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COINITIAL FAMILIES OF PERFECT SETS

M. BALCERZAK AND A. ROSLANOWSKI

Abstract. Let Perf(X) denote the family of all perfect subsets of a per-
fect Polish space X. We show several properties and characterizations of
coinitial subfamilies of Perf(X). Connections with the Vietoris topology
and Morgan’s category bases are observed. We characterize the least car-
dinality of a family of coinitial ideals with noncoinitial intersection. Some
examples of special noncoinitial families in Perf(X) are presented. Much
place is devoted to perfect isomorphisms between ideals of subsets of X.

1. Introduction. Hereditary and finitely additive families of small sets
(i.e. ideals) appear frequently in real analysis, measure theory, topology
and combinatorics (cf. [31], [12], [21], [26], [28], [32], [14]). It often happens
that those families considered in metric spaces contain many perfect sets.
(We mean a perfect set as nonempty, closed and dense—in—itself.) Below we
describe that situation more explicitly.

Through the paper, X is a fixed perfect Polish space. For any set F, let
Pow(FE) denote the power set of E. If £ C X then Perf(F) stands for the
family of all perfect subsets of E. Consider the partial ordering on Perf(X)
given by P < Q iff P C (). In the case when X is the set of reals, that
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ordering is known to produce the Sacks forcing (cf. [18, p.284]). We are
interested in subfamilies F of Perf(X) which are coinitial with respect to
<, i.e.

(VP € Perf(X))(3Q € F)(Q < P).

In particular, we consider F to be hereditary or to form an ideal or a o—
ideal in Perf(X) (the respective definitions are given in Section 2). Note that
coinitial hereditary families of perfect sets were considered by Marczewski
in [38]. He showed some applications to sets with the Baire property in the
restricted sense and observed connections with (sg)-sets and (s)-sets. In-
dependently of Marczewski’s investigations, systematic studies of a related
property (P) of ideals Z in Pow(X) are initiated in [1] and [2]. Namely,
(P) states that for each perfect set P C X there exists a perfect set Q C P
such that @ € Z. Obviously (P) holds true iff Z N Perf(X) is coinitial in
Perf(X). Also in [1] and [2], some applications of property (P), based on
the Sierpiriski-Erdos theorem [31, Th.19.5] and dealing with isomorphisms
between ideals, are shown. In [3], property (P) of an ideal Z turned out
useful to show that the o—ideal of Marczewski (sg)—sets is not contained
in Z. Further applications to isomorphism problems are found in [4], and
connections with residual families in the hyperspace of perfect sets are ob-
served in [6]. Here we develop some of those ideas and give a survey of
known facts. The old results of Marczewski from [38] turn out very useful.
We recall some of them with proofs to sake the completeness (note that [38]
is written in French). To get a better description, we restrict our consider-
ations to perfect sets. Thus, we would rather investigate ideals in Perf(X)
than in Pow(X).

In Section 3 we recall the result of Marczewski stating that the intersec-
tion of a sequence of coinitial weak ideals is again a coinitial weak ideal.
Then we discuss problems concerning intersections of a greater number of
coinitial ideals. Here we use some special cardinals. Next, we obtain topo-
logical characterizations of certain coinitial families (Section 4). Oune of
them is applied to produce residual sets in the space Perf(X) endowed with
the relative Vietoris topology when X is metric and compact (Section 5).
We find connections between coinitial families of perfect sets and Morgan’s
perfect category bases (Section 6). The paper contains several examples
of various coinitial families of perfect sets. We also consider some special
invariant noncoinitial families in Perf(X) provided that X forms a metric
group (Section 7). In the last section we study the notion of a perfect iso-
morphism between o—ideals in Pow(X). We compare it with other kinds of
isomorphisms. Finally, some consistency problems are posed.
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2. Ideals of perfect sets. First, let us state some elementary properties
of coinitial families in Perf(X). Since there are continuum mamy disjoint
perfect sets in X, each coinitial family is of size ¢ (the cardinality of con-
tinuum). Now, we will show that a coinitial family F C Perf(X) need not
satisfy [JF = X. Recall that A C X is an (sg)-set if, for each P € Perf(X),
there is a Q € Perf(P) such that Q@ N A = ) [38]. There exists an (sg) set
of size ¢ [26] but no (sp)-set contains a perfect set.

The ball in X with centre x and radius r will be written as B(z, ), and
the closure of £ C X — as cl(L).

Theorem 2.1. A set £ C X satisfies X \ E = JF for a coinitial family
F in Perf(X) if and only if E is an (sg)-set.

Proof. “=" Let P € Perf(X). Since F is coinitial, there exists a Q €
F N Perf(P). Since UF = X \ E, we have Q N E = (). Hence FE is an
(so)—set.

“<” Let E be an (sg)-set. We will show that F = Perf(X \ E) satisfies
the assertion. Obviously JF C X \ E. To prove the converse, consider
any x € X \ E. Since X is perfect, we can extract a perfect part P, of
clB(z,1/(n + 1)) for each n € w. Since E is an (sg)-set, for each n € w
there is a Q,, € Perf(P,) such that @, N E = (. Then Q = {z}U U Q, is

new

perfect and z € Q@ C X \ E. Thus X \ £ C JF. It remains to show that F
is coinitial. Let D € Perf(X). Since E is an (sg)-set, there is a P € Perf(D)
such that PN E = (. Then P € F as desired. O

Sometimes it is natural to assume that a coinitial family F satisfies | F =
X. For instance, it holds true if X forms a group and F is invariant.

The notion of an ideal of sets is usually associated with a fixed algebra of
sets. Here we consider it in connection with the family Perf(X) which does
not form an algebra (it is not stable under complementation).

We say that Z C Perf(X) is:

(a) hereditary, if for any A € Z and B € Perf(A) we have B € T;

(b) (weakly) finitely additive, if for any (disjoint) sets A, B € T we have
AUB € T;

(¢) countably additive, if for each {A,}new C Z, from |J A, € Perf(X) it

new
follows that |J A, € Z;

new
(d) a (weak) ideal, if it is hereditary and (weakly) finitely additive;
(e) a o—ideal, if it is hereditary and countably additive.
An ideal Z in Perf(X) is called principal if it is of the form Perf(A) for
some A C X. By Theorem 2.1, if Z is a principal coinitial ideal in Perf(X),
then Z = Perf(X \ E) where E is an (sg)-set.
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Assume that F C Perf(X). Then the family Z of all sets D € Perf(X)
included in finite (resp. countable) unions of sets from F forms an ideal
(resp. o ideal) in Perf(X) called the ideal (vesp. o ideal) generated by F.
Obviously, if F is coinitial, so is Z.

