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Abstract
We prove three conjectures of Fraenkel and Ho regarding two classes of variants of
Wythoff’s game. The two classes of variants of Wythoff’s game feature restrictions
of the diagonal moves. Each conjecture states that the Sprague-Grundy function is
invariant up to a certain nim-value for a subset of that class of variants of Wythoff’s
game. For one class of variants of Wythoff’s game, we prove that the invariance
of the Sprague-Grundy function extends beyond what was conjectured by Fraenkel
and Ho.

1. Introduction

In this paper, we prove invariance properties of the Sprague-Grundy function for
variants of Wythoff’s game. We first state the rule sets of the variants of Wythoff’s
game. Next, we review background on the Sprague-Grundy function. We also state
the invariance properties found by Fraenkel and Ho [2] that lead to the conjectures
of further invariance.

1.1. Rule Sets of Games

The game of 2-pile Nim is an impartial game in which two players alternately remove
any number of tokens from either of two piles. The game ends when both piles are
empty. The last player able to make a move wins. We can conceptualize 2-pile Nim
as being played on a grid of positions marked by coordinates (a, b) where a and
b are nonnegative. From a position (a, b), one may move vertically to a position
(a, b − s) with s > 0 or horizontally to a position (a − s, b). In generalizations of
Nim, we call such horizontal and vertical moves “Nim moves.”

Wythoff’s game allows an additional diagonal move. That is, from a position
(a, b), in addition to making a vertical or horizontal Nim move we may move to a
position (a − s, b − s). Many variants of Wythoff’s game have been studied, with
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rule sets that either restrict the legal moves of Wythoff’s game or allow additional
moves. Fraenkel and Ho [2] looked for games in which the losing positions are
translations of the losing positions of Wythoff’s game. In the study of this question,
they introduced the three classes {Wk}, {Wk,l}, and {Tk} of variants of Wythoff’s
game.

In the class {Wk}k≥0, all Nim moves are allowed but the diagonal move is re-
stricted as follows. A diagonal move from (a, b) to (a − s, b − s) is allowed so long
as min(a − s, b − s) ≥ k. In the class {Wk,l}0≤k≤l, a diagonal move from (a, b) to
(a− s, b− s) is allowed so long as min(a− s, b − s) ≥ k and max(a− s, b − s) ≥ l.
Note that Wl,l has the same rule set as Wl. Lastly, the class {Tk}k≥0 restricts the
diagonal moves allowed in W1. Let a ≤ b. A move from (a, b) to (a− s, b− s) with
a− s > 0 is allowed so long as

∣∣∣∣

⌊
b− s

a− s

⌋
−
⌊
b

a

⌋∣∣∣∣ ≤ k.

We note that T∞ has the same rule set as W1.

1.2. Sprague-Grundy Function

Definition 1. The nim-value (Sprague-Grundy value) of a position is defined in-
ductively as follows: The nim-value of all terminal positions (positions from which
no move may be made) is 0. The nim-value of any other position (a, b) is the min-
imum excluded natural number of the set of nim-values of positions reachable in
one move from (a, b), that is, the smallest number in the set {0, 1, 2, . . .} that is
not the nim-value of some position reachable in one move from (a, b). The Sprague-
Grundy function for a game gives the nim-value of a given position. A g-position is
a position with nim-value g.

A player starting a move from a position of nonzero nim-value will win with
optimal play. Such a position is called an N-position because the Next player to
move after the position is reached can win. A position with nim-value of 0 is called
a P-position because when such a position is reached, the Previous player to move
can win.

Knowledge of the Sprague-Grundy function of an individual combinatorial game
enables more than just the determination of a winning strategy for that game: The
Sprague-Grundy function of a sum of combinatorial games can be quickly computed
from the Sprague-Grundy functions of each of the components.

1.3. Previous Work

Wythoff [3] found the P -positions of Wythoff’s game. As there is symmetry across
the line y = x, we list only positions (a, b) with a ≤ b.
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Definition 2. Let φ = 1+
√
5

2 , the golden ratio, An = ⌊φn⌋, and Bn = ⌊φ2n⌋.

Theorem 1 ([3]). The P -positions (a, b) with a ≤ b of Wythoff ’s game form the
set {(An, Bn)|n ≥ 0}.

Fraenkel and Ho [2] found the P -positions of {Wk}, {Wk,l}, and {Tk}. In fact,
the motivation for introducing these games was to determine when translations of
P -positions of Wythoff’s game are P -positions.

