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Abstract
This paper presents a study of chocolate bar games with a pass. Chocolate bar
games are variants of the game Nim in which the goal is to leave your opponent
with the single bitter part of the chocolate. The rectangular chocolate bar is a thinly
disguised form of Nim. In this work, we investigate step chocolate bars of which
the width is proportional to the distance from the bitter square. The mathematical
structure of these step chocolate bar games is very di↵erent from that of Nim. It is
well-known that, in classical Nim, the introduction of the pass alters the underlying
structure of the game, thereby increasing its complexity considerably; however,
in the chocolate bar games treat in this paper the pass move is found to have a
relatively minimal impact. Step chocolate bar games without a pass have simple
formulas for Grundy numbers. This is not so after the introduction of a pass move,
but they still have simple formulas for previous player’s positions. Therefore, the
authors address a longstanding open question in combinatorial game theory, namely,
the extent to which the introduction of a pass move into a game a↵ects its behavior.
The game we develop seems to be the first variant of Nim that is fully solvable when
a pass is not allowed, and remains yet stable following the introduction of a pass
move.

1. Introduction

This paper presents the results of our study in which we introduced a pass move
into chocolate bar games that are variants of the classical game Nim.

The original chocolate bar game, see [2], involved a rectangular bar of chocolate
with one bitter corner. Each player in turn breaks the bar in a straight line along
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the grooves and eats the piece without the bitter part. The player who breaks the
chocolate bar and eats to leave his opponent with the single bitter block (black
block) is the winner. Because the horizontal and vertical grooves are independent
from one another, the chocolate bar in Fig. 1.1 is equivalent to classical Nim with a
heap of three stones, a heap of three stones, and a heap of two stones. This means
there are three grooves to the left of the bitter square, three grooves above, and two
grooves to the right of the bitter square.

In this paper we consider step bars with other shapes as in Figures 1.2 through
1.4, where the gray blocks are sweet chocolate that can be eaten, and the black
block is the bitter square that cannot be eaten. In these cases, a vertical break can
reduce the number of horizontal breaks. We can still consider the game as being
played with heaps, but now a single move may change more than one heap. One
of the authors presented the previous results obtained for this research on these
chocolate games in [1], whereas the current paper presents the subsequent research
on chocolate games that include a pass. Since we study only step chocolate bars,
we omit ”step” in the following.

Example 1.1. Examples of chocolate bar games.

Figure 1.1. Figure 1.2.

Figure 1.3. Figure 1.4.

An interesting, but very di�cult, question in combinatorial game theory has been
to determine what happens when standard game rules are modified so as to allow
for a one-time pass, i.e., a pass move which may be used at most once in a game,
and not from a terminal position. Once the pass has been used by either player, it
is no longer available.

In the case of classical Nim, the introduction of the pass alters the mathematical
structure of the game, thereby increasing its complexity considerably. In compar-
ison, the pass move is found to have minimal impact on the chocolate bar games
created by the authors. Chocolate bar games without a pass are treated in [1] and
have simple formulas for Grundy numbers. Surprisingly, the P-positions remain
computable after the introduction of the pass move.

Combinatorial games with a pass have been studied by some mathematicians
(see [6] and [7]); however, the di�culties relating to the underlying structure of
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the game, and the theory of games with a pass have not yet been resolved. The
e↵ect of a pass on classical Nim remains an important open question that has
defied traditional approaches, and the late mathematician David Gale even o↵ered
a monetary prize to the first person to develop a solution for a three-pile classical
Nim with a pass.

Morrison, Friedman, and Landsberg studied two types of games in [4]: the three-
pile classical Nim and three-row Chomp (see [3]). The former is a simple combina-
torial game which has been fully solved (without the pass), whereas the latter (also
without the pass) is an unsolved complex combinatorial game. The introduction
of a pass has dramatically di↵erent e↵ects on these two games; i.e., in the former,
the pass radically changes the underlying structure and complexity of the game,
whereas in the latter, no such dramatic changes have been found.

In [5] (p. 370) Friedman and Landsberg present a conjecture ”Solvable combi-
natorial games are structurally unstable to perturbations, while generic, complex
games will be structurally stable.” One way in which to introduce such a pertur-
bation, would be to allow a pass. These authors consider the di↵erence in the
responses of classical Nim and Chomp to a pass to be related to the solvability of
the game and are of the opinion that the introduction of a pass move into solv-
able games tends to significantly modify their underlying mathematical structure,
whereas games without an analytical solution would be intrinsically more robust
and would therefore not be radically modified by the introduction of a pass.

The chocolate game in this paper is a counter-example to this conjecture, because
it has a very simple formula for a Grundy number (Corollary 3.1). Hence, the game
is fully solved, but contains a simple formula to determine the positions occupied
by the previous player when a pass is introduced (Corollary 4.1).

2. Chocolate Games

Throughout this paper, we denote by Z�0 the set of non-negative integers. For
completeness, we start this section with a quick review of the necessary game theory
concepts; see [8] or [9] for more details.

As chocolate bar games are impartial games without draws there will only be
two outcome classes.

Definition 2.1. (i) N -positions, from which the next player can force a win, as
long as he plays correctly at every stage.
(ii) P-positions, from which the previous player (the player who will play after the
next player) can force a win, as long as he plays correctly at every stage.

Definition 2.2. The disjunctive sum of two games, denoted by G + H, is a super-
game, where a player may move either in G or in H but not in both.
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Definition 2.3. For any position p, there exists a set of positions that can be
reached by making precisely one move from p, which we will denote by move(p).

Example 3.4 demonstrates the use of move.

Definition 2.4. (i) The minimum excluded value (mex) of a set, S, of non-negative
integers is the smallest non-negative integer which is not in S.
(ii) Each position p of an impartial game has an associated Grundy number, which
is denoted by G(p). The Grundy number is found recursively: G(p) = mex{G(h) :
h 2 move(p)}.

The power of the Sprague-Grundy theory for impartial games is contained in the
next result.

Theorem 2.1. Let G and H be impartial games, and let GG and GH be Grundy
numbers of G and H, respectively. Then, the following hold:
(i) For any position g of G we have GG(g) = 0 if and only if g is a P -position.
(ii) The Grundy number of a position {g,h} in the game G+H is GG(g)�GH(h).

For the proof of this theorem see [8].
Let x and y be non-negative integers, which we write in base 2 as x =

Pn
i=0 xi2i

and y =
Pn

i=0 yi2i with xi, yi 2 {0, 1}. We define the nim-sum x � y =
Pn

i=0 zi2i

where zi ⌘ xi + yi (mod 2).
This paper focuses on the study of chocolate bars which grow regularly in height,

as opposed to general bars, for which the strategies seem complicated.

3. Chocolate Game of Which the Coordinates {x, y, z} Satisfy the In-
equality y  b(z + s)/kc for a Fixed Natural Number s

In this section, we present some definitions and lemmas that we use in Section 4
and which have partially been published in [1]. In this section, we do not allow for
a one-time pass.

Definition 3.1. Fix a natural number k and a non-negative integer s. For non-
negative integers y and z such that y  b z+s

k c the chocolate bar will consist of z +1
columns where the 0th column is the bitter square and the height of the i-th column
is t(i) = min(y, b i+s

k c) + 1. We denote these by CB(s, k, y, z).

Throughout this paper, we assume that k is an even number.