Let us note that hereditary families and ideals can be also considered in
CL(X), the family of all closed subsets of X. Several interesting examples
of o-ideals in CL(X) (when X is metric and compact) are given in [21].
Clearly, if 7 is a (weak) ideal in CL(X) then Z N Perf(X) forms a (weak)
ideal in Perf(X).

Now, we are going to give some examples of coinitial hereditary families
of perfect sets. The family of nowhere dense perfect sets in X, or the
family of Lebesgue null perfect sets in X = R are well-known coinitial
o-ideals in Perf(X). Another example can be derived from [9, Lemma
2] where the o-ideal of Ramsey null perfect sets in X = [w]“ (the space
of all infinite subsets of [w]*) turns out coinitial. Some natural examples
of coinitial families of perfect sets appear in the theory of real functions.
For instance, Mazurkiewicz in [25] proved that, for each sequence f* of
continuous functions f, : [0,1] — R, bounded by the same constant, and
for each P € Perf([0,1]), there is a @ € Perf(P) such that f** is pointwise
convergent on @ for some subsequence f** of f*. Thus, for any fixed f*
with the above properties, the family of all P € Perf(]0,1]) such that a
subsequence of f* is pointwise convergent on P forms a coinitial family in
Perf([0,1]). A weak ideal in Perf([0,1]) can be associated with the result of
[11] where it was shown that, for each continuous function f : [0,1] — R
and for each P € Perf([0,1]), there is a @ € Perf(P) such that f|Q is
differentiable in the extended sense (i.e. f’(z) can be 400 or —o0). A
general concept of that kind of theorems is presented in [10, pp. 511-512].
Note that in harmonic analysis there are many natural hereditary families
F C Pow(R) of small sets, stable under translations and containing perfect
sets [12]. One can build from them coinitial ideals in Perf(R).

The next type of examples, which will be useful in the sequel, was con-
sidered in [3]. We say that F C Perf(X) is an almost disjoint family (in
short, adf), if |P N Q| < w for any distinct P,Q € F. By Zorn’s lemma,
each adf can be extended to a maximal adf. Observe that, if F is an adf
of size < ¢ and X \ JF has no perfect subset, then F is already maximal.
Indeed, let P € Perf(X) \ F and suppose that |P N Q| < w for each Q € F.
Thus |[PNUZF| < ¢ and consequently P N JF is an (sg)-set [40, Th.2.1].
Hence there is a @ € Perf(P) such that @ C P\ |JF, a contradiction. Note
that, by [27], in a model of ZFC in which CH fails, there exisis a disjoint
family of size wy consisting of closed sets whose union is X. Taking perfect
parts of those closed sets we get a disjoint family F C Perf(X) of size wq
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and fulfilling |F| = w; < ¢ and | X \ UF| < wy. Thus we have a situation
considered above.

3. Intersections of coinitial families. Evidently, the intersection of a
finite number of coinitial families in Perf(X) is again a coinitial hereditary
family. An analogous statement can be false for a sequence of coinitial
hereditary families. Indeed, for each n € w, let Z,, denote the collection of
all P € Perf(X) with diameters < 1/n. Then Z,, are coinitial hereditary
families in Perf(X) but NZ, = (. For weak coinitial ideals we have the
following theorem of Marczewski:

Theorem 3.1. ([38, 2.1], ¢f. also [2, p.25].) If {I,}new is a sequence of
weak coinitial ideals in Perf(X) then T =\, In is a weak ideal (coinitial)
in Perf(X).

Proof. First, we show that Z is coinitial. Let P € Perf(X). Denote by Seq
the set of all finite sequences of zeros and ones. The empty sequence is
written as (). The set of all sequences from Seq with length n is denoted
by Seq,,. We define by induction a family {Ps; : s € Seq} C Perf(X) as
follows. Pick Q) € Zp N Perf(P) with diameter < 1. If n € w and sets
Qs € I, (s € Seq,,) with diameters < 1/(n + 1) are defined, pick two
disjoint perfect sets Pyo, Ps1 € Qs with diameters < 1/(n + 2) (where si,
i € {0,1}, is the respective extension of the sequence s). Then choose
perfect sets Qgo, @s1 € Z,,+1 contained respectively in Py, Ps;. Finally, put
Q=hew U @s. By the fusion lemma [18, p.285], the set @ is perfect.
seSeq,,
Evidently, @ € P. From the pairwise disjointness of the sets Qs € Z,
(s € Seq,,) and from the weak additivity of Z, it follows that |J Qs € Z,

new

seSeq,,
for each n € w. Since every Z, is hereditary in Perf(X), we have Q € Z. It
easily follows from the definition that Z is a weak ideal in Perf(X). O

Assume that G is a family of coinitial weak ideals in Perf(X). Observe
that, if NG # 0, then NG is a weak ideal in Perf(X). It would be interesting
to describe those uncountable families G for which (G is coinitial. Let us
give some examples.

Ezample 1. Assume CH. List all elements of X as {z, : @ < w1} and let
I, = Perf(X \{zo : o < v}) for v < wy. Then each Z,, (7 < w;) is a coinitial
o-ideal in Perf(X) but N,.,, Z, = 0. Note that I, are principal ideals and
they do not satisfy JZ, = X.

Example 2. We will modify Example 1 to work with nonprincipal ideals.
Pick P,@Q € Perf(X) such that PUQ = X and [P\ Q| = |Q \ P| = .
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Assuming CH let P = {z, : o < w1 }. For each v < wy, let Z, consist of all
D € Perf(X) such that DNQ is nowhere dense in Q and DN {z, : a <~} =
(. Then each Z, (y < wp) is a nonprincipal coinitial o ideal in Perf(X).
Note that P has no perfect subset in Z = Z,, so 1 is not coinitial in
Perf(X).

Y<wi

FEzample 3. Let G be the family of all coinitial nonprincipal ideals Z in
Perf(X) (we may add that |JZ = X). Then NG = 0. Indeed, suppose that
P €NG. Let T consist of all perfect sets @ C X such that QN P is nowhere
dense in P. Then Z € G but P ¢ 7, a contradiction.

We may improve the result of Theorem 3.1 if we restrict ourselves to
coinitial ideals in Perf(X) (so omitting “weak”). We want to give a more
precise estimation of the cardinal describing how large families of coinitial
ideals in Perf(X) provide a coinitial intersection. For this we will need the
following definitions.

(a) addpin(so) is the minimal size of a collection A of maximal almost
disjoint families in Perf(2¥) such that there is no perfect set P € Perf(2¥)
satisfying

(VF € A)(3F* € [FI=)(P c | F").
(b) The additivity add(Z) of an ideal Z in Pow(X) is
add(T) = min{|F|: (FCI) & ((JF ¢ D)}

(c) For a partial order P and a cardinal k, M A,(P) is the following sentence

for each p € P and a family A of dense subsets of PP,
if | A| < k then there is a filter G C P such that p € G and

(VF € A)(FNG #0).