Theorem 2 ([2]). For each k ≥ 0, the P -positions (a, b) with a ≤ b of Wk form
the set

{(i, i)|0 ≤ i < k} ∪ {(An + k,Bn + k)|n ≥ 0}.

Theorem 3 ([2]). Let k and l be nonnegative integers with k ≤ l. The P -positions
(a, b) with a ≤ b of Wk,l form the set

{(i, i)|0 ≤ i < l} ∪ {(An + l, Bn + l)|n ≥ 0}.

Note that the P -positions ofWk,l are independent of k, and equal the P -positions
of Wl.

Theorem 4 ([2]). For each k ≥ 0, the P -positions (a, b) with a ≤ b of the game Tk

form the set
{(0, 0)} ∪ {(An + 1, Bn + 1)|n ≥ 0}.

Note that in both Wk,l and Tk, the P -positions are independent of k. Fraenkel
and Ho conjectured further invariance of the Sprague-Grundy functions of games
within the class {Wk,l} for different k and of those within the class {Tk}. Note that
the P -positions of Tk equal those of W1, and the rule set of Tk restricts the diagonal
moves allowed in W1. This leads to conjectures about further invariance of the
Sprague-Grundy function between the games Tk and W1. In each case, invariance
holds for g-positions up to a certain bound depending on the parameters of the
game. We state and prove such conjectures, as well as invariance properties of the
Sprague-Grundy function of Wk,l beyond what was conjectured by Fraenkel and
Ho.

2. The Class Wk,l

Unlike in the abovementioned variants of Wythoff’s game, in the game of Nim it
is easy to compute the nim-value of a position without recursion. The operation
that finds the nim-value of a given position is called the nim sum. Our proof of
the invariance property of the Sprague-Grundy function of the games {Wk,l} relies
upon considering regions in which the nim-value of a position is just the nim sum
of its coordinates.
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Definition 3. The nim sum x⊕ y of a position (x, y) is the binary digital sum of
x and y, that is, the sum when both numbers are written in binary and then added
without carrying. Equivalently, it is the “exclusive or” or XOR of x and y.

Definition 4. The forbidden region of a given game of the form Wk or Wk,l is the
part of the grid that cannot be entered on a diagonal move.

See Figure 1 for examples of forbidden regions.
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Figure 1: Forbidden Regions of Wk,3 for k = 0, 1, 2, 3

The proof of Theorem 5 and its extensions all rely upon showing that the for-
bidden regions of two games share a region which contains a g-position in every
row and column for g up to a certain bound. The presence of the g-positions in
this region preempts the presence of any g-positions in regions that are part of the
forbidden region of one game but not the other, thus rendering the differences in the
rule sets of the pair of games irrelevant with respect to the location of g-positions.

Theorem 5 (Conjecture 1 of [2]). Let k < k
′ ≤ l. For every integer g in the range

0 ≤ g ≤ l − k
′
, the two games Wk,l and Wk′ ,l have the same sets of positions with

nim-value g.

Proof. The respective forbidden regions of the two games Wk,l and Wk′ ,l each con-

tain the region [0, k
′ − 1] × [0, l − 1] because for any (x, y) in this region, we have

max(x, y) ≤ l. In any rectangle [0, a] × [0, b], with 0 ≤ a ≤ b, of the grid of nim-
values of 2-pile Nim, in every column there will be a g-position for g ∈ [0, b − a].
We can see this as follows. The nim-value of a position (x, y) in 2-pile Nim is given
by x ⊕ y. The definition of ⊕ as the XOR operation gives us the two properties
that x ⊕ x = 0 and that x ⊕ y ≤ x + y. Suppose x ⊕ y = g. Taking the nim sum
with x on each side gives y = x⊕ g ≤ x+ g. So for x ∈ [0, a] and g ∈ [0, b− a], we
have y ≤ b. In particular, for 0 ≤ g < l − k

′
, the region [0, k

′ − 1]× [0, l − 1] has a
g-position in every column.

Consider the rest of the forbidden regions for Wk,l and Wk′ ,l. The part of the

forbidden region with y ≥ l consists entirely of columns x for x ∈ [0, k
′ − 1]. In no
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such column can there be any g-positions for 0 ≤ g ≤ l− k′ with y-coordinate y ≥ l
because there is a g-position with y-coordinate y ≤ l − 1 which is reachable by a
vertical Nim move from any position above it in the column x. Symmetrically, we
may argue that the respective forbidden regions of two games Wk,l and Wk′ ,l each

contain the region [0, l−1]×[0, k
′−1] and thus the part of the forbidden regions with

x ≥ l contains no g-positions for 0 ≤ g ≤ l−k′. So for 0 ≤ g ≤ l−k′, g-positions are
only located in regions in which positions are either accessible by a diagonal move
in both Wk,l and Wk′ ,l or in neither Wk,l nor Wk′ ,l. Thus the difference in rules
between Wk,l and Wk′ ,l never creates a difference in access to these g-positions, so
Wk,l and Wk′ ,l have the same g-positions for 0 ≤ g ≤ l − k′.

Remark 1. Note that for general k < k
′ ≤ l, the bound for g given in Theorem 5 is

tight. For instance, the games W0,2 and W1,2 have different 2-positions. For y = 1,
the 2-position in W0,2 is located at (4, 1) and the 2-position in W1,2 is located at
(3, 1).

Next, we state an observation about the regularity of the location of g-positions
less than a given power of two in 2-pile Nim, which allows us to extend Fraenkel and
Ho’s [2] conjecture and prove further invariance of the Sprague-Grundy function for
the game Wk,l in certain circumstances.

Lemma 1. For g < 2j, the grid [0, 2j − 1]× [0, 2j − 1] for the nim-values of 2-pile
Nim has a g-position in every row and column.

Proof. By symmetry across the line y = x, we need only to prove the statement for
each row. Consider the nim-values in the ith row. They are obtained by taking the
nim sum of each of the integers k ∈ [0, 2j − 1] with i. The nim sum is the result of
binary addition without carrying, so adding two numbers less than a given power
of two will produce a number less than said power of two; as 0 ≤ i, k ≤ 2j − 1, we
have 0 ≤ i ⊕ k ≤ 2j − 1. Furthermore, the operation of “adding” i to k with the
nim sum is an involution. Thus the operation of adding i to k ∈ [0, 2j − 1] simply
permutes the set {0, 1, . . . , 2j − 1}. So for g < 2j we have a g-position in the ith

row, and the lemma is proved.

Theorem 6. Let 2m ≤ l. For 0 ≤ g < 2m, 0 ≤ k ≤ l, the g-positions of Wk,l equal
those of Wl.

Proof. Let g < 2m. We show that the set of g-positions in the forbidden regions for
each game Wk,l is identical to the set of g-positions in the forbidden region of Wl

for all g < 2m.

Consider the grid [0, 2m − 1]× [0, 2m − 1] in the grid of nim-values of Wk,l. For
positions in this grid, no diagonal moves can be made because max(i, j) < 2m ≤ l
for all (i, j) in this grid. Thus this grid is the grid of Nim. By Lemma 1, for g < 2m,
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every row and column of the grid has a g-position. Consider the rest of the forbidden
region for Wk,l outside the grid [0, 2m− 1]× [0, 2m− 1]. For any (i, j) in this region
with j > 2m−1, we have that i < l. The part of the column of [0, 2m−1]×[0, 2m−1]
below (i, j) contains a g-position for all g < 2m, so (i, j) cannot be a g-position for
g < 2m. Similarly, for any (i, j) in this region with i > 2m − 1, we have that j < l,
and in the row of [0, 2m− 1]× [0, 2m− 1] to the left of (i, j) there is a g-position for
all g < 2m, so (i, j) cannot be a g-position for g < 2m. Thus there are no g-positions
for g < 2m in the rest of the forbidden region.

Therefore, for 0 ≤ g < 2m, g-positions are located only in regions in which
positions are either accessible by a diagonal move in both Wk,l and Wl,l or in
neither Wk,l nor Wl,l. Thus the difference in rules between Wk,l and Wl,l never
creates a difference in access to these g-positions, so Wk,l and Wl,l have the same
g-positions for 0 ≤ g < 2m.

Note that the set of rules of Wl,l is identical to that of Wl. Thus the set of
g-positions in each game Wk,l is identical to the set of g-positions in Wl for all
g < 2m.