Example 3.1. The following are examples of chocolate bar games CB(s, k, y, z), in
which the shape of the chocolate bar is determined by Definition 3.1. For example,
the height of the ith column of the chocolate bar CB(3, 4, 2, 11) in Figure 3.6 is
determined by t(i) = min(y, b i+3

4 c) + 1. By using {t(i) : i = 0, 1, 2, ..., 11} =
{1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3}, we can obtain the chocolate bar CB(3, 4, 2, 11).
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CB(0, 4, 3, 13)

Figure 3.1.

CB(2, 4, 3, 13)

Figure 3.2.

CB(2, 4, 3, 10)

Figure 3.3.

CB(3, 4, 3, 12)

Figure 3.4.

CB(0, 4, 2, 12)

Figure 3.5.

CB(3, 4, 2, 11)

Figure 3.6.

Throughout this paper, we have a disjunctive sum of a chocolate bar to the right
of the bitter square and a single strip of chocolate to the left, as in Figures 1.2, 1.3,
and 1.4. We denote the positions of Figures 1.2, 1.3, and 1.4 by {4}+CB(0, 2, 4, 9),
{4}+ CB(0, 4, 3, 13), and {4}+ CB(2, 4, 3, 13). When we use a fixed even number
k and a fixed natural number s, we denote such a position by {x, y, z}, where x is
the number of possible cuts in the strip, and y and z are the number of vertical
and horizontal cuts in the bar, respectively. Figures 3.7, 3.8, 3.9, 3.10, and 3.11 are
examples of coordinates of chocolates, when k = 2 and s = 0.

Example 3.2. Here, we have examples of the coordinates of the positions of choco-
lates.

{2, 2, 5}

Figure 3.7.

{2, 1, 3}

Figure 3.8.

{0, 2, 5}

Figure 3.9.

{2, 0, 5}

Figure 3.10.

{0, 1, 5}

Figure 3.11.

We define moves({x, y, z}) for each position {x, y, z} of which the coordinates
satisfy y  b(z + s)/kc. The set moves({x, y, z}) consists of positions that can be
reached directly from {x, y, z}.
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Definition 3.2. For x, y, z 2 Z�0, we let

M1 = {{u, y, z} : u < x}, (1)
M2 = {{x, v, z} : v < y}, (2)
M3 = {{x, y, w} : w < z and y  b(w + s)/kc}, (3)
and
M4 = {{x,min(y, b(w + s)/kc), w} : w < z}, (4)

where u, v, w 2 Z�0.
We define

moves({x, y, z}) = M1 [M2 [M3 [M4. (5)

Remark 3.1. Definition 3.2 is the same as Definition 3.1 in [1]. ( In the present
paper, we use moves instead of moveh used in [1].)

Example 3.3. Let k = 2, s = 0 and {x, y, z} = {2, 2, 5}. Then,

M1 = {{u, 2, 5} : u < 2} = {{1, 2, 5}, {0, 2, 5}}, (6)
M2 = {{2, v, 5} : v < 2} = {{2, 1, 5}, {2, 0, 5}}, (7)
M3 = {{2, 2, w} : w < 5 and 2  bw/2c} = {{2, 2, 4}} (8)
and
M4 = {{2,min(2, bw/2c), w} : w < 5}
= {{2, 1, 3}, {2, 1, 2}, {2, 0, 1}, {2, 0, 0}}, (9)

where u, v, w 2 Z�0. M1 and M2 are the sets of positions that we get by reducing
the first coordinate and the second coordinate respectively. M3 is the set of positions
that we get by reducing the third coordinate without reducing the second coordi-
nate, and M4 is the set of positions that we get by reducing the third coordinate and
the second coordinate at the same time. Since moves({2, 2, 5}) = M1[M2[M3[M4,
the set {{1, 2, 5}, {0, 2, 5}, {2, 1, 5}, {2, 0, 5}, {2, 2, 4}, {2, 1, 3}, {2, 1, 2}, {2, 0, 1},
{2, 0, 0}} consists of positions that can be reached directly from {2, 2, 5}.

Example 3.4. Let k = 2 and s = 0. We study the function moves({x, y, z})
by using the positions in Example 3.2 as examples. If we start from the posi-
tion {x, y, z} = {2, 2, 5} and reduce z = 5 to w = 3, then the y-coordinate (the
second coordinate) will be min(2, b3/2c) = min(2, 1) = 1. Therefore, we have
{2, 1, 3} 2 moves({2, 2, 5}). It is easy to see that {2, 0, 5} 2 moves({2, 2, 5}),
{0, 1, 5} 2 moves({0, 2, 5}) and {2, 0, 5} /2 moves({2, 1, 3}).

Definition 3.3. Let Ak,s = {{x, y, z} : x, y, z 2 Z�0, y  b(z + s)/kc and (x +
s) � y � (z + s) = 0} and Bk,s = {{x, y, z} : x, y, z 2 Z�0, y  b(z + s)/kc and
(x + s)� y � (z + s) 6= 0}.



7

Remark 3.2. Definition 3.3 is the same as Definition 3.2 in [1]. ( In the present
paper, we use Ak,s and Bk,s instead of Ah,s and Bh,s that are used in [1].)

Lemma 3.1. moves({x, y, z}) ⇢ Bk,s for any {x, y, z} 2 Ak,s.

Lemma 3.1 is Lemma 3.6 of [1]. (In the present paper, we use moves instead of
moveh used in [1].)

Lemma 3.2. We assume that a non-negative integer s satisfies the following two
conditions:
(i) s = k2t + m2t+1 for non-negative integers t,m such that m = 0, 1, 2, · · ·, k

2 � 1.
(ii) s = 1, 2, · · ·, k � 1.
Then, for each {x, y, z} 2 Bk,s, we have moves({x, y, z}) \Ak,s 6= �.

Proof. This lemma is the same as Lemma 3.7 in [1]. Note that we use s in the
present paper, whereas h is used in [1].

Theorem 3.1. The Grundy number of CB(s, k, y, z) is (y � (z + s))� s if a non-
negative integer s satisfies one of the following two conditions:
(i) s = k2t + m2t+1 for non-negative integers t,m such that m = 0, 1, 2, ..., k

2 � 1;
(ii) s = 1, 2, ..., k � 1.

Proof. This theorem is the same as Theorem 3.2 in [1]. Note that we use s in the
present paper, whereas h is used in [1].

When we have the disjunctive sum of the chocolate bar CB(s, k, y, z) to the
right of the bitter square and a single strip of chocolate to the left, and denote the
position of this sum of chocolate by coordinates {x, y, z}, we have Corollary 3.1.

Corollary 3.1. The Grundy number of position {x, y, z} is x� ((y � (z + s))� s)
if a non-negative integer s satisfies one of the following two conditions:
(i) s = k2t + m2t+1 for non-negative integers t,m such that m = 0, 1, 2, ..., k

2 � 1;
(ii) s = 1, 2, ..., k � 1.

Proof. This corollary follows directly from Theorem 3.1 and Theorem 2.1.

By Lemma 3.1 and Lemma 3.2, we obtain the following Lemma 3.3 and Lemma
3.4, respectively. Note that we use s such that s is odd and 0 < s < k. Hence, we
use condition (ii) of Lemma 3.2, but we do not use condition (i).

Lemma 3.3. Let s be an odd number such that 0 < s < k.

If (x + s)� y � (z + s) = 0 and y  b(z + s)/kc , (10)

then the following hold:
(i) (u + s)� y � (z + s) 6= 0 for any u 2 Z�0 such that u < x.
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(ii) (x + s)� v � (z + s) 6= 0 for any v 2 Z�0 such that v < y.
(iii) (x+s)�y�(w+s) 6= 0 for any w 2 Z�0 such that w < z and y  b(w + s)/kc.
(iv) (x + s) � v � (w + s) 6= 0 for any v, w 2 Z�0 such that v < y,w < z and
v = b(w + s)/kc.