(d) Sacks Amoeba forcing 2 is the partial order consisting of all pairs (n, T')
such that 7' C 2<% is a perfect tree and n € w. The ordering is such that
(n,T) < (m,S) ((n,T) is stronger than (m,S)) if and only if n > m, T C S
and SN2™m =TnN2™.

The following proposition shows the inequalities between the cardinals
appearing above and it explains our notation.

Proposition 3.2.
w1 <min{k : MA,(R) fails} < addpin(so) < add(sp) < c.

Proof. The first and the last inequalities should be obvious by the defini-
tions.
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For the second inequality suppose that M A, (2() holds true and let A be
a set of maximal almost disjoint families in Perf(2¥), |A| < k. For F € A
let

Fr={(n,T)eA: (VseTN2")3P e F)([T.] C P)}

(here, [T stands for the set of all w—branches through the tree T, and
Ts denotes the part of the tree T' above the node s, that is Ty = {t €
T :t C sors C t}). Clearly each FT is dense in 2 (remember all
F € A are maximal adfs). Further, for each m € w let R,,, € 2 con-
sist of all conditions (n,7") € 2 such that if s € "N 2" then [{k < n :
s|k is a ramification point of T'}| > m. The sets R,, are dense in 2 too.
Consequently, by M A, (2), we find a filter G C 2 such that

VFe AFTNG#0) and (Vmew)(R,,NG#D).

Now take P* = ({[T] : (In € w)((n,T) € G)}. It is a routine to check
that P* € Perf(2¥). Moreover, if (n,T) € GNF* then P* C |J [Ts] and

(Vs e T'n2")(3P € F)([Ts] € P). Consequently e
(VF € A)BF* € [FI=)(P* c | JF).

This shows that £ < addp,(so)-

Now suppose that A* is a family of (sg)—sets in 2, |A*| < addpin(s0).
For each X € A* choose a maximal adf Fx in Perf(2¥) such that (VQ €
Fx)(QNX = (). By the definition of addp,(so), we find a set P € Perf(2+)
such that

(VX € A)(3F* € [Fx]=)(P < |JFY.
Plainly, this implies that P N J.A* = (). Thus we have shown that for each
family of (sg) sets of size less than addp;,(sp) there is a perfect set disjoint
from the union of the family. This is enough to claim that addp;,(sp) <
add(sg), as we may apply this statement “below each perfect”. O

Problem 3.3. Are the three middle cardinals of 3.2 equal (in ZFC)?

For more information on Sacks Amoeba forcing and Martin’s Axiom we
refer the reader for instance to [13]. Let us note here only that 2( is a proper
forcing notion, so PFA implies M A,,, (2(). Of course, the simplest model of
MA,, (%) is obtained by countable support iteration of length ws of Sacks
Amoeba forcing notions over a model of CH. On the other hand, it is known
that consistently add(sg) < ¢ even if we additionally require MA (see [19],
an upper bound for add(sg) is given in [34]).

Theorem 3.4. addp;,(so) is equal to the least cardinality of a family G of
coinitial ideals in Perf(2¥) such that (\G is not coinitial in Perf(2+).
[We may replace “not coinitial” by “empty”.]
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Proof. Suppose that G is a family of coinitial ideals in Perf(2“) of size less
than addp;,(so) and let P € Perf(2¥). For each ideal Z € G choose a
maximal (in Perf(2¥)) adf Fz C Z (possible as each Z € G is coinitial in
Perf(2¥)). By the definition of addp;,(s¢) we find a perfect set Q C P such
that

(VT € G)AF" € [Fr <)@ < U F)

(remember that P is homeomorphic with 2¢ so we can apply the definition
of addpin(so) “below P”). But, as each Z € G is an ideal, we conclude that
Q<Ng.

Assume now that A is a set of maximal almost disjoint families in Perf(2%)
such that there is no perfect set P € Perf(2¥) satisfying

(VF € A)(3F* e [FI=)(P c|JF").

Clearly we may assume that each F € A is infinite. For F € A let Zx be
the ideal in Perf(2¥) generated by F (so Zr consists of all perfect sets which
can be covered by finitely many members of F). The ideals Zz are proper
and coinitial in Perf(2¥), but, by the choice of A, we have N{Zr : F € A} =
0. O

The next phenomena concerning intersections of coinitial families of per-
fect sets deal with game ideals considered in [30], [32], [33], [1], [5], [4]. For
each A C 2 and K € [w]“, we denote by T'(A, K) the infinite game with
perfect information defined as follows (cf. [30]). Two players choose consec-
utive terms of x = (z1,x2,...) € 2¥: player I chooses z; for i € w\ K, and
player 11 — for i € K. Player I wins if z € A, and player 11 — when = ¢ A.
The family of all sets A C 2% for which player II has a winning strategy
in I'(A, K) is denoted by V(K). For a precise definition of a strategy, see
for instance [33]. Observe that player 11 has in I'(4, K) a winning strat-
egy which does not depend on the moves of player 11 iff A|K # 2% where
AK = {fIK : f € A}. Put V*(K) = {A C 2¥ : A|[K # 2K}. Note that
V*(K) C V(K) and the inclusion can be proper. Clearly, V(K) and V*(K)
are hereditary families in Pow(X). Using the representation of perfect sets
in 2¢ by perfect trees [18, p.37], it is not hard to check that Perf(2*)NV*(K)
is a hereditary coinitial family in Perf(2*) for each K € [w]¥. The same holds
true in the case of Perf(2¥) N V(K) (cf. [1]). For K C [w]¥ we denote

M(K) = () V(K) and M*(K)= (] V*(K).
KeKk KekKk

A family £ C [w]¥ is called a normal system [33] if each K € K contains
disjoint sets K1, Ko € K. One can show that, for a normal system IC, the
families M(K) and M*(K) form o—ideals. If additionally K is countable,
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M(K) is known as a Mycielski ideal [30]. For the o—ideal 7 = M([w]*), the
intersection Perf(X)NZ is coinitial in Perf(X) [32],[2]. Hence Perf(X)NM(K)
is coinitial for each £ C [w]“. Families M*(K) behave differently since
Perf(X) NM*([w]*) is noncoinitial [15] although it contains perfect sets [32].
It was proved in [4] that Perf(X) N M*(K) is coinitial for each K C [w]¥ of
size less than the dominating number 0. Recall that w; < 0 < ¢ and it is
consistent that 9 < ¢ [39]. It is still not known whether Perf(X) N M*(K)
is coinitial for each I C [w]¥ of size less than ¢ (that problem was posed in

[4])-

4. Some characterizations. The hyperspace CL(X) is usually en-
dowed with the Vietoris topology generated by the base consisting of sets of
the form

V(Go; G, Gp) = {F € CL(X) : (F C Go) & (¥i € {1, ..,n}) (FNG; # 0)}

where Gy, G1, ..., G, are open in X (cf. [22, §42]). The empty set is treated
as an isolated point of CL(X). If P € Perf(X), we equip Perf(P) with the
Vietoris topology inherited from CL(P). Sets dense (residual) in Perf(P)
with respect to that topology will be called Vietoris dense (residual).

Theorem 4.1. Let T C Perf(X) be weakly finitely additive. Then T is
coinitial in Perf(X) if and only if T N Perf(P) is Vietoris dense in Perf(P)
for each P € Perf(X).

Proof. “=" Let P € Perf(X) and consider a nonempty set
W = V(Go; G, ..., Gn) N Perf(P)

from the base of the Vietoris topology in Perf(P), where Gg, G1, ..., G,, are
open sets in P. We will show that W NZ # (). We may assume that

"1 Gi € Gy and (after shrinking Gy, ..., Gy, if necessary) that Gy, ...,G,
are pairwise disjoint. By the Alexandrov-Hausdorff theorem [22, §371], we
can choose perfect sets P; C G;, and next (by the assumption) — perfect
subsets Q; € Z of P, for i = 1,...,n. Put Q@ = Uj-; Q;. Clearly, Q@ € W.
Since Z is weakly finitely additive, we have Q € Z.

“<=" Obvious. O

Recall that a family F of sets in a topological space is said to be a network
if, for each nonempty open set U and for each x € U, there is an F € F
such that x € K C U.

Theorem 4.2. Let T C Perf(X) be a o—ideal fulfilling \JZ = X. The
following conditions are equivalent:

(a) T is coinitial in Perf(X);

(b) for each P € Perf(X), the family T N Perf(P) forms a network of the
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topology in P;
(c) UZ N Perf(P) = P for each P € Perf(X).

Proof. (a) = (b) Let U be open in P € Perf(X) and x € U. By the
Alexandrov-Hausdorff theorem, for each n € w, we can find a perfect set
P, CUNB(z,1/(n+1)). By (a) we pick Q,, € ZNPerf(P,) for each n € w.
Since JZ = X, there is a D € Z N Perf(X) such that x € D. The set
Q =DU | Q, is perfect and, as Z is countably additive in Perf(X), we

new

have @ € Z. Since Z is hereditary, the perfect set Q* = {z} U U, ,c,, @n is
also in 7 and, clearly x € Q* C U as desired.
(b) = (¢) = (a) Obvious. O

5. Applications to Vietoris residual sets.

Corollary 5.1. If X is a compact metric space and J C CL(X) is a Gs
set in CL(X) such that J N Perf(X) is weakly finitely additive and coinitial
in Perf(X) then J N Perf(P) is Vietoris residual in Perf(P) for each P €
Perf(X).

Proof. Since X is metric and compect, so is CL(X) with the Vietoris topol-
ogy [22, §42L,11]. Hence CL(X) is Polish. Fix any P € Perf(X). The set
CL(P) is closed in CL(X) [22, §42111], so it forms a Polish space. The space
Perf(P), being a G subset of a Polish space CL(P) [22, §42I1]] is Polish
[22, §33VI]. Since J is a G set in CL(X) and Perf(P) C CL(X), there-
fore J N Perf(P) is a G set in Perf(P). From Theorem 4.1 it follows that
J N Perf(P) is Vietoris dense in Perf(P). Hence, being of type Gy, it is
residual in Perf(P), by the Baire category theorem. O

For compact metric spaces X, there are several known Gy ideals J in
CL(X) with J N Perf(X) coinitial in Perf(X). Then Corollary 5.1 works.
Let us give some examples of such families 7.

(I) J = the family of all closed Lebesgue null sets, or the family of closed
null sets with respect to the Hausdorff measure p” (for the adequate function
h) on X = [0,1] (cf. [21, p.417)).

(IT) J = the family of closed nowhere dense sets in X (cf. [21, p.417]).

(III) J = the family of closed sets from a fixed Mycielski ideal on the
Cantor space 2¥ [30] (see Section 3). It is shown in [5] that J is a G5
residual set in CL(2¥), and it is proved in [1] that J N Perf(2*) is coinitial
in Perf(2¢).

(IV) Let X = [-1,1]. A set E C X is called strongly porous [41] if
p(F,x) =1 for each x € E, where

p(E, x) = limsup(y(E, z,7)/r)
r—0+
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and y(F,z,r) is the length of a longest interval (a,b) C (z —r,z + 1)\ F.
Let J denote the family of all closed strongly porous sets in X. Then J
is a Gs residual set in CL(X) [23]. In [2] it is proved that J N Perf(X) is
coinitial in Perf(X). (Note that in [6] the analogous results are shown for
a more restrictive kind of porosity.) It is easy to check that J N Perf(X)
forms a weak ideal in Perf(X). So, the scheme of Corollary 5.1 is applicable.
Observe that JNPerf(X) is not an ideal in Perf(X). Indeed, for each positive
integer n, consider a perfect strongly porous set P, C [1/(2n + 1),1/(2n)]
with min P, = 1/(2n + 1) and max P,, = 1/(2n) (cf. [41]). Then P =
{0} UU,Z; P, is perfect strongly porous and so is —P = {—z : = € P}.
However ) = P U —P is not strongly porous since

2(0,0) = lim L= =1/Cn)

L V[CT T

6. Connections with perfect category bases. Category bases were
defined and studied by J. C. Morgan [28]. A category base on a set Y [28,
p.8] is a pair (Y,C) such that Y # () and C is a family of nonempty subsets
of Y, called regions, satisfying the conditions:

(HuCc=Y;

(2) Let A be a region and let D be a nonempty family of pairwise disjoint
regions which has cardinality less than |C|. Then

(i) if AN (UD) contains a region, then there is a region B € D such that
AN B contains a region,

(ii) if AN (UD) contains no region, then there is a region B C A disjoint
from |JD.

A category base consisting of perfect sets is called a perfect base if, for
each region A, each positive integer n, and each pair x1, z9 of different points
in A, there exist disjoint regions Ai, A such that z; € A;; A; C A and the
diameter of A4; is < 1/n for i = 1,2 (cf. [28, pp.144-145]). Aset E CY
is called C—singular if, for each region A, there exists a region B C A such
that BNE = (. A set M CY is called C—meager if M is a countable union
of C-singular sets. The family of C-meager sets is written as M(C). A set
G C Y is called C—Baire if, for each region A there exists a region B C A
such that BNG € M(C) or B\ G € M(C). The family of all C-Baire
sets is denoted by B(C). Two category bases (Y,C1) and (Y,Cs3) are called
equivalent if B(Cy) = B(C2) and M(C1) = M(C2) (cf. [28, pp.22-24]).

It is known that, for a perfect Polish space X, the pair (X, Perf(X)) forms
a perfect category base [28, Th.33, p.156]. Moreover, for C = Perf(X), we
have M(C) = (so)-sets, B(C) = (s)-sets [28, p. 157]. Recall that A C X is
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said to be an (s)-set if, for each P € Perf(X), there exists a Q € Perf(P)
such that either @ C A or QN A =0 [38].

Corollary 6.1. A o—ideal T C Perf(X) satisfying UZ = X is coinitial in
Perf(X) if and only if for each P € Perf(X) the pair (P,ZN Perf(P)) forms
a perfect category base equivalent to (P, Perf(P)).

Proof. “=" Let P € Perf(X). From [28, Th.2, p.11] it follows that (P,Z N
Perf(P)) forms a category base. Since 7 is hereditary in Perf(X), it can
be easily shown that this base is perfect. The bases (P,Z N Perf(P)) and
(P, Perf(P)) are equivalent, by [28, Th.1, p.23].

“<” Since (P,Z N Perf(P)) forms a category base for each P € Perf(X),
therefore, by condition (1) given in the definition of the category base, we
have (J(Z N Perf(P)) = P for each P € Perf(X). Then it suffices to apply
Theorem 4.2. O

7. Some noncoinitial families in Perf(X). Here we assume that X
forms an Abelian metric (Polish) additive group with the neutral element
e. Invariant noncoinitial o—ideals Z in Perf(X) satisfying UZ = X will
be called INC o—ideals. By the definition, F C Perf(X) is noncoinitial iff
there is a @ € Perf(X) with no perfect subset in F. So, by the Alexandrov-
Haudsorff theorem, a hereditary family F is noncoinitial in Perf(X) iff there
is a @ € Perf(X) such that |[PNQ| < w for each P € F. Thus, the simplest
way to construct an INC o—ideal Z in Perf(X) is to find perfect sets P, Q
such that |(P +z) N Q| < w for all z € X and put Z = Z(P) where Z(P)
denotes the o ideal in Perf(X) generated by {P +z : x € X}. At the same
time, we get another INC o—ideal Z(Q). Note that Z(P) N Z(Q) = 0. So,
that method produces a pair of disjoint INC o—ideals.

ExAMPLES. (a) Assume that P, Q are subgroups of X being perfect sets
and satisfying PN @Q = {e}. Then [(P+z)NQ| < 1 for each = € X. So, the
above scheme works. In particular, we can consider X = R%, P = R x {0}
and @ = {0} x R which well illustrates our idea.

(b) (Cf. [1, Example 2.4].) A set £ C X is called algebraically indepen-
dent if Y1 1 k;jx; # e for each finite set {z1,...,x,} C E and for any integer
numbers k; (i = 1,...,n) [22, §55V] (if the group X contains elements of
finite rank then we additionally demand that each |k;| is smaller than the
rank of z;). There exist perfect algebraically independent sets in several
Polish groups [24], [16]. Now, assume that F € Perf(X) is algebraically
independent. Pick disjoint sets P,Q € Perf(E). It is easy to check that
((P+z)Nn@Q| <1 foreach x € X (cf. [35], [28, p.210]). Thus our scheme is
applicable.
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(c) Let X be equal to the Cantor group 2¢ with the coordinatewise ad-
dition modulo 2. A set F C X is called set-theoretically independent if

" fi kY] # O for each finite set {f1, ..., fu} € E and any k; € {0,1}
(i=1,...,n). It is known that there exist perfect set-theoretically indepen-
dent sets in X [17]. Let us verify that each set-theoretically independent
set is algebraically independent (the converse is not true). Indeed, since
g+ g = e for each g € X, we have to show that ;' ; f; # e for any fixed
set {f1,....,fn} € E. Pick k; € {0,1} (i = 1,...,n) so that > 7' ki = 1.
Let m € N, £ '[{ki}]. Then X7, fi(m) = 1, as desired. Next, let us
show that the family F, of all perfect algebraically independent sets in X
is coinitial in Perf(X) but the analogous statement for the family Fg of
all set perfect set-theoretically independent sets in X is false. Indeed, let
P € Perf(X). Since the sets Ry, = {(f1,...,fn) € P": Y i1 fi # e}, n > 1,
are comeager in P", there exists a @ € Perf(P) with {(f1,..., fn) € Q" :
fi # f;, ifi # j} C Ry, for each n > 1, by the Mycielski theorem [29] (see
also [20, Th.19.1]). Therefore Q € F, and F, is coinitial. Now, consider
the o-ideal Z = M*([w]“) in Pow(X) (see Section 3). It was shown in [32]
that Z contains perfect sets. On the other hand, by [15, Th.4], each set-
theoretically independent set has no perfect subset in Z. Hence Fg is not
coinitial. Evidently, it is translation invariant. Also the ideal Z is transla-
tion invariant [32] and so is Z* = Z N Perf(X). Consequently, Z* and the
o—ideal in Perf(X) generated by Fg form disjoint INC o—ideals.

We may elaborate this further. For @ € Perf(X) let
J(Q) ={P €Perf(X): Vz e X)(|(P+2)NQ| <w)}.
The families of the form J(Q) are canonical examples of INC o—ideals in
Perf(2¥) in the following sense.
Proposition 7.1. Let X = 2%.
1. For each Q € Perf(X), the family J(Q) is an INC o—ideal iff T (Q) #
0

2. é}' P,Q € Perf(X). P € J(Q) then T(P) € J(Q) and J(Q) NZ(Q) =

3. Suppose that T is an INC ideal in Perf(X). Then there is a perfect
algebraically independent set Q € Perf(X) such that T C J(Q).

Proof. (1) Clearly Q ¢ J and J(Q) is hereditary, translation invariant and
countably additive. Consequently it forms an INC o—ideal if and only if it
is nonempty.

(2) Clear.

(3) Take a Qo € Perf(X) such that Perf(Qp) NZ = (). This means that if
P € T then (Vz € X)(|(P 4+ z) N Qo| < w). Consequently Z C J(Qp) and
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the last is an INC o—ideal. We may choose a perfect independent subset
Q of Qo (it follows from Mycielski’s theorem [29]). Then J(Qo) C J(Q),

finishing the proof. O

8. Perfect isomorphisms. Recall that a bijection f: X — X is said
to be a Borel isomorphism [20, p. 71] if f and f~! are Borel measurable.
We say that a bijection f : X — X is a perfect isomorphism if, for each
P € Perf(X), the sets f[P] and f~![P] contain perfect sets (cf. [4]). By
Souslin’s theorem [22, §39V], the image of a perfect set by a one-to-one Borel
measurable function is an uncountable Borel set. Thus, by the Alexan-
drov-Hausdorff theorem, that image contains a perfect set. Consequently,
each Borel isomorphism is a perfect isomorphism. It turns out that perfect
isomorphisms can be nicely characterized by (s)-sets of Marczewski [38].
Recall that (s)-sets in X form a o—algebra. A function f: X — X is called
(s)-measurable if the preimage f![G] of any open set G C X is an (s)-set.
The following lemma due to Marczewski shows an equivalent definition of
(s)-measurable functions given originally by Sierpinski [37].