We have proven the invariance property of the g-positions for the games Wk,l

without actually finding a formula for these positions. In general, it appears to be
hard to find an explicit formula for g-positions of Wk,l with g ≥ 1. Fraenkel and
Ho [2] provide a recursive formula for the 1-positions of Wk, where the 1-positions
of Wk+2 are obtained from those of Wk. Fraenkel and Ho give an explicit formula
for the 1-positions of W1. Blass and Fraenkel [1] give a recursive algorithm for
computing the 1-positions of W0 (Wythoff’s game), but there does not appear to
be an explicit formula in the literature. So while Fraenkel and Ho provide an explicit
formula for the 1-positions of Wk with k odd, no such formula appears to exist for
k even. Computer explorations indicate that for l even, the set of 1-positions of
Wk,l equals that of Wk for all 0 ≤ k ≤ l, although Theorem 5 proves this only for
0 ≤ k < l. Thus it appears to be hard to find a formula for the 1-positions of Wk,l

with l even. But in Theorem 7, we are able to provide a formula for the 1-positions
of Wk,l with l odd and k < l.

The proof of Theorem 7, which gives a formula for the 1-positions of Wk,l with
l odd, will require the four lemmas below. The proofs are omitted as they are
elementary and use ideas tangential to the rest of the paper. Lemmas 2 and 5 are
used directly as important parts of Theorem 7 while Lemmas 3 and 4 are used to
prove Lemma 5.

Lemma 2. For n ≥ 1, let An = ⌊nφ⌋ and Bn = ⌊nφ2⌋. The following sets
partition the set of integers greater than or equal to 2: {An|n ∈ {Bk}}, {Bn+1|n ∈
{Bk}}, {An + 1|n ∈ {Ak}}, {Bn + 2|n ∈ {Ak}}.

Lemma 3. For all integers k ≥ 0, we have {φ⌊kφ2⌋} < 2− φ.
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Lemma 4. For all integers k > 0, we have {φ⌊kφ⌋} ≥ 2− φ.

Lemma 5. We have ⌊φn⌋ = ⌊φ(n− 1)⌋+ 1 if and only if n = ⌊kφ2⌋+ 1 for some
k.

Theorem 7. For l = 2m + 1, k < l, the set of 1-positions (a, b) with a ≤ b of
Wk,l is: {(2i, 2i + 1)|0 ≤ i ≤ m} ∪ {(l + 1, l + 1)} ∪ {(An + l, Bn + l + 1)|n =
⌊jφ2⌋ for some j ≥ 1} ∪ {(An + l + 1, Bn + l + 2)|n = ⌊jφ⌋ for some j ≥ 1}.

Proof. By Theorem 3, the 0-positions (a, b) with a ≤ b of Wk,l are

S0 = {(i, i)|0 ≤ i < l} ∪ {(An + l, Bn + l)|n ≥ 0}.

Let S1 = {(2i, 2i + 1)|0 ≤ i ≤ m} ∪ {(l + 1, l + 1)} ∪ {(An + l, Bn + l + 1)|n =
⌊jφ2⌋ for some j ≥ 1} ∪ {(An + l + 1, Bn + l + 2)|n = ⌊jφ⌋ for some j ≥ 1}.

It suffices to prove the following:

(a) S0 ∩ S1 = ∅

(b) There is no move from a position in S1 to a position in S1.

(c) From every position not in S0 ∪ S1, there is a move to a position in S1.

We now prove each statement. We first make note of a fact useful in the rest of
the proof.

Suppose (An + l, Bn + l + 1) = (Am + l + 1, Bm + l + 2). For An = Am + 1, we
must have m = n− 1. Then Bn = Bn−1 +1. This is a contradiction, as gaps in the
sequence {Bk} always have size at least two. Thus no position can be written both
as (An + l, Bn + l + 1) for some n and (Am + l + 1, Bm + l + 2) for some m.

For (a), suppose (An+ l, Bn+ l) = (Am+ l+1, Bm+ l+2). For An = Am+1, we
must have m = n− 1. So An = An−1 +1. By Lemma 5, we have n− 1 = ⌊kφ2⌋ for
some k. Since {⌊kφ2⌋} and {⌊jφ⌋} are complementary sequences, we have n− 1 ̸=
⌊jφ⌋. Since from above we have that (Am+ l+1, Bm+ l+2) is not also of the form
(Aj + l, Bj + l + 1), we have that (Am + l + 1, Bm + l + 2) /∈ S1.

We see that we cannot have (An + l, Bn + l) = (Am + l, Bm + l+ 1) because the
first coordinate requires n = m and the second requires n ̸= m.

It is clear that {(2i, 2i+ 1)|0 ≤ i ≤ m} ∪ {(l+ 1, l+ 1)} does not intersect S0.

Thus S0 ∩ S1 = ∅.
For (b), we first show that no diagonal moves exist between positions in S1.