Proof. By condition (10) and Definition 3.3, we have {x, y, z} 2 Ak,s. Hence,
Lemma 3.1 implies

moves({x, y, z}) ⇢ Bk,s. (11)

By Definition 3.2, {u, y, z} 2 moves({x, y, z}) for any u 2 Z�0 such that u < x.
Hence, condition (11) implies {u, y, z} 2 Bk,s, and we have (u+s)�y� (z +s) 6= 0.
Therefore, we have statement (i) of this lemma. Similarly, we have statements (ii)
and (iii) of this lemma. By Definition 3.2, {x, v, w} 2 moves({x, y, z}) for any
v, w 2 Z�0 such that v < y,w < z and v = b(w + s)/kc. Hence, condition (11)
implies {x, v, w} 2 Bk,s, and we have (x + s)� v� (w + s) 6= 0. Therefore, we have
statement (iv) of this lemma.

Lemma 3.4. Let s be an odd number such that 0 < s < k.

If (x + s)� y � (z + s) 6= 0 and y  b(z + s)/kc, (12)

then at least one of the following statements is true.
(i) (u + s)� y � (z + s) = 0 for some u 2 Z�0 such that u < x.
(ii) (x + s)� v � (z + s) = 0 for some v 2 Z�0 such that v < y.
(iii) (x+s)�y�(w+s) = 0 for some w 2 Z�0 such that w < z and y  b(w + s)/kc.
(iv) (x + s) � v � (w + s) = 0 for some v, w 2 Z�0 such that v < y,w < z and
v = b(w + s)/kc.

Proof. By condition (12) and Definition 3.3, we have {x, y, z} 2 Bk,s. By Lemma
3.2, we have moves({x, y, z}) \ Ak,s 6= �. By Definition 3.2 moves({x, y, z}) is a
union of four sets (1), (2), (3), and (4), and any element of moves({x, y, z})\Ak,s 6=
� belongs to one of these four sets. If an element of moves({x, y, z}) \ Ak,s 6= �
belongs to (1), that is, the first of these four sets, then we express this element
as {u, y, z} 2 moves({x, y, z}) \ Ak,s for some u 2 Z�0 such that u < x. Then,
(u + s)� y � (z + s) = 0, and we have statement (i) of this lemma.

If an element of moves({x, y, z}) \Ak,s 6= � belongs to (2) that is the second of
these four sets, then we express this element as {x, v, z} 2 moves({x, y, z}) \ Ak,s

for some v 2 Z�0 such that v < y. Then (x + s) � v � (z + s) = 0, and we have
statement (ii) of this lemma.

In this way, we have at least one of the statements (i), (ii), (iii), or (iv) of this
lemma.
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Lemma 3.5. Let s be an odd number such that 0 < s < k.

If y, z 2 Z�0 and y  b(z + s)/kc, (13)

then
y � (z + s) � s.

In particular, y � (z + s) = s if and only if y = z = 0.

Proof. We consider three cases.

Case (1) If y = 0, we have y� (z + s) = z + s � s. Then y� (z + s) = z + s = s if
and only if z = 0.

Case (2) Suppose that y = 1. Then

z + s � k > s. (14)

We consider Subcases (2.1) and (2.2).

Subcase (2.1) Suppose that z is odd. This means that z + s is even. Hence,
y � (z + s) = 1� (z + s) = z + s + 1 > s.

Subcase (2.2) Suppose that z is even. Then, the inequality in (14) implies z � 1.
Hence, z � 2. Since z +s is odd, y� (z +s) = 1� (z +s) = z +s�1 � 2+s�1 > s.

Case (3) Suppose that y � 2. Let k =
nP

i=0
ki2i and y =

mP
i=0

yi2i, where ki, yi 2

{0, 1}, n,m are natural numbers and kn = ym = 1. Because s < k and (z+s) � ky,
we have z + s � 2n+m, s < 2n+1, and y < 2m+1. Then, we have y � (z + s) �
2n+m > s.

Lemma 3.6. Let s be an odd number such that 0 < s < k. Suppose that x, z > 0,

(x + s)� y � (z + s) 6= 0, 1 (15)

and
y  b(z + s)/kc.

Then, at least one of the following statements is true.
(i) (u + s)� y � (z + s) = 1 for some u 2 Z�0 such that u < x.
(ii) (x + s)� v � (z + s) = 1 for some v 2 Z�0 such that v < y.
(iii) (x+s)�y�(w+s) = 1 for some w 2 Z�0 such that w < z and y  b(w + s)/kc.
(iv) (x + s) � v � (w + s) = 1 for some v, w 2 Z�0 such that v < y,w < z and
v = b(w + s)/kc.

Proof. The inequality in (15) implies

(x + s)� 1� y � (z + s) 6= 0. (16)
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We consider two cases.

Case (1) First, we suppose that

(x + s)� 1 < y � (z + s). (17)

We consider Subcase (1.1) and (1.2).

Subcase (1.1) Suppose that x is odd. As s is odd,

(x + s)� 1 = x + s + 1. (18)

By (17) and (18), we have

x + s + 1 < y � (z + s). (19)

Hence,
(x + s + 1)� y � (z + s) 6= 0. (20)

By the inequality in (19), there does not exist u 2 Z�0 such that

u < x + 1 and (u + s)� y � (z + s) = 0. (21)

Although we would like to apply Lemma 3.4 to the inequality in (20), condition
(21) implies that we cannot use statement (i) of Lemma 3.4. By statements (ii),
(iii), and (iv) of Lemma 3.4, we have the following Subsubcases (1.1.1),(1.1.2) and
(1.1.3).

Subsubcase (1.1.1) Suppose that (x + s + 1)� v � (z + s) = 0 for some v 2 Z�0

such that v < y. Then, Equation (18) implies (x+ s)�v� (z + s) = 1, and we have
statement (ii) of this lemma.

Subsubcase (1.1.2) Suppose that (x+s+1)�y�(w+s) = 0 for some w 2 Z�0 such
that w < z and y  b(w + s)/kc. Then, Equation (18) implies (x+s)�y�(w+s) =
1, and we have statement (iii) of this lemma.

Subsubcase (1.1.3) Suppose that (x + s + 1) � v � (w + s) = 0 for some v, w 2
Z�0 such that v < y,w < z and v = b(w + s)/kc. Then, Equation (18) implies
(x + s)� v � (w + s) = 1, and we have statement (iv) of this lemma.

Subcase (1.2) Suppose that x is even. Because s is odd, (x + s)� 1 = x + s� 1.
Then, the inequality in (17) implies

x + s� 1 < y � (z + s). (22)

Hence,
(x + s� 1)� y � (z + s) 6= 0. (23)
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By the inequality in (22), there does not exist u 2 Z�0 such that

u < x� 1 and (u + s)� y � (z + s) = 0. (24)

Although we would like to apply Lemma 3.4 to the inequality in (23), condition
(24) implies that we cannot use statement (i) of Lemma 3.4. By statements (ii),
(iii), and (iv) of Lemma 3.4 we prove statements (ii), (iii), and (iv) of this lemma
with a method that is very similar to the one used in (1.1).

Case (2) Next, we suppose that

(x + s)� 1 > y � (z + s). (25)

Because z > 0, Lemma 3.5 implies

y � (z + s) > s. (26)

We consider Subcases (2.1) and (2.2).

Subcase (2.1) If x is odd, we have (x + s)� 1 = x + s + 1. Hence, the inequality
in (25) implies x + s + 1 > y � (z + s). Therefore, by the inequality in (26) there
exists x0 2 Z�0 such that

0 < x0 < x + 1 (27)

and
(x0 + s)� y � (z + s) = 0. (28)

By condition (15), we have
x0 6= x. (29)

We consider Subsubcases (2.1.1) and (2.1.2).

Subsubcase (2.1.1) Suppose x0 is odd. As x is odd, the inequalities in (27) and
(29) imply

x0  x� 2. (30)

Because both x0 and s are odd, x0 + s = (x0 + s + 1)� 1. Then, by Equation (28),
we have ((x0+s+1)�1)�y� (z+s) = 0. Therefore, ((x0+1)+s)�y� (z+s) = 1.
The inequality in (30) implies x0 + 1 < x, and hence we have statement (i) of this
lemma.

Subsubcase (2.1.2) Suppose that x0 is even. As s is odd, x0+s = (x0+s�1)�1.
Therefore, Equation (28) implies

(x0 + s� 1)� 1� y � (z + s) = 0. (31)

By Equation (31) and the inequality in (27), we have ((x0�1)+ s)�y� (z + s) = 1
and 0  x0 � 1 < x. Hence, we have statement (i) of this lemma.
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Subcase (2.2) Suppose that x is even. As s is odd, we have (x+s)�1 = x+s�1.
Then, by the inequality in (25), we have x + s� 1 > y � (z + s). Therefore, by the
inequality in (26), there exists x0 2 Z�0 such that

0 < x0 < x� 1 (32)

and
(x0 + s)� y � (z + s) = 0. (33)

Subsubcase (2.2.1) Suppose that x0 is odd. As s is odd, x0 + s = (x0 + s+1)� 1.
Then, by Equation (33), we have ((x0 + s + 1) � 1) � y � (z + s) = 0; hence,
(x0 + s + 1) � y � (z + s) = 1. By the inequality in (32), we have 0 < x0 + 1 < x;
hence, we have statement (i) of this lemma.

Subsubcase (2.2.2) Suppose that x0 is even. As s is odd, x0+s = (x0+s�1)�1.
Therefore, by Equation (33), we have

(x0 + s� 1)� 1� y � (z + s) = 0. (34)

By the inequality in (32) and Equation (34) we have (x0 � 1 + s)� y � (z + s) = 1
and 0  x0 � 1 < x, and we have statement (i) of this lemma.

4. Chocolate Game with a Pass of Which the Coordinates {x, y, z} Sat-
isfy the Inequality y  b(z + s)/kc for a Fixed Natural Number s

Throughout the remainder of this paper, we modify the standard rules of chocolate
bar games so as to allow for a one-time pass, i.e., a pass move which may be used
at most once in a game, and not from a terminal position. Once the pass has been
used by either player, it is no longer available.

In this section, we denote the position of chocolate with four coordinates {x, y, z, p},
where x, y, z define the shape of the chocolate, and p = 1 if the pass is still available
and p = 0 if not.

4.1. The Number s Is Odd and 0 < s < k

Definition 4.1. (i) For a natural number s let P̃s,1 = {{x, y, z, p};x, y, z 2 Z�0, y 
b z+s

k c, (x+s)�y�(z+s) = 1 and p = 1} and P̃s,0 = {{x, y, z, p};x, y, z 2 Z�0, y 
b z+s

k c, (x+s)�y�(z+s) = 0 and p = 0}, and we let P̃ = P̃s,1[ P̃s,0[{{0, 0, 0, 1}}.
(ii) Let Ñ = {{x, y, z, p};x, y, z 2 Z�0, y  b z+s

k c and p = 0, 1} �P̃ .

Remark 4.1. By Definition 4.1, P̃ = {{x, y, z, p};x, y, z 2 Z�0, y  b z+s
k c, (x +

s)� y � (z + s)� p = 0 and p = 0, 1} [ {{0, 0, 0, 1}}.

By Remark 4.1 the definition of the set P̃ is simple.
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Lemma 4.1. Let s be an odd number such that 0 < s < k. Suppose that {x, y, z, p}
2 P̃ and {x, y, z} 6= {0, 0, 0}. Then, the following statements hold:
(i) {x0, y, z, p} /2 P̃ for any x0 2 Z�0 such that x0 < x.
(ii) {x, y0, z, p} /2 P̃ for any y0 2 Z�0 such that y0 < y.
(iii) {x, y, z0, p} /2 P̃ for any z0 2 Z�0 such that z0 < z.
(iv) {x, y0, z0, p} /2 P̃ for any y0, z0 2 Z�0 such that y0 < y, z0 < z and y0 =
b(z0 + s)/kc.
(v) {x, y, z, 0} /2 P̃ if p = 1.

Proof. If {x, y, z, p} 2 P̃ and {x, y, z} 6= {0, 0, 0}, then we have the following Case
(1) or Case (2).

Case (1) If {x, y, z, p} 2 P̃s,0, we have p = 0, (x + s) � y � (z + s) = 0 and
y  b z+s

k c. Then, statements (i), (ii), (iii), and (iv) of this lemma follow directly
from statements (i), (ii), (iii), and (iv) of Lemma 3.3.

Case (2) We suppose that {x, y, z, p} 2 P̃s,1. Then, p = 1, y  b z+s
k c and

(x + s)� y � (z + s) = 1. (35)

If one of the three coordinates of a position of a chocolate game is decreased, the
nim-sum of the three coordinates changes. Therefore, statements (i), (ii), and (iii)
of this lemma follow directly from this fact. Next, we prove statement (iv). By
Equation (35), we have

((x + s)� 1)� y � (z + s) = 0. (36)

By Lemma 3.5, we have y�(z+s) � s. Hence, (x+s)�1 � s. Then, (x+s)�1 = u+s
for some u 2 Z�0. Therefore, Equation (36) implies

(u + s)� y � (z + s) = 0. (37)

Then, we can apply Lemma 3.3 for Equation (37), and we have (u+s)�y0�(z0+s) 6=
0 for any y0, z0 2 Z�0 such that y0 < y, z0 < z and y0 = b(z0 + s)/kc. Then, we have
((x + s) � 1) � y0 � (z0 + s) 6= 0 for any y0, z0 2 Z�0 such that y0 < y, z0 < z and
y0 = b(z0 + s)/kc. Hence, (x + s)� y0 � (z0 + s) 6= 1. Therefore, we have statement
(iv) of this lemma. Equation (35) implies that {x, y, z, 0} /2 P̃s,1; hence, we have
statement (v) of this lemma.

Lemma 4.2. Let s be an odd number such that 0 < s < k. Suppose that {x, y, z, p}
/2 P̃ and y  b(z + s)/kc. Then one of the following statements (i), (ii), (iii), or
(iv) is true.
(i) {x0, y, z, p} 2 P̃ for some x0 2 Z�0 such that x0 < x.
(ii) {x, y0, z, p} 2 P̃ for some y0 2 Z�0 such that y0 < y.
(iii) {x, y, z0, p} 2 P̃ for some z0 2 Z�0 such that z0 < z.
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(iv) {x, y0, z0, p} 2 P̃ for some y0, z0 2 Z�0 such that y0 < y, z0 < z and y0 =
b(z0 + s)/kc.
(v) {x, y, z, 0} 2 P̃ if p = 1.

Proof. If {x, y, z, p} /2 P̃ , then we have the following Case (1), Case (2), and Case
(3).

Case (1) Suppose that (x + s)� y� (z + s) 6= 0, p = 0 and y  b(z + s)/kc. Then,
by statements (i), (ii), (iii), and (iv) of Lemma 3.4, one of the following subcases
(1.1), (1.2), (1.3), or (1.4) is true.

Subcase (1.1) (x0+s)�y� (z +s) = 0 for some x0 2 Z�0 such that x0 < x. Then,
{x0, y, z, p} 2 P̃s,0, and we have statement (i) of this lemma.

Subcase (1.2) (x+s)�y0� (z +s) = 0 for some y0 2 Z�0 such that y0 < y. Then,
{x, y0, z, p} 2 P̃s,0, and we have statement (ii) of this lemma.

Subcase (1.3) (x+s)�y� (z0 +s) = 0 for some z0 2 Z�0 such that z0 < z. Then,
{x, y, z0, p} 2 P̃s,0, and we have statement (iii) of this lemma.

Subcase (1.4) (x+s)�y0�(z0+s) = 0 for some y0, z0 2 Z�0 such that y0 < y, z0 < z
and y0 = b(z0 + s)/kc. Then, {x, y0, z0, p} 2 P̃s,0, and we have statement (iv) of this
lemma.

Case (2) Suppose that (x + s) � y � (z + s) 6= 0, 1, p = 1 and y  b(z + s)/kc.
Then we have the following subcases (2.1) and (2.2).

Subcase (2.1) Suppose that x, z > 0. Then, by statements (i), (ii), (iii), and (iv)
of Lemma 3.6, one of the following subsubcases (2.1.1), (2.1.2), (2.1.3), or (2.1.4) is
true.

Subsubcase (2.1.1) (x0 + s)� y� (z + s) = 1 for some x0 2 Z�0 such that x0 < x.
Then, {x0, y, z, p} 2 P̃s,1, and we have statement (i) of this lemma.

Subsubcase (2.1.2) (x+ s)� y0� (z + s) = 1 for some y0 2 Z�0 such that y0 < y.
Then, {x, y0, z, p} 2 P̃s,1, and we have statement (ii) of this lemma.

Subsubcase (2.1.3) (x + s)� y� (z0 + s) = 1 for some z0 2 Z�0 such that z0 < z.
Then, {x, y, z0, p} 2 P̃s,1, and we have statement (iii) of this lemma.

Subsubcase (2.1.4) (x + s) � y0 � (z0 + s) = 1 for some y0, z0 2 Z�0 such that
y0 < y, z0 < z and y0 = b(z0 + s)/kc. Then, {x, y0, z0, p} 2 P̃s,1; hence, we have
statement (iv) of this lemma.

Subcase (2.2) Suppose that x = 0 or z = 0. Then, we have the following subsub-
cases (2.2.1) and (2.2.2).

Subsubcase (2.2.1) Suppose that x = 0. Let z0 = 0. Then, y0 = bs/kc = 0, and
{x, y0, z0, 1} = {0, 0, 0, 1} 2 P̃ . We have statements (iii) or (iv) of this lemma. (We
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have statement (iii) when y = 0.)

Subsubcase (2.2.2) Suppose that z = 0. Then y = bs/kc = 0. Let x0 = 0. Then
{x0, y, z, 1} = {0, 0, 0, 1} 2 P̃ . We have statement (i) of this lemma.

Case (3) Suppose that (x + s)� y � (z + s) = 0, p = 1 and y  b(z + s)/kc. Let
p0 = 0. Then, {x, y, z, p0} 2 P̃s,0; hence, we have statement (v) of this lemma.

We define movepass({x, y, z, p}) for each position {x, y, z, p} of which the coor-
dinates satisfy y  b(z + s)/kc. The set movepass({x, y, z, p}) consists of positions
that can be reached directly from {x, y, z, p}.

Definition 4.2. Let s be an odd number such that 0 < s < k. For x, y, z 2 Z�0 and
p = 0, 1 we define movepass({x, y, z, p}) = {{u, y, z, p} : u < x}[ {{x, v, z, p} : v <
y} [{{x, y, w, p} : w < z and y  b(w + s)/kc} [{{x,min(y, b(w + s)/kc), w, p} :
w < z} [ {{x, y, z, q} : q < p}, where u, v, w, q 2 Z�0.

Note that {{x, y, z, q} : q < p} = � when p = 0.

Lemma 4.3. We have movepass({x, y, z, p}) ⇢ Ñ for any {x, y, z, p} 2 P̃ .

Lemma 4.3 follows directly from Lemma 4.1, Definition 4.2, and Definition 4.1.

Lemma 4.4. If {x, y, z, p} 2 Ñ we have movepass({x, y, z, p}) \ P̃ 6= �.

Lemma 4.4 follows directly from Lemma 4.2, Definition 4.2, and Definition 4.1.
For chocolate games with a pass of which the coordinates {x, y, z} satisfy the

inequality y  b(z + s)/kc, we have the following theorem for P-positions and
N -positions.

Theorem 4.1. Let P̃ and Ñ be the sets defined in Definition 4.1. Then, P̃ is the
set of P-positions, and Ñ is the set of N -positions.

Proof. If we start the game from a position {x, y, z, p} 2 P̃ , then Lemma 4.3 in-
dicates that any option we take leads to a position {x0, y0, z0, p0} 2 Ñ . From this
position {x0, y0, z0, p0}, Lemma 4.4 implies that our opponent can choose a proper
option that leads to a position in P̃ . Note that any option reduces some of the
numbers in the coordinates. In this way our opponent can always reach a position
in P̃ , and will finally win by reaching {0, 0, 0, 0} or {0, 0, 0, 1} 2 P̃ . Therefore, P̃
is the set of P-positions. If we start the game from a position {x, y, z, p} 2 Ñ ,
then Lemma 4.4 means that we can choose a proper option that leads to a position
{x0, y0, z0, p0} in P̃ . Lemma 4.3 indicates that any option from {x0, y0, z0, p0} taken
by our opponent leads to a position 2 Ñ . In this way, we win the game by reaching
{0, 0, 0, 0} or {0, 0, 0, 1}. Therefore, Ñ is the set of N -positions.

Corollary 4.1. A position {x, y, z, p} is a P-position if and only if {x, y, z, p} =
{0, 0, 0, 1} or x� y � z � p = 0.
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Proof. This corollary follows directly from Theorem 4.1, Definition 4.1, and Remark
4.1.

Remark 4.2. Corollary 4.1 provides a simple formula for the set of P-positions, but
the formulas for the Grundy numbers of these chocolates are yet to be discovered.

4.2. The Number s Is Even and 0 < s < k

In this subsection, we assume that s is even and 0 < s < k. When we do not allow
for a pass move, condition (ii) of Corollary 3.1 implies that chocolate games of which
the coordinates {x, y, z} satisfy the inequality y  b(z+s)/kc have a simple formula
for Grundy numbers. When we allow for a one-time pass, do these chocolate games
still have a simple formula for P-positions? We illustrate this question with the
following two examples. Example 4.1 presents a Mathematica program to find a list
of P-positions, and Example 4.2 presents a Combinatorial Game Suite (CGSuite)
program to find a list of P-positions. These examples show that there is no simple
formula for P-positions, and Conjecture 4.1 presents a slightly complicated formula
for P-positions.

Example 4.1. Here, let k = 4 and s = 2. In this example we consider a chocolate
game of which the coordinates {x, y, z} satisfy the inequality y  b(z + 2)/4c. We
select P-positions from a set of positions {{x, y, z, p} : x, y, z 2 Z�0, y  b(z +
2)/4c, 0  x, y, z  20 and p = 0, 1} by using the following Mathematica program.

k = 4; ss = 20; s = 2; al =
Flatten[Table[{a, b, c, d}, {a, 0, ss}, {b, 0, ss}, {c, 0, ss}, {d,
0, 1}], 3];
allcases = Select[al, Floor[(#[[3]] + s)/k] >= #[[2]] &];
move[z_] := Block[{p}, p = z; If[p[[1]] + p[[2]] + p[[3]] > 0,
Union[Table[{t1, p[[2]], p[[3]], p[[4]]}, {t1, 0, p[[1]] - 1}],
Table[{p[[1]], t2, p[[3]], p[[4]]}, {t2, 0, p[[2]] - 1}],
Table[{p[[1]], Min[Floor[(t3 + s)/k], p[[2]]], t3, p[[4]]}, {t3,
0, p[[3]] - 1}],
Table[{p[[1]], p[[2]], p[[3]], t4}, {t4, 0, p[[4]] - 1}]],
Union[Table[{t1, p[[2]], p[[3]], p[[4]]}, {t1, 0, p[[1]] - 1}],
Table[{p[[1]], t2, p[[3]], p[[4]]}, {t2, 0, p[[2]] - 1}],
Table[{p[[1]], Min[Floor[(t3 + s)/k], p[[2]]], t3, p[[4]]}, {t3,
0, p[[3]] - 1}]]]];
Mex[L_] := Min[Complement[Range[0, Length[L]], L]];
Gr[pos_] := Gr[pos] = Mex[Map[Gr, move[pos]]];
pposition = Select[allcases, Gr[#] == 0 &];
d2 = Map[Reverse, Sort[Map[Reverse, pposition]]]

This produces the following output, which is a list of P-positions.
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{{0,0,0,0},{1,0,1,0},{2,0,2,0},{3,1,2,0},{3,0,3,0},{2,1,3,0},
{4,0,4,0},{5,1,4,0},{5,0,5,0},{4,1,5,0},{6,0,6,0},{7,1,6,0},
{8,2,6,0},{7,0,7,0},{6,1,7,0},{9,2,7,0},{8,0,8,0},{9,1,8,0},
{6,2,8,0},{9,0,9,0},{8,1,9,0},{7,2,9,0},{10,0,10,0},{11,1,10,0},
{12,2,10,0},{13,3,10,0},{11,0,11,0},{10,1,11,0},{13,2,11,0},
{12,3,11,0},{12,0,12,0},{13,1,12,0},{10,2,12,0},{11,3,12,0},
{13,0,13,0},{12,1,13,0},{11,2,13,0},{10,3,13,0},{14,0,14,0},
{15,1,14,0},{16,2,14,0},{17,3,14,0},{18,4,14,0},{15,0,15,0},
{14,1,15,0},{17,2,15,0},{16,3,15,0},{19,4,15,0},{16,0,16,0},
{17,1,16,0},{14,2,16,0},{15,3,16,0},{20,4,16,0},{17,0,17,0},
{16,1,17,0},{15,2,17,0},{14,3,17,0},{18,0,18,0},{19,1,18,0},
{20,2,18,0},{14,4,18,0},{15,5,18,0},{19,0,19,0},{18,1,19,0},
{20,3,19,0},{15,4,19,0},{14,5,19,0},{20,0,20,0},{18,2,20,0},
{19,3,20,0},{16,4,20,0},{17,5,20,0},{0,0,0,1},{2,0,1,1},{1,0,2,1},
{4,1,2,1},{4,0,3,1},{1,1,3,1},{3,0,4,1},{6,1,4,1},{6,0,5,1},
{3,1,5,1},{5,0,6,1},{8,1,6,1},{7,2,6,1},{8,0,7,1},{5,1,7,1},
{10,2,7,1},{7,0,8,1},{10,1,8,1},{5,2,8,1},{10,0,9,1},{7,1,9,1},
{8,2,9,1},{9,0,10,1},{12,1,10,1},{11,2,10,1},{14,3,10,1},
{12,0,11,1},{9,1,11,1},{14,2,11,1},{11,3,11,1},{11,0,12,1},
{14,1,12,1},{9,2,12,1},{12,3,12,1},{14,0,13,1},{11,1,13,1},
{12,2,13,1},{9,3,13,1},{13,0,14,1},{16,1,14,1},{15,2,14,1},
{18,3,14,1},{17,4,14,1},{16,0,15,1},{13,1,15,1},{18,2,15,1},
{15,3,15,1},{20,4,15,1},{15,0,16,1},{18,1,16,1},{13,2,16,1},
{16,3,16,1},{19,4,16,1},{18,0,17,1},{15,1,17,1},{16,2,17,1},
{13,3,17,1},{17,0,18,1},{20,1,18,1},{19,2,18,1},{13,4,18,1},
{16,5,18,1},{20,0,19,1},{17,1,19,1},{19,3,19,1},{16,4,19,1},
{13,5,19,1},{19,0,20,1},{17,2,20,1},{20,3,20,1},{15,4,20,1},
{18,5,20,1}}

Then, we calculate (x + 2)� y � (z + 2)� p for each {x, y, z, p} of the above list.

dd = Map[BitXor[#[[1]] + s, #[[2]], #[[3]] + s, #[[4]]] &, d2]

This produces the following list.

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,6,6,2,2,6,2,14,14,2,14,2,2,2,14,6,2,6,14,
6,2,2,6,2,2,30,2,6,30,2,2,30,6,2,30,2,2,6,30,2,2,6,6,2,30,6,2,
2,2,6,30,2,2,6,2,2,30,6,2,2,30,2,2,6,2,2,30,2,6,2,2,6}

The only numbers in the list are 0, 1, 2, 6, 14, and 30.

Example 4.2. In this example, we study a chocolate game of which the coordinates
{x, y, z} satisfy the inequality y  b(z+2)/4c. In Example 4.1 we used Mathematica,
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and in this example we use CGSuite ( CGSuite version1.1 ) to perform the same
calculation. First, we open the following file by CGSuite.

class GrundyWithAPass extends ImpartialGame

var x,y,z,p,k,s;

method GrundyWithAPass(x,y,z,p,k,s)
end

override method Options(Player player)
result := [];

// x
for x1 from 0 to x-1 do
result.Add(GrundyWithAPass(x1,y,z,p,k,s));
end

// y
if y<=((z+s)/k).Floor then
for y1 from 0 to y-1 do
result.Add(GrundyWithAPass(x,y1,z,p,k,s));
end
else
for y1 from 0 to ((z+s)/k).Floor-1 do
result.Add(GrundyWithAPass(x,y1,z,p,k,s));
end
end

// z
for z1 from 0 to z-1 do
if y<=((z1+s)/k).Floor then
result.Add(GrundyWithAPass(x,y,z1,p,k,s));
else
result.Add(GrundyWithAPass(x,((z1+s)/k).Floor,z1,p,k,s));
end
end

// pass
if x!=0 or y!=0 or z!=0 and p==1 then
result.Add(GrundyWithAPass(x,y,z,0,k,s));
end

result.Remove(this);

if x==0 and y==0 and z==0 then
return {};
else
return result;
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end
end

override property ToString.get
return "GrundyWithAPass(" + x.ToString + "," +
y.ToString + "," +z.ToString + "," + p.ToString +
"," + k.ToString + "," + s.ToString + ")";

end

end

Second, we type in the following command.

k:=4;
s:=2;
x:=20;
z:=20;
for p from 0 to 1 do
for z1 from 0 to z do
for y1 from 0 to ((z+s)/k).Floor do
for x1 from 0 to x do
if examples.GrundyWithAPass(x1,y1,z1,p1,k,s).CanonicalForm==0 then
Worksheet.Print(*(x1+s)+*y1+*(z1+s)+*p1);
end
end
end
end
end

In this way we obtain the following Table 4.1.
The list in Table 4.1 contains only the numbers 0, 1, 2, 6, 14, and 30. Note that

we denote 1 by ⇤ here.

By Examples 4.1 and 4.2, we o↵er the following Conjecture 4.1.

Conjecture 4.1. Let s be even and 0 < s < k. Then the set {(x+s)�y�(z+s)�p :
{x, y, z, p} is a P-position} consists of the numbers 0, 1, 2, 6, 14, 30, ..., 2n � 2, ....

4.3. The Number s = k2t + m2t+1 for Non-Negative Integers t,m Such
That m = 0, 1, 2, ..., k

2
� 1

In this subsection, we assume that s = k2t + m2t+1 for non-negative integers t,m
such that m = 0, 1, 2, ..., k

2 �1. When we do not allow for a pass move, Corollary 3.1
implies that chocolate games of which the coordinates {x, y, z} satisfy the inequality
y  b(z+s)/kc have a simple formula for Grundy numbers. When we allow for a one-
time pass, do these chocolate games still have a simple formula for P-positions? We
illustrate this question by using the following two examples. Example 4.3 presents a
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Table 4.1: Data by Combinatorial Game Suite

calculation by the computer algebra system Mathematica, and Example 4.4 presents
a calculation by CGSuite.

Example 4.3. Here, let k = 4 and s = 6. In this example, we study a chocolate
game of which the coordinates {x, y, z} satisfy the inequality y  b(z + 6)/4c.
We select P-positions from a set of positions {{x, y, z, p} : x, y, z 2 Z�0 and 0 
x, y, z  40} by the following Mathematica program.

k = 4; ss = 40; s = 6; al =
Flatten[Table[{a, b, c, d}, {a, 0, ss}, {b, 0, ss}, {c, 0, ss}, {d,
0, 1}], 3];
allcases = Select[al, Floor[(#[[3]] + s)/k] >= #[[2]] &];
move[z_] := Block[{p}, p = z; If[p[[1]] + p[[2]] + p[[3]] > 0,
Union[Table[{t1, p[[2]], p[[3]], p[[4]]}, {t1, 0, p[[1]] - 1}],
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Table[{p[[1]], t2, p[[3]], p[[4]]}, {t2, 0, p[[2]] - 1}],
Table[{p[[1]], Min[Floor[(t3 + s)/k], p[[2]]], t3, p[[4]]}, {t3,
0, p[[3]] - 1}],
Table[{p[[1]], p[[2]], p[[3]], t4}, {t4, 0, p[[4]] - 1}]],
Union[Table[{t1, p[[2]], p[[3]], p[[4]]}, {t1, 0, p[[1]] - 1}],
Table[{p[[1]], t2, p[[3]], p[[4]]}, {t2, 0, p[[2]] - 1}],
Table[{p[[1]], Min[Floor[(t3 + s)/k], p[[2]]], t3, p[[4]]}, {t3,
0, p[[3]] - 1}]]]];
Mex[L_] := Min[Complement[Range[0, Length[L]], L]];
Gr[pos_] := Gr[pos] = Mex[Map[Gr, move[pos]]];
pposition = Select[allcases, Gr[#] == 0 &];
d2 = Map[Reverse, Sort[Map[Reverse, pposition]]];

This produces the list ”d2” which is a list of P-positions. Next, we calculate (x +
2)� y � (z + 2)� p for each {x, y, z, p} element in the list d2.

dd = Map[BitXor[#[[1]] + s, #[[2]], #[[3]] + s, #[[4]]] &, d2]

In this way we obtain the following list.

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,14,14,0,14,14,2,2,0,12,2,0,2,6,0,2,6,0,2,0,2,0,2,0,
2,0,2,0,30,0,2,0,30,0,2,0,6,2,0,2,0,0,2,0,2,0,2,6,0,2,0,6,6,0,
2,0,0,2,2,0,2,0,2,0,2,0,2,0,11,11,14,0,2,0,11,9,14,0,2,0,11,7,
3,2,0,2,0,11,11,3,2,0,2,0,3,9,11,6,0,2,0,3,7,11,6,0,2,0,3,7,3,
58,2,0,2,0,3,57,59,3,2,0,2,0,59,59,2,58,62,0,2,0,59,7,58,2,62,
0,2,0,59,57,4,2,12,2,0,2,0,59,59,2,2,14,2,0,2,0,3,3,59,59,12,6,
0,2,0,3,0,59,59,2,6,0,2,0,3,8,3,3,51,51,2,0,2,0,3,3,10,10,51,
51,2,0,2,0,11,11,11,3,14,5,14,0,2,0,11,0,11,11,10,14,14,0,2,0,
11,8,10,5,2,12,14,2,0,2,0,11,11,2,2,14,2,6,2,0,2,0,3,3,11,11,6,
2,6,0,2,0,3,11,11,13,6,0,2,0,3,2,2,2,0,2,3,3,13,2,0,0,13,15}

This list contains the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 30, 51, 57,
58, 59, 62.... It seems that the amount of data presented above is insu�cient to
obtain a conjecture.
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Example 4.4. Here, let k = 4 and s = 6. In this example we study a chocolate
game of which the coordinates {x, y, z} satisfy the inequality y  b(z + 6)/4c. We
can obtain the same result by using the following CGSuite code.

k:=4;
s:=6;
x:=40;
z:=40;
for p1 from 0 to 1 do
for z1 from 0 to z do
for y1 from 0 to ((z+s)/k).Floor do
for x1 from 0 to x do
if examples.GrundyWithAPass(x1,y1,z1,p1,k,s).CanonicalForm==0 then
Worksheet.Print(*(x1+s)+*y1+*(z1+s)+*p1);
end
end
end
end
end

Example 4.5. Moreover, we can almost obtain the same result by using the fol-
lowing C++ code.

#include <iostream>
#include <cmath>
#include <bitset>
using namespace std;

// prototype
int grundyCalcSub(int xx,int yy,int zz,int pp);
int G[1000][1000][1000][2];
int sortresult[1000];
// max coordinate value
int z=80;
int x=80;
int p=1;
// y<=floor((z+s)/divk)
int divk=4;
int s=6;

// main
int main(int argc, const char * argv[]) {
// initialize
for(int l=0;l<=p;l++){
for(int k=0;k<=z;k++){
for(int j=0;j<=(int)floor(double((k+s)/divk));j++){
for(int i=0;i<=x;i++){
G[i][j][k][l]=99999;
}}}}
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for(int i=0;i<=1000;i++) sortresult[i] = 99999;
G[0][0][0][0]=0;
G[0][0][0][1]=0;

// calculation
for(int l=0;l<=p;l++){
for(int k=0;k<=z;k++){
for(int j=0;j<=(int)floor(double((k+s)/divk));j++){
for(int i=0;i<=x;i++){
if(grundyCalcSub(i,j,k,l)==0){
cout<<((i+s)^j^(k+s)^p)<< ",";
if(sortresult[((i+s)^j^(k+s)^p)]==99999) sortresult[((i+s)^j^(k+s)^p)]=1;
}}}}}

// sort output
for(int i=0;i<=1000;i++){
if(sortresult[i]==1){
cout<<i<<",";
}}
return 0;
}

// Grundy Number Calculation
int grundyCalcSub(int xx,int yy,int zz,int pp){
int gFlag[xx+yy+zz+pp+1];
// initialize
for(int i=0;i<xx+yy+zz+pp+1;i++) gFlag[i] = 0;
if(xx==0&&yy==0&&zz==0) return 0;