Lemma 8.1. ([38, 4.3]) A function f : X — X is (s)-measurable if and
only if, for each P € Perf(X), there exists a Q € Perf(P) such that f|Q is

continuous.

Proof. “=" Fix a base {U, }ne, of open sets in X. For each n € w let Z,
consist of all sets Q € Perf(X) such that QN f~[U,] is open in Q. Then Z,,
forms a weak ideal in Perf(X). Moreover, Z, is coinitial since f~![U,] is an
(s)-set. So, T =(,ew In is coinitial by Theorem 3.1. Now, let P € Perf(X).
Pick @Q € Z N Perf(P). It follows that f|Q is continuous.

“<” Let G be an open subset of X and let P € Perf(X). Choose a Q €
Perf(P) such that f|Q is continuous. Thus (f|Q) }[G] = QN f 1G] is open
in Q. It is easy to find a D € Perf(Q) which either is contained in f~1[G]
or misses f ![G]. Hence f 1[G] is an (s)-set. O

Theorem 8.2. Let f: X — X be a bijection. The following conditions are
equivalent:

(a) f is a perfect isomorphism;

(b) for each P € Perf(X) there exist (compact) sets P*, P** € Perf(P) such
that the restrictions f|P*, f~Y|P** are homeomorphisms;

(c) for each E C X, we have E is an (s)-set iff f[FE] is an (s)-set;

(d) both functions f and f~' are (s)-measurable.

Proof. (a) = (b) Let P € Perf(X). Pick a compact Py € Perf(P) (home-
omorphic with 2¢) and choose Qy € Perf(f[P]). We may assume that
the diameters of Py and Qy are < 1. Let n € w. Having F, Q, (t €
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Seq,,) defined, we pick disjoint sets Py, Py € Perf(f 1[Q;]) and sets Qi €
Perf(f[Pi]), Qu € Perf(f[P;]), all of diameters < 1/(n + 2) (note that
Q, Qu are disjoint). Let P* and Q* denote the fusions of the families
{P; : t € Seq} and {Q; : t € Seq}, respectively. Then for each t € Seq we
have f[P,NP*] = Q:NQ* and thus f|P* is a homeomorphism from P* onto
Q*. The respective set P** for f~! can be found analogously.

Equivalences (b)) <= (¢) <= (d) are due to Marczewski [38, 4.4]. We
show the remaining arguments for the reader’s convenience.

(b) = (c) It is enough to demonstrate that, if £ is an (s)-set, then f[E] is
an (s)-set. Let P € Perf(X). Let P** € Perf(P) be a compact set such that
f~YP* is a homeomorphism. Thus Q = f~![P**] is perfect and compact.
Since F is an (s)-set, there exists a D € Perf(Q) such that either D C
or DN E = (. Consequently, f[D] is a perfect subset of P which either is
contained in f[F] or is disjoint from f[£]. Hence f[E] is an (s)-set.

(c) = (d) It suffices to prove that f is (s)-measurable. But this follows
from (c) and from the fact that each open set is an (s)-set.

(d) = (a) Let P € Perf(X). Since f is (s)-measurable, we infer from
Lemma 8.1 that there exists a @@ € Perf(P) such that f|Q is continuous.
Then pick a compact P* € Perf(Q). Thus f[P*] is a compact perfect subset
of f[P]. Similarly, f '[P] contains a perfect set. O

Let Z and J be subfamilies of Pow(X). We say that Z and J are:

(a) isomorphic, if there exists a bijection f: X — X such that F € 7 iff
fIE] € J for each £ C X (then f is called an isomorphism between Z and
J);

(b) perfect isomorphic, if there exists a perfect isomorphism f: X — X
which is an isomorphism between 7 and J;

(¢) Borel isomorphic, if there exists a Borel isomorphism f : X — X
which is an isomorphism between Z and 7.

By Bor(X) we denote the family of all Borel subsets of X. Observe
that the definition (c) still works if Z,J C Bor(X). Note that, if 7 and
J are isomorphic (resp. Borel isomorphic) ideals in Pow(X) (resp. in
Bor(X)), then the quotient Boolean algebras Pow(X)/Z and Pow(X)/J
(resp. Bor(X)/Z and Bor(X)/J) are isomorphic. It was shown in [4] that,
if Z,J C Pow(X) are perfect isomorphic and Z N Perf(X) is coinitial in
Perf(X), then so is J N Perf(X). Thus, if exactly one of the families Z N
Perf(X) and J N Perf(X) is coinitial in Perf(X), then Z and J cannot be
perfect isomorphic.

For an ideal Z C Pow(X), we denote

cof (Z) = min{|F| : (F C T) & (YA € T)(2B € F)(A C B)}.
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We say that 7 has a Borel basis if each set A € 7 is contained in a set
B € TN Bor(X).

Theorem 8.3. There exist isomorphic o—ideals Z,J C Pow(X), fulfilling
UZ =UJ = X and add(Z) = add(J) = ¢, which are not perfect isomor-
phic.

Proof. Consider a partition {X, : @ < ¢} of X into pairwise disjoint un-

countable Borel sets, and a partition {Y, : @ < ¢} of X into pairwise disjoint
Bernstein sets [28, Th.27, p.152]. Let

I={ACX:(Fa<c(AC |JX,)}, and
<o
J={ACX:(Fa<(AC |J Y}
y<a
For each a < ¢, choose a bijection f, : X, — Y, and define f : X — X
by f = fo on X, (o < ¢). Then f is an isomorphism between Z and J.
However, no bijection g : X — X is a perfect isomorphism between Z and

J since Z N Perf(X) # 0 but J N Perf(X) = 0. O
We denote AAB = (A\ B)U (B\ A).

Lemma 8.4. Let {P, : a < ¢}, {Qq : o < ¢} be mazimal almost disjoint

families of perfect sets in X such that each P, is homeomorphic with Q.