A diagonal move cannot be taken to a position in the set {(2i, 2i + 1)|0 ≤ i ≤
m}∪{(l+1, l+1)}} because no diagonal moves can be made to a position (a, b) unless
max(a, b) ≥ l and because the difference between the two coordinates of positions
in {(An + l, Bn + l + 1)|n = ⌊jφ2⌋ for some j ≥ 1} ∪ {(An + l + 1, Bn + l + 2)|n =
⌊jφ⌋ for some j ≥ 1} is at least 2 because Bn = An + n.
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We now show that there are no diagonal moves starting at a position of the form
(An + l, Bn + l + 1).

Suppose we subtract s from each coordinate in (An + l, Bn + l + 1) and reach a
position of the form (Am + l + 1, Bm + l + 2), so we have An + l − s = Am + l + 1
and Bn + l + 1 − s = Bm + l + 2. Note that Bj = Aj + j because φ2 = φ + 1. So
An + n + l + 1 − s = Am + m + l + 2, and subtracting 1 plus the first equation
we have n = m. We have assumed (An + l, Bn + l + 1) ∈ S1, so we can have only
(An + l+ 1, Bn + l+ 2) ∈ S1 if (An + l+ 1, Bn + l+ 2) = (Aj + l, Bj + l+ 1). But
as we showed at the beginning of (a), no position can be written in both forms.

Suppose we subtract s from each coordinate in (An + l, Bn + l + 1) and reach a
position of the form (Aj + l, Bj + l+1), so An + l− s = Aj + l and Bn+ l+1− s =
Bj + l+ 1. The second equation becomes An + n+ l + 1− s = Aj + j + l+ 1, and
then subtracting 1 plus the first equation, we have n = j. But then s = 0, and thus
there is no move.

Similarly, we can show that there are no diagonal moves starting at a position of
the form (An + l + 1, Bn + l + 2).

Next, we show that no Nim moves exist between positions in S1. Suppose the
starting position is (An+ l, Bn+ l+1), and we make a Nim move to (An+ l, x). This
position can only be in S1 if An+l = Am+l+1, which implies that m = n−1. Since
An = An−1+1, by Lemma 5, we have n = ⌊kφ2⌋+1 for some k. Since n−1 = ⌊kφ2⌋
for some k, then n ̸= ⌊jφ2⌋ for any j. But then (An + l, Bn + l + 1) /∈ S1. Now
suppose that starting from (An+l, Bn+l+1) we make a Nim move to (x,Bn+l+1).
Then Bn + l + 1 = Bm + l + 2 for some m. But this is a contradiction because no
consecutive numbers are in the sequence {Bk}.

The proof that there is no Nim move starting at a position of the form (An + l+
1, Bn + l + 2) is similar.

We now prove (c). As there is symmetry in the rule set and thus g-positions for
Wk,l across the line y = x, we prove only for positions (a, b) where a ≤ b. By Lemma
2, the set S1 plus the corresponding set of 1-positions with a > b contains a position
at every x-coordinate. The difference between the y-coordinates and x-coordinates
in each pair (An + l, Bn+ l+1) and (An + l+1, Bn+ l+2) is Bn+1−An = n+1.
Every n ≥ 1 is either of the form n = ⌊jφ⌋ for some j ≥ 1 or n = ⌊jφ2⌋ for some
j ≥ 1. So the set of differences between y-coordinates and x-coordinates includes
all n ≥ 2. The positions (2i, 2i+ 1) and (l + 1, l+ 1) expand this set of differences
to include all n ≥ 0. Therefore the set S1 contains a position on every diagonal
y = x+ j for j ≥ 0.

Having established the presence of a position in S1 at every x-coordinate and
on every diagonal, we show that from any position (a, b) with a ≤ b such that
(a, b) /∈ S0 ∪ S1, there is a move to a position in S1.

Consider the position (a, b) with a ≤ b. There is some position (a, b′) in S1. If
b > b′, then we make a Nim move to (a, b

′
). If b = b

′
, then (a, b) ∈ S1 and no
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move is necessary. Suppose b < b
′
. We show that the position (a

′
, b

′′
) in S1 on

the diagonal y = x + (b − a) satisfies a
′
< a, and thus can be reached from (a, b)

by a diagonal move. The position in S1 on the diagonal y = x + (b′ − a) has y-
coordinate of b′. Since b < b

′
, the position on the diagonal y = x+ (b− a) is lower.

The difference between the y and x coordinates of a position (An + l, Bn + l + 1)
or (An + l + 1, Bn + l + 2) is n + 1, and clearly An decreases with n, so a lower
diagonal will have its position in S1 at a smaller x-coordinate. We note that the
subset {(l − 1, l)} ∪ {(l + 1, l + 1)} ∪ {(An + l, Bn + l + 1)|n = ⌊jφ2⌋ for some j ≥
1}∪ {(An + l+1, Bn + l+2)|n = ⌊jφ⌋ for some j ≥ 1} of S1 contains a position on
each diagonal on or above y = x, and that each position (i, j) in this subset satisfies
max(l−1, l) ≥ l and min(l−1, l) ≥ l−1 ≥ k, so no move into the forbidden region is
ever required to reach a position in S1 on a given diagonal. So the position (a

′
, b

′′
)

in S1 is reachable by a diagonal move. Thus from every position not in S0 ∪ S1,
there is a move to a position in S1.

As S1 satisfies properties (a), (b), and (c), S1 is indeed the set of 1-positions (a, b)
with a ≤ b of Wk,l.

3. The Class Tk

In this section, we prove Theorem 8, which gives an invariance property of the
Sprague-Grundy function for the class {Tk}. First, we establish some necessary
lemmas which bound the location of the g-positions in the game Tk. These g-
positions will relate to those of the game W1, as Tk restricts the rule set of W1.

3 3 2 0 4 1 8 9 10 5 7 6 12 15 11 16 17 13
2 2 3 1 0 6 7 5 4 10 11 9 8 14 15 13 12 18
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 1: Nim-Values of W1

Lemma 6. Let (x, y) be the position with nim-value 0 for a given y in the game
W1. Let S(y) = {g : (x+ g, y) is a g-position}. Then S(0) = {g}, S(1) = {g : g ≡ 0
mod 2}, and S(2) = {g : g ≡ 0 mod 4}. Furthermore, S(3) ∩ {g : g ≡ 0 mod 4} =
∅.

See Table 1 for an illustration of the location of g-positions in W1.

Proof. For y = 0 and y = 1, the nim-value of the position (x, y) is x ⊕ y. This is
because no diagonal moves may occur, so the nim-values will equal those of 2-pile
Nim. So the 0-position with y = 0 is at (0, 0) and the g-position with y = 0 is at
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(0, g) for all g. Also, the 0-position with y = 1 is at (0, 1), and the g-position with
y = 1 is at (0, g + 1) for g even and (0, g − 1) for g odd.

For y = 2, we can compute that the 0-position is at (3, 2). The pattern for
the g-positions depends on the residue class mod 4 of the x-coordinate. If x ≡ 0
mod 4 or x ≡ 1 mod 4, then the nim-value of (x, 2) is x⊕ 2. If x ≡ 2 mod 4, then
the nim-value of (x, 2) is (x ⊕ y) + 1, and if x ≡ 3 mod 4, the the nim-value of
(x, 2) is (x ⊕ y) − 1. We prove inductively, showing that this holds in the interval
[4k, 4k+ 3] if it holds for [0, 4k− 1]. The proof proceeds by applying the definition
of a nim-value, which for a nonterminal position (a, b) is the minimum excluded
natural number of the set of positions reachable in one move from (a, b). The base
case can be computed. Suppose the formula holds for x ∈ [0, 4k − 1]. The nim-
values in [0, 4k− 1] can be reached because they occur in the row y = 2 for smaller
x by the induction hypothesis. At x = 4k, the nim-values 4k and 4k + 1 occur
lower in that column by the formula for g-positions at y = 0 and y = 1. By the
inductive hypothesis and the formulas for g-positions for y = 0 and y = 1, there
are no positions with nim-value 4k+2’s reachable in one move. Thus the minimum
excluded integer is 4k + 2. The proof of the rest of the formula uses the same idea
and thus is omitted. So we have the 0-position located at (3, 2) and a g-position
located at (g + 3, 2) exactly when g ≡ 0 mod 4.

Similarly, we can prove that for y = 3 and x ≥ 20, the following pattern holds
for g-positions, which depends on the residue class mod 4 of the x-coordinate. If
x ≡ 0 or x ≡ 1 mod 4, then the nim-value of (x, 3) is x−2. If x ≡ 2 or x ≡ 3 mod 4,
the nim-value of (x, 3) is x + 2. We compute the nim-values for x < 20 separately,
using the recursive definition of a nim-value. We find that the 0-position is at (2, 3)
and no g-position with g ≡ 0 mod 4 is at (g + 2, 3).