// x
for(int i=0;i<xx;i++){
if(G[i][yy][zz][pp]==99999){
gFlag[grundyCalcSub(i,yy,zz,pp)]=1;
}else if(G[i][yy][zz][pp]!=99999){
gFlag[G[i][yy][zz][pp]]=1;
}}

// y
if(yy<=(int)floor(double((zz+s)/divk))){
for(int j=0;j<yy;j++){
if(G[xx][j][zz][pp]==99999){
gFlag[grundyCalcSub(xx,j,zz,pp)]=1;
}else if(G[xx][j][zz][pp]!=99999){
gFlag[G[xx][j][zz][pp]]=1;
}}}else{
for(int j=0;j<(int)floor(double((zz+s)/divk));j++){
if(G[xx][j][zz][pp]==99999){
gFlag[grundyCalcSub(xx,j,zz,pp)]=1;
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}else if(G[xx][j][zz][pp]!=99999){
gFlag[G[xx][j][zz][pp]]=1;
}}}

// z
for(int k=0;k<zz;k++){
if(yy<=(int)floor(double((k+s)/divk))){
if(G[xx][yy][k][pp]==99999){
gFlag[grundyCalcSub(xx,yy,k,pp)]=1;
}else if(G[xx][yy][k][pp]!=99999){
gFlag[G[xx][yy][k][pp]]=1;
}}else{
if(G[xx][(int)floor(double((k+s)/divk))][k][pp]==99999){
gFlag[grundyCalcSub(xx,(int)floor(double((k+s)/divk)),k,pp)]=1;
}else if(G[xx][(int)floor(double((k+s)/divk))][k][pp]!=99999){
gFlag[G[xx][(int)floor(double((k+s)/divk))][k][pp]]=1;
}}}

// pass
if((xx!=0||yy!=0||zz!=0)&&pp==1){
if(G[xx][yy][zz][0]==99999){
gFlag[grundyCalcSub(xx,yy,zz,0)]=1;
}else if(G[xx][yy][zz][0]!=99999){
gFlag[G[xx][yy][zz][0]]=1;
}}

// mex
for(int l=0;l<=xx+yy+zz+pp+1;l++){
if(gFlag[l]==0){
G[xx][yy][zz][pp]=l;
break;
}}

return G[xx][yy][zz][pp];
}

This produces the following list.

{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
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1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,14,14,0,14,14,2,2,0,12,2,0,2,6,0,2,6,0,2,0,2,0,2,0,2,0,2,0,30,0,2,0,30,
0,2,0,6,2,0,2,0,0,2,0,2,0,2,6,0,2,0,6,6,0,2,0,0,2,2,0,2,0,2,0,2,0,2,0,11,
11,14,0,2,0,11,9,14,0,2,0,11,7,3,2,0,2,0,11,11,3,2,0,2,0,3,9,11,6,0,2,0,3,
7,11,6,0,2,0,3,7,3,58,2,0,2,0,3,57,59,3,2,0,2,0,59,59,2,58,62,0,2,0,59,7,
58,2,62,0,2,0,59,57,4,2,12,2,0,2,0,59,59,2,2,14,2,0,2,0,3,3,59,59,12,6,0,2,
0,3,0,59,59,2,6,0,2,0,3,8,3,3,51,51,2,0,2,0,3,3,10,10,51,51,2,0,2,0,11,11,
11,3,14,5,14,0,2,0,11,0,11,11,10,14,14,0,2,0,11,8,10,5,2,12,14,2,0,2,0,11,
11,2,2,14,2,6,2,0,2,0,3,3,11,11,12,6,2,6,0,2,0,3,0,11,11,18,13,17,6,0,2,0,
3,24,2,2,20,11,21,21,2,0,2,0,3,3,26,26,13,23,21,19,2,0,2,0,27,27,27,27,13,
15,17,17,30,0,2,0,27,0,27,5,20,13,13,19,30,0,2,0,27,24,26,2,18,11,17,19,10,
2,0,2,0,27,27,2,2,20,20,12,17,21,2,0,2,0,3,3,27,27,22,12,21,15,21,6,0,2,0,
3,0,27,27,12,11,0,21,7,6,0,2,0,3,8,2,2,10,5,17,17,21,2,2,0,2,0,3,3,10,10,
6,12,17,17,8,21,2,0,2,0,11,11,11,2,12,5,13,0,21,21,14,0,2,0,11,0,11,11,10,
3,2,13,21,21,14,0,2,0,11,8,10,5,13,13,12,0,11,4,119,2,0,2,0,11,11,2,2,5,5,
114,13,6,10,6,2,0,2,0,3,3,11,11,13,7,112,15,119,4,119,6,0,2,0,3,0,11,11,10,
13,5,113,119,117,6,6,0,2,0,3,120,2,2,10,3,117,119,114,116,118,116,2,0,2,0,
3,3,122,122,13,13,117,117,116,116,116,116,2,0,2,0,123,123,123,123,12,12,2,
12,118,116,117,120,126,0,2,0,123,0,123,5,116,115,13,15,10,116,120,116,126,
0,2,0,123,120,122,2,10,13,113,115,118,116,8,7,27,2,0,2,0,123,123,2,2,117,
15,113,12,118,113,118,5,25,2,0,2,0,3,3,123,123,13,13,117,115,114,6,4,116,
24,6,0,2,0,3,0,123,123,10,3,117,15,114,116,6,6,106,6,0,2,0,3,8,2,2,10,115,
6,115,3,118,112,118,25,25,2,0,2,0,3,3,10,10,13,13,4,4,119,116,118,112,106,
25,2,0,2,0,11,11,11,2,4,15,0,15,7,10,116,118,108,106,14,0,2,0,11,0,11,11,
10,13,0,0,4,10,118,116,106,108,14,0,2,0,11,8,10,5,13,3,13,13,7,9,120,7,100,
102,11,2,0,2,0,11,11,2,2,5,15,6,19,11,6,7,120,9,100,100,2,0,2,0,3,3,11,11,
13,13,4,4,23,23,6,22,100,27,100,6,0,2,0,3,0,11,11,10,19,17,4,20,9,23,6,27,
100,28,6,0,2,0,3,24,2,2,10,21,0,20,7,19,23,6,30,9,96,31,2,0,2,0,3,3,26,26,
13,23,0,15,7,21,23,16,24,30,31,96,2,0,2,0,27,27,27,27,13,15,13,16,8,23,23,
26,30,30,0,2,0,27,0,27,5,20,13,16,12,10,21,20,30,30,0,2,0,27,24,26,2,10,19,
14,16,20,8,2,0,2,0,27,27,2,2,21,21,17,13,20,2,0,2,0,3,3,27,27,13,23,20,20,
22,6,0,2,0,3,27,27,10,13,19,20,16,6,0,2,0,3,2,2,16,16,20,22,2,0,2,3,3,13,
14,22,20,23,9,2,0,0,2,13,13,10,22,21,9}

The above list contains the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 51, 57, 58, 59, 62, 96, 100, 102,



26

106, 108, 112, 113, 114, 115, 116,117, 118, 119, 120, 122, 123, 126.

Examples 4.3 and 4.5 seem to show that the set {(x + s) � y � (z + s) � p :
{x, y, z, p} is a P-position} contains all the non-negative integers. Therefore, we
obtain the following conjecture.

Conjecture 4.2. Let s = k2t + m2t+1 for non-negative integers t,m such that
m = 0, 1, 2, ..., k

2�1. Then the set {(x+s)�y�(z+s)�p : {x, y, z, p} is a P-position}
contains all the natural numbers.
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