Suppose that | X\ U Pa| = |X\ U Qal|- Then there is a perfect isomorphism
a<c a<c

g: X — X such that for each a < ¢ we have
(va)  dlUP)=UQy and |9[R]AQu| <ol +w <.

y<a y<a
Proof. First we declare that g|(X \ U P,): X\ U P, — X\ U Qg is
a<c
any bijection. (Note that both X\ U P and X'\ U Qa are (sg)—sets.) For

a<c

each a < ¢, fix a homeomorphism hy, : Py — Qq. Let g(x) = ho(z) for each

x € Fy. Assume that a < ¢ and that g is defined on (J Pj3 so that, for each
[B<a
B < «, condition (g) holds true, and there are sets Eg C Py, Gz C Qp of

size < |B| + w such that

9l(Ps\ Eg) = hg|(Ps\ Eg), g '(Qz\Gp) =hs'[(Qs\ Gp).

We will define g on P, \ U P3. We will also show (%,) and find the
[B<a
respective sets £, and G,. Let A=FP, N J Pgand B=Q.N U g[Ps].
B<a [B<a
Then |A| < |a| + w since {P, : a < ¢} is an adf. Also |B| < |a| + w since
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for D= Qs N U Qp we have |D| < |a| +w and |BAD| < |a| + w (which
B<a

follows from BAD C | (9[Ps]AQp) and the induction hypothesis). Put
B<a

Ag = AUh_[B]. Choose A; C P, so that A1 N Ay = 0 and |A;| = |Ap| +w.
Let E, = ApU A;. Define g(x) = hy(x) for each z € P, \ E,. Let
b: FE,\ A — hy[A1] be any bijection. Then define g(z) = b(z) for each
xz € By \ A. Put G, = BU hy[A1]. It is not hard to check that (x,) holds
true and that E,,G, are as desired. This finishes the inductive definition
of g. To show that g is a perfect isomorphism, consider P € Perf(X). There
is an a < ¢ such that |[PN P,| = ¢. Since PN P, contains ¢ pairwise disjoint
perfect sets, there is a P* € Perf(P N P, \ E,). Thus g|P* = h,|P* is a
homeomorphism. Similarly, there is a P** € Perf(X) such that g !|P** is
a homeomorphism. Hence g is a perfect isomorphism, by Theorem 8.3. [

Theorem 8.5. There are o—ideals T,J C Pow(X) such that both T N
Perf(X) and J N Perf(X) are coinitial and I,J are perfect isomorphic
but not Borel isomorphic.

Proof. The main idea is to find two perfect isomorphic o—ideals such that
exactly one of them has a Borel basis. Let H C X be a Borel set such
|H| = |X \ H| = ¢. Choose a maximal adf {P, : a < ¢} C Perf(X) such
that each P, is homeomorphic with 2 and

Va<¢)(Py,CH or P,NH=0) and
fa<c: P, CHY =Ha<c:PoNH=0}=c

Let Z denote the o—ideal in Pow(X) generated by the family G of all F €
Bor(X) such that

Ha<c:|PaNE|=c& P,NH=0}<c.

Observe that H € Z and P, € Z for each a < ¢ (in fact those sets are in G).
However, X \ H ¢ 7 (an easy exercise remembering that cf(¢) > w). Since
all P,’s are in Z, we have that Z N Perf(X) is coinitial.

Now, consider those sets B € Bor(X) for which |[{a < ¢: |P,\B| =¢}| =¢
and list them as B,, a < ¢ (note that all P,’s are among them). Fix
enumerations {a, : v < ¢} of {a < ¢: P, € H} and {a : v < ¢} of
{a < ¢: P, H = (}. Define a function f : ¢ — ¢ as follows. First,
let f(ap) be the first ordinal 5 < ¢ such that [Pz \ By| = ¢ and let f(o)
be the first element of ¢ \ {f(ap)}. Let n < ¢ and assume that we have
defined f(a,) and f(aZ) for v < n. Pick f(ay) as the first ordinal § €
¢\ {f(ay), f(a3) : v <n} such that [P\ By| = c and let f(a;) be the first
element of ¢\ {f(ay), f(ag) : v < n, & <n}. The function f defined in
this manmer is a bijection from ¢ onto ¢ and has the property that, for each
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B € Bor(X), either [{a < ¢: |P, \ B| = ¢}| < ¢ or there exists an a < ¢
such that P, C H and [Py \ B| =«

Now, consider the perfect isomorphism g : X — X obtained in Lemma 8.4
for { Py : @ < c} and {Py(q) : a < ¢} (so this is the same adf, we just permute
its elements). Let J = {g[F] : £ € T}. Obviously, J forms a ¢ ideal in
Pow(X) perfect isomorphic with Z, and J N Perf(X) is coinitial. We will
show that Z and J are not Borel isomorphic. It is enough to check that
J does not have a Borel basis. To this end, observe that g[H] € J is not
contained in a Borel set from J. Suppose that g[H] C B € J N Bor(X).
First note that, by the choice of the function g (and Lemma 8.4), for each
o < ¢ we have

|Pa\ Bl =c¢ if and only if |Pp-1(y \g Bl =c
Since f is a bijection, we get
o< c: [P\ Bl =l = {a < c: [P\ g L [B] = c}l.
Now, as ¢g~![B] € Z, we have
Ha<c:|PoNng !Bl =c& P,NnH =0} <c.

As there are continuum many a’s such that P, N H = (), we conclude that
H{a < ¢:|P\g }[B]| = ¢}| = cand hence [{a < ¢ : |Py\B| = ¢}| = ¢. Thus,
by the choice of f, there is an o < ¢ such that P, € H and [Py, \ B| = ¢.
Then g[P,] C g[H] C B. Since, by Lemma 8.4 we have |g[Pa]APf)| < ¢,
we obtain a contradiction with |Pr,) \ B| = . O

Some months ago, the first author was informed by Sz. Plewik that the
proof of the classical Sierpiriski duality theorem [36] (cf. also [31, Th.19.2])
works (under CH) if one wants to show that there exists a perfect isomor-
phism between K, the o—ideal of meager sets in R, and IL, the o—ideal of
Lebesgue null sets in R. We will go further and describe more general situ-
ations where two o—ideals in Pow(X) are perfect isomorphic. Our method
mixes modifications of the Sierpinski duality theorem (cf. [14, pp.176-178])
with some tricks using almost disjoint families in Perf(X).

Let k < ¢ be an uncountable cardinal and let Z C Pow(X) be a o—-ideal
fulfilling JZ = X. We say that a Borel basis {B, : @ < k} of Z forms a
perfect Borel tower (of size k) if B, C B for all a, f < k with o < 3, and
Perf(By \ Uy<q By) # 0 for each a < k.

