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STATIONARY SOLUTIONS FOR HEAT
EQUATION PERTURBED BY GENERAL
ADDITIVE NOISE
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Abstract. Using the semigroup approach we prove that the heat equation
on a bounded domain in R? driven by general noise has a stationary solution
iff a certain functional of the jump part of the noise has a finite expectation.

1. Introduction. Let G C R? be a bounded domain with a regular
boundary dG. We consider the heat equation on G with zero boundary
conditions, perturbed by random sources of heat:

L(gf’w) = Apyu(t,z,w) + f(t,z,w),

u(tp, z,w) = a(x,w) (initial condition),
u(t,z,w) =0 for z € §G (boundary condition), (1)
t>ty, z€G, wefq, where (Q,F,P)

is a given probability space.
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In equation (1) f stands for a space dependent noice which in our model is
more general then white noise — we also admit jumps. Formally writing,

fdt = d7,,

where Z; is a process with independent homogeneous increments, taking
values in a proper function space.

By a solution of (1) we understand the so called mild solution (e.g. [4]) of
the stochastic evolution equation (x) corresponding to (1) — see Section 2.
We are concerned with the existence and uniqueness of solution to (1) that
is a strictly stationary process. Such a problem is natural and important
from the view point of physics.

Treating of (1) by the semigroup approach enables us to apply general
results on stationary measures for stochastic evolution equations from [3].
The main result of this note is Theorem 1 and Corollary 1, where an explicit
condition for the existence of stationary solution to (1) is given. This con-
dition is similar to the criterion obtained for finite dimensional stochastic
linear equations in [10] and [6].

2. Stochastic evolution equation. The following operator A acting
in the space H = L?(G) corresponds to equation (1):

A = A, with the domain (2)
D(A) = H} (G) N H*(@).
It is well known (see for instance [9]) that A defined by (2) has the
properties:
(A1) Aisaself adjoint strictly negative operator with compact resolvent.
Consequently, A has a purely point spectrum {—A;}22 ;, where
0< A <XA<...; lim)l;=00 (3)

and there is an orthonormal basis {gj }72 ; in H consisting of the eigenvectors
of A corresponding to the eigenvalues —Ag. In the simplest case when G is
the unit cube

{reRV:0<z;<1,i=1,2,...,d},

the eigenfunctions gy are of the form (see for instance p. 200 in [1])

d
(\/Q)d H Sinkiﬁl‘i, ki = 1, 2, ce (4)

i=1
and the corresponding eigenvalues (—\y) are

— 2k} 4 ... kD). (5)
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For a general bounded domain G with a regular boundary we have
Clk2/d S )\k S Cgk2/d (6)

for some constants co > ¢; > 0, kg > 1 and all £ > ko (see Theorem 5 p.
190 in [9]).

Then (A1) implies that A is a generator of the strongly continuous self
adjoint semigroup (St)¢>¢ of bounded linear operators on H, given by the
formulas:

Sih = Z e M h,gi)g, for heH (7)
k=1

and S; is compact for t > 0 (e.g. [1]).

Hence stochastic partial differential equation (1) can be written as the
following Ito equation in a real separable Hilbert space H:

{dXt = AX,dt + d7;

Y.y ()

where A is a linear operator on H (in general unbounded), generating a
strongly continuous semigroup (St);>o of bounded linear operators on H,
(Zt) —co<t<oo is an H—valued process with independent homogeneous incre-
ments, defined on a given probability space (£, F, P) and Y is an H—valued
random variable independent of {(Z; — Z, )i>¢, }-

Additionally we assume that (Z;) is continuous in probability, cadlag and
Zy = 0. Therefore Z; can be represented in the form (see [5)):

Zt:at+Wt+£t,

where a € H, W; is an H valued Wiener process with nuclear covariance
operator R and & is the jump part independent of the process W;. For ¢t > 0,
& has the representation:

& = zn(t, dz) — tM(dz)] + zn(t, dr)
[lll<1 ||| >1

where 7(t,dx) is a random Poisson measure and M is the Lévy spectral
measure of the random variable £&;. For an arbitrary Borel set B separated
from 0, n(t, B) is a number of jumps of the process Z; which occured from
time 0 to ¢ and belonged to B. Moreover E(n(t, B)) = tM(B). Recall that
the characteristic function of Z;, ¢ > 0, has the form:

Eexp(ily, Z;)) = expt{i<a,y> - %<Ry,y>

+/ (ei<a”y> —1- i(x,y>1{||z<1}(x))M(d:r)}, for y € H.
H
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(Usually the process Z; is defined for ¢ € [0, +00) but it can be extended in
a standard manner for ¢ € (—oo, +00) — see e.g. Remark 0.4 in [3].)

The unique mild solution of (x) is given by the formula (see [3]):
t
X, = Sy Y + / S, A7, t<to (%)
to

and it is well known that X; is a Markov process.

A process (Xt)ier is a mild solution of (%) on (—oo, +00) iff for any top € R
and ¢t > tp, the equality (xx) holds with Y replaced by X;,. We say that
X, is a stationary solution of (x), if in addition it is a strictly stationary
process.

Because one-dimensional distributions £(X};) determine the law of the
Markov process Xy, the equality £(X;) = £(X) for all ¢, s implies that the
process X; is stationary.

3. Existence of stationary solution to (*). We assume that the
generator A of the semigroup S; satisfies (A1) and this case covers model
(1). Then from (7) we have the estimate with 6 = A\; > 0:

15| < e™®  for t >0, (8)

that means the semigroup S; is exponentially (exp.) stable.

Remark 1. Let S be an arbitrary exp. stable semigroup. If Z; = at + W4,
then a stationary solution of (x) always exists (e.g. [4]). Therefore the jump
part & of the noise is only significant.

For H = R%, there exists a stationary solution to (x) if and only if

E(log™ || Z1]]) < o0 (see [10], [6]).
(9)

The same equivalence is also true in an arbitrary Hilbert space when the
generator A is bounded [7], [3]. It turns out that for an arbitrary exp. stable
semigroup S; condition (9) is too strong — it is sufficient for the existence
of stationary solution to () but it need not be necessary [3].

However, for a class of compact semigroups containing the semigroup
corresponding to (1) we obtain in Theorem 1 below a simple criterion (i)
that is similar to (9). In the proof of Theorem 1 we will use a general result
from [3] where we have given conditions of another type and rather difficult
to verify. We recall this theorem for the convenience of the reader.
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THEOREM A [3]|. Let S; be exp. stable. Then there exists a stationary
solution of (x) iff the following conditions hold:

[ [ sl 1) M) s < 0 "
and
there exists
tli’rgo t[ / Ssw M(dz) — / Ssx M(dzx)] ds. (vv)
ISsz|| <Az >1 ISsz|>1A[z]<1

Theorem 1. Assume that dim H = oo and the operator A satisfies (A1)
and

Z A exp(—M\T) < +oo (A2)
k=1

for some T > 0, where N\, and gy are defined in (3).
Then the following conditions are equivalent:

There exists a stationary solution of (x) (i)
] sup(; o™ [(2. 91)) M (da) < +oc (i)
H k
Esup(A; " logt [(Z1, gr)|) < +o0. (iid)
k
Proof. Let zp := (x,gx) and let 7, mean the orthogonal projection on
lin{g1,... ,9n}

From (v) and (7) we have:
o0 >/ / (I1Smnz | A 1) M (da)dt >
o Ju
/ M{z : ||Simpz|| > 1))dt = J. (10)
0
The inclusion

n n
{:E : Z |\St:vkgk||2 > 1} D) U {l‘ : ||Stxkgk|| > 1} =
k=1 k=1

n
log™ [a]
. Aty .
kZI{x Dkl > et ={x: max. " >t}
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implies the inequality:

