 17 26 7
10 41 23 52 5 43 4 8 14 26 53 3 11 5 34 15 12 2 13 22 4 7 27
11 42 2 20 20 4 42 2 44 23 7 11 1 18 19 0 29 1 35 4 0 42 6
12 27 6 18 4 16 5 17 7 3 24 5 18 4 19 14 2 39 40 4 41 27 40
13 13 22 4 8 5 9 4 58 5 1 34 19 19 2 2 26 4 12 14 6 9 3
14 33 15 38 5 31 33 4 49 5 48 15 0 14 2 3 3 21 1 1 30 4 7
15 12 5 5 18 4 7 21 13 4 4 12 29 2 26 3 1 1 43 38 7 8 9
16 8 5 43 41 4 19 5 43 4 0 2 1 39 4 21 1 1 25 4 7 42 1
17 1 9 39 3 24 2 51 43 12 31 13 35 40 12 1 43 25 7 12 41 54 40
18 45 3 3 8 2 9 3 54 2 1 22 4 4 14 1 38 4 12 5 1 9 3
19 29 3 50 5 19 4 15 44 6 17 4 0 41 6 30 7 7 41 1 26 32 3
20 3 34 27 13 36 16 37 37 9 26 7 42 27 9 4 8 42 54 9 32 3 31
21 24 5 1 3 0 28 5 29 4 7 27 6 40 3 7 9 1 40 3 3 31 1
22 50 21 23 28 33 13 6 18 8 36 6 27 7 8 50 5 40 12 8 3 1 19
23 26 3 41 39 2 13 4 4 31 14 13 0 23 39 5 38 7 41 2 13 0 12
24 48 16 36 5 38 4 31 5 1 18 4 26 5 5 16 4 39 19 9 22 4 28
25 15 2 13 14 4 8 19 9 10 32 20 5 13 7 7 15 44 10 30 0 12 6
26 54 6 51 4 24 20 1 52 7 20 25 5 26 12 42 50 2 16 4 19 34 26
27 14 18 47 7 6 5 9 52 8 6 47 43 4 19 32 13 0 12 20 6 5 26
28 10 4 4 5 5 10 0 17 5 5 35 3 8 1 2 21 12 28 6 6 7 4
29 12 0 4 6 9 7 8 46 5 38 12 3 14 13 0 0 28 48 13 31 4 4
30 4 8 5 14 4 8 8 1 9 7 7 36 14 0 4 36 2 6 26 4 21 5
31 38 5 40 15 2 42 5 48 11 35 19 1 36 4 17 9 6 40 4 41 5 9
32 5 21 7 39 6 5 40 48 22 13 14 23 0 2 30 3 47 35 29 5 14 20
33 30 19 4 18 5 40 15 20 13 6 0 4 38 45 2 34 46 37 5 5 43 3

n0 ! 22 23 24 25 26 27 28 29 30 31 32 33
g0 #
0 50 26 48 15 54 14 10 12 4 38 5 30
1 21 3 16 2 6 18 4 0 8 5 21 19
2 23 41 36 13 51 47 4 4 5 40 7 4
3 28 39 5 14 4 7 5 6 14 15 39 18
4 33 2 38 4 24 6 5 9 4 2 6 5
5 13 13 4 8 20 5 10 7 8 42 5 40
6 6 4 31 19 1 9 0 8 8 5 40 15
7 18 4 5 9 52 52 17 46 1 48 48 20
8 8 31 1 10 7 8 5 5 9 11 22 13
9 36 14 18 32 20 6 5 38 7 35 13 6
10 6 13 4 20 25 47 35 12 7 19 14 0
11 27 0 26 5 5 43 3 3 36 1 23 4
12 7 23 5 13 26 4 8 14 14 36 0 38
13 8 39 5 7 12 19 1 13 0 4 2 45
14 50 5 16 7 42 32 2 0 4 17 30 2
15 5 38 4 15 50 13 21 0 36 9 3 34
16 40 7 39 44 2 0 12 28 2 6 47 46
17 12 41 19 10 16 12 28 48 6 40 35 37
18 8 2 9 30 4 20 6 13 26 4 29 5
19 3 13 22 0 19 6 6 31 4 41 5 5
20 1 0 4 12 34 5 7 4 21 5 14 43
21 19 12 28 6 26 26 4 4 5 9 20 3
22 7 28 6 9 42 4 15 5 5 51 7 50
23 28 5 6 29 3 8 2 9 3 3 36 5
24 6 6 7 4 36 5 9 34 3 32 6 5
25 9 29 4 8 5 9 32 12 34 13 13 12
26 42 3 36 5 6 4 7 33 5 48 38 56
27 4 8 5 9 4 4 31 13 25 43 41 38
28 15 2 9 32 7 31 1 26 9 37 42 14
29 5 9 34 12 33 13 26 1 15 2 2 10
30 5 3 3 34 5 25 9 15 2 6 13 28
31 51 3 32 13 48 43 37 2 6 10 4 4
32 7 36 6 13 38 41 42 2 13 4 8 35
33 50 5 5 12 56 38 14 10 28 4 35 5

Table 3: Grundy values for generalized star graphs Sf,g,n, with f = 2, g > quasi-
pre-period, n > pre-period length shown in Table 2, where g ⌘ g0 (mod 34) and
n ⌘ n0 (mod 34).
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6. Future Directions

Some games have clear bounds on the possible G-values for the nim-sequence (see [1]).
Depending on the underlying graph, Arc Kayles could potentially have G-values
growing without bound as the number of vertices increases. However, as observed
with path graphs and generalized star graphs, even though they could grow without
bound, in these cases they do not. It would be interesting to understand why this
is the case. Future work involves solving the conjecture presented in Section 5. It
would be a great feat to develop methods of determining a priori bounds on G-
values for impartial games. Alternatively, a general theorem on periodic behaviour
of games would help this analysis.
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