Lemma 7. Suppose (x, y) is a g-position with x < y, y = ⌊φn⌋ + 1 for some n.
Then x ≤ ⌊φ2n⌋+ 1.

Proof. The 0-position with y = ⌊φn⌋ + 1 is at (⌊φ2n⌋ + 1, ⌊φn⌋ + 1). The lemma
states that any g-position with the same y and larger x will be no further than g to
the right of the 0. We prove by considering the recursive definition of a nim-value,
noting that the location of a g-position in a given row will depend only on the
location of the l-positions for 0 ≤ l < g in that row and the g-positions in lower
rows.

Consider placing 0-positions row by row. The 0 in a given row will be at the
smallest x-coordinate such that there is not already a 0 with that x-coordinate or
on that diagonal for some smaller y. Next we similarly place g-positions row by
row, in order of increasing g, now avoiding not only rows and diagonals already
containing g-positions but also positions already filled with a 0, 1, . . . , or g − 1.
The first x-coordinate where it is possible to place a g will be largest if the rows
and diagonals already containing g are shifted g to the right of those containing
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0-positions. Otherwise, in some x-coordinate before that g to the right of the 0-
position it is possible to place a g. For the rows and diagonals containing g to be
shifted g to the right, the g in each row must be g to the right of the 0 in that row.
By Lemma 6 this can happen at most for the consecutive rows y = 0, y = 1 and
y = 2, and in these rows, we know the location of g-positions and none is more than
g to the right of 0. So there is no row in which a g is more than g to the right of
0.

Lemma 8. All g-positions above the line y = x are under the line y = φx + g.
Excluding the g-position with b = 0, all g-positions above the line y = x + g are to
the right of y = (g + 1)x.

Proof. First, we show that all 0-positions are under y = φx. From Theorem 7 in
[2], we have that the 0-positions of W1 and Tk for all k ≥ 0 form the set {(0, 0)} ∪
{(An+1, Bn+1)|n ≥ 0}. Let x = ⌊φn⌋+1. We have y = ⌊φ2n⌋+1 < φ⌊φn⌋+1 =
φ(x− 1) + 1 = φx + (1− x) < φx. Thus, all 0-positions are under the line y = φx,
so by Lemma 7, all g-positions above the line y = x are under the line y = φx+ g.

Next, we show that excluding the g-position with b = 0, all g-positions above the
line y = x + g are to the right of y = (g + 1)x. The intersection of y = x + g and
y = (g + 1)x is at x = 1. The intersection of φx+ g and (g + 1)x is at x = g

g+1−φ .
For g ≥ 2, we have g

g+1−φ < 2. So we only must show that at x = 1 the g is less
than or equal to g + 1. No diagonal moves are allowed up to this point, so the
nim-values will equal those of 2-pile Nim, which can be computed via the nim sum.
So the g is no higher than g+1 because y⊕ 1 ≤ y+1. This proves the lemma.

Theorem 8 (Conjectures 2 and 3 of [2]). Let k be a nonnegative integer. For every
integer g in the range 0 ≤ g ≤ k, the two games Tk and W1 = T∞ have the same
set of positions with nim-value g. In particular, if k and l are nonnegative integers,
for every integer g in the range 0 ≤ g ≤ min(k, l), the two games Tk and Tl have
the same set of positions with nim-value g.

Proof. We show that the g-positions for 0 ≤ g ≤ k are the same in the game Tk

as in W1. The games Tk and W1 all allow the same Nim moves, so the location
of the g-positions could differ only if there were positions containing 0, 1, . . . , g − 1
positions that were reachable via diagonal move in one game but not the other.
The location of the g-positions is bounded in a region described in Lemma 8. We
show that all positions in this region, which depends on g, can be reached via the
diagonal move in all games Tk where 0 ≤ g ≤ k. Thus the g-positions will be the

same for these games. For a ≤ b we consider the expression
∣∣∣⌊ b−s

a−s⌋ − ⌊ b
a⌋
∣∣∣, and for

a > b, we consider the expression
∣∣∣⌊a−s

b−s ⌋ − ⌊a
b ⌋
∣∣∣, so the location of g-positions is

symmetrical across the line y = x. Thus we discuss only the case where a ≤ b.
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Figure 2: Regions Used in Proof of Theorem 8 for g=2

We condition on a position’s location with respect to the line y = 2x, showing
that in each case, that position has unrestricted diagonal access to all relevant g-
positions. (See Figure 2 for a visualization of the regions.) A g-position with b = 0 is
not accessible via diagonal from any position in any game Tk or W1. Consider a po-

sition (a, a+ j), and the corresponding
∣∣∣⌊a+j−s

a−s ⌋ − ⌊a+j
a ⌋

∣∣∣ =
∣∣∣⌊1 + j

a−s⌋ − ⌊1 + j
a⌋
∣∣∣.