Theorem 8.6. For an uncountable cardinal k < ¢ let @, denote the family
of all o—ideals T C Pow(X) fulfilling\UZ = X and possessing a perfect Borel
tower of size k. Then any two oc—ideals T and J from ®, with coinitial
I N Perf(X) and J N Perf(X) are perfect isomorphic.
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Proof. Suppose T € ®,. and Z N Perf(X) is coinitial in Perf(X). Let {BZ :
a < Kk} be a perfect Borel tower of Z. Choose a maximal adf F7 C Perf(X)
consisting of sets homeomorphic with 2¢ and such that

1. 7 C 1T,
2. Fr € U Perf(BL\ U BY),
a<k <o

3. for each aa < &

{PeFr:PCBI\ |JBi=c and [(BI\ | BjH)\|JFzl=c
B<a B<a

4. FrnPerf(BL\ U Bg)) is a maximal adf in Perf(BZ\ U Bg)) (for
B<a f<a

all a < k).

The construction of Fz can be carried out as follows. For each a < k we
choose an almost disjoint family F; of perfect sets homeomorphic with 2¢

and contained in BZ\ |J BZ, such that:
B<a

(5)a  Fr CINPerf(BI\ | Bg) and F* forms a maximal adf in Perf(BZ\
f<a

U Bg) (ie. if PC B\ U Bg is perfect then (3Q € F3)(|P N Q| > w)),
B<a [B<a

(6)a  1(BZ\ ﬁgaB@ \UZFal = cand |F7] = .
Why is the choice of F* possible? As BZ\ | Bg contains a perfect set,
B<a

and by the fact that there are (sp) sets of size ¢ (and by Zorn’s lemma).
Finally, we let 7z = |J FZ. Now, why Fr is as required? Clauses (1) and

a<k
(2) follow from the conditions (5), for FZ, clause (3) is a consequence of

(6)q for F, and (4) follows from (5),. What we need to show is that Fr is
a maximal adf in Perf(X). For this we use the assumption that Z N Perf(X)
is coinitial: let P € Perf(X). Take Q C P such that Q € Z N Perf(X).
Then Q C Bg for some a < k. Let ag be the first ordinal below k such
that @ N Bgo is uncountable (so ap < a). As |ag| < ¢ we necessarily have

| U BgﬁQ| < ¢ and hence there is a perfect set Qyp C QN (Bgo\ U Bg)
B<ao B<ao
Now, by (5)a,, there is Q1 € F;, C F7 such that Q1 N Qg is uncountable
(and so contains a perfect set).
Suppose now that Z, J € &, have coinitial traces in Perf(X) and consider
the maximal almost disjoint families F7, F7. Choose enumerations

{Ps:B<ct=Fr and {Qp:B<c}=7F7
such that for each 8 < cand a < &
P; C BL ifandonly if Qp C BY
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(possible by the requirement (3)). Modifying slightly the proof of Lemma 8.4
we find a perfect isomorphism g : X — X such that for each o < xk we have

gll(Ps:B8<c& PsC BN = J{Qs:8<c& Qs C BJ}.
(Just by induction on o <  define g|(U{Ps : 8 < ¢ & P3 C BL\ 7L<Ja B},

proceeding exactly as in 8.4; remember our requirements on Fr, 7 and
their enumerations). We may arbitrarily modify g on an (sp)-set, so we
may additionally require that for each o < &

g[BL] = BY

(remember (3) and (2)). But this immediately implies that g is a perfect
isomorphism between Z and 7. ]

Proposition 8.7. Assume that a o—ideal T C Pow(X) has a Borel basis
and satisfies \JZ = X . Consider the following condition

(®) (VA € T)(3P € TN Perf(X))(AN P = 0).

(a) If T N Perf(X) is coinitial then (®) holds true.

(b) If add(Z) = cof (Z) = k and (®) holds true then I € ®.

(¢) If add(Z) = cof (Z) = k < ¢ then (®) holds true.

(d) If cof () = k < ¢ then T N Perf(X) is coinitial. (Consequently, Z N
Perf(X) is coinitial for each T € ®,, with Kk < ¢.)

Proof. (a) If A € Z then A C B for some B from a fixed Borel basis of Z.
Since X \ B is an uncountable Borel set, it contains a perfect set P. By
assumption, we can pick Q € J N Perf(P). Plainly @ is good.

(b) Since add(Z) = cof(Z) = k and Z has a Borel basis, there is a Borel
basis {By : @ < k} of Z such that

(Va, B < k)(a < = B, C Bp).

As UZ = X, we have U,.,.. B, = X. Now, by (®), for each o < &, there is
B > a such that |Bg \ B,| = ¢. Hence, passing to a subsequence, we may
additionally have that B, \ g, Bs contains a perfect set (for each a < k).
(c) As above, we get an increasing Borel basis {B, : a < k} of Z with
Uncr Ba = X. If A €T then A C B, for some a < k. Since X \ B, is an
uncountable Borel set, we have | X\ By| = ¢. As X\ By = Uy<p<x(Bs\ Ba),
there exists 3 > « for which Bs\ B, is uncountable. Hence Bs\ B, contains
a perfect set P. Then P €Z and PN A = ().

(d) Let F be a Borel basis of Z with |F| = k. Evidently JF = X. If
P € Perf(X) then PN B is uncountable for some B € F. A perfect subset
of PNBisinT. O
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Corollary 8.8. (a) Let Z and J be o—ideals in Pow(X) fulfilling \JZ =
UJ = X and having Borel bases. If add(Z) = cof(Z) = add(J) =
cof(J) =k thenZ and J are perfect isomorphic, provided that either k < ¢
or kK =c and TN Perf(X), J N Perf(X) are coinitial.

(b) If add(K) = cof(K) = add(L) = cof(L) then K and L are perfect
isomorphic.

Proof. Statement (a) is immediate by Theorem 8.6 and Proposition 8.7, and
statement (b) follows from (a). O

FINAL REMARKS. 1) Note that the ideals K and L are not Borel iso-
morphic (in ZFC) [31, Chapter 21].
2) Both CH and MA imply that cof(K) = add(K) = cof (L) = add(K) but
it is consistent that this condition fails (see e.g. [8]). If it holds true, the
o—ideals K and L are perfect isomorphic but not Borel isomorphic.
3) In Proposition 8.7(d) we really need the restriction that x < ¢. Assume
CH. Consider the o ideal Z C Pow(R?) generated by sets of the form {z} x B
for x € R and B € K. Then cof(Z) = ¢ but R x {0} contains no perfect
subset in Z. It is not clear if one can get a similar example with large
continuum.

Problem 8.9. 1. Is it consistent that ®. # () and for every T € ® the
family T N Perf(X) is coinitial?
2. Is it consistent that the ideals K and L are isomorphic but not perfect
1somorphic?
3. Is it consistent that there exist two isomorphic but not perfect isomor-
phic o—ideals having Borel bases and coinitial traces in Perf(X)?
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