Since 1 ≤ ⌊1+ j
a−s⌋ ≤ j+1 and 1 ≤ ⌊1+ j

a⌋ ≤ j+1, we have
∣∣∣⌊a+j−s

a−s ⌋ − ⌊a+j
a ⌋

∣∣∣ ≤ j,

so movement along the y = x, y = x + 1, . . . , y = x + g diagonals for 0 ≤ g ≤ k
is unrestricted in the game Tk, so a g-position on or below the line y = x + g is
accessible to any position on its diagonal in those games. By Lemma 8, all that
remains is to show that for other diagonals, diagonal movement as far as the line
y = (g + 1)x is unrestricted.

First, we show that all positions to the right of y = 2x can reach to y = (g+1)x.
Let (a, a+ j) be a position on the diagonal y = x+ j to the right of y = 2x. Then

a+ j < 2a, so j < a. We have
∣∣∣⌊a+j−s

a−s ⌋ − ⌊a+j
a ⌋

∣∣∣ =
∣∣∣⌊ j

a−s⌋ − ⌊ j
a⌋
∣∣∣ = ⌊ j

a−s⌋. So, for
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a− s > 0, if a− s ≥ j
k , then ⌊ j

a−s⌋ ≤
j

a−s ≤ k, and a diagonal move from (a, a+ j)
to (a − s, a − s + j) is legal in Tk. So for all (a, a + j) to the right of y = 2x, it
is legal to move as far on the diagonal y = x + j as x = j

k . That is, it is legal to

move as far as the point ( jk ,
j
k + j) = ( jk ,

(k+1)j
k ), or the line y = (k + 1)x. So for

0 ≤ g ≤ k, a move is legal as far as to the line y = (g + 1)x.

Second, we show that all positions to the left of or on y = 2x (and the right
of y = (g + 1)x) can reach to y = (g + 1)x. Let (a, a + j) be a position on the
diagonal y = x + j on or to the left of y = 2x. Then a + j ≥ 2a, so j ≥ a.

We have
∣∣∣⌊a+j−s

a−s ⌋ − ⌊a+j
a ⌋

∣∣∣ =
∣∣∣⌊ j

a−s⌋ − ⌊ j
a⌋
∣∣∣ = ⌊ j

a−s⌋ − ⌊ j
a⌋. We seek to satisfy

⌊ j
a−s⌋ − ⌊ j

a⌋ ≤ k. Since ⌊ j
a⌋ ≥ 1, a stronger condition than the above is ⌊ j

a−s⌋ ≤
k + 1, and stronger than this is j

a−s ≤ k + 1. So, for a − s > 0, if a − s ≥ j
k+1 ,

then a diagonal move from (a, a + j) to (a − s, a − s + j) is legal in Tk. Thus for
all (a, a + j) to the left of or on y = 2x, it is legal to move as far on the diagonal
y = x+ j as x = j

k+1 , that is, to the point ( j
k+1 ,

(k+2)j
j ), or the line y = (k + 2)x.

This proves the theorem.

Acknowledgments This research was conducted as part of the 2015 Duluth REU
program and was supported by NSF grant 1358695, NSA grant H98230-13-1-0273,
and University of Minnesota Duluth. I would like to thank the participants, advisers
Levent Alpoge and Ben Gunby, program director Joe Gallian, and visitors Tim
Chow, Albert Gu, Adam Hesterberg, and Alex Lombardi of the Duluth REU for
many helpful discussions. I would also like to thank the anonymous referee and the
journal editor Bruce Landman for editing suggestions.

References

[1] U. Blass and A. Fraenkel. The Sprague-Grundy function for Wythoff’s game, Theoret. Comput.
Sci. 75 (1990), 311-333.

[2] A. Fraenkel and N.Ho. When are translations of P-positions in Wythoff’s game P-positions?,
Integers 15A (2015), #A4.

[3] W.A. Wythoff. A modification of the game of Nim,Nieuw Arch. Wiskd. 7(1907),199-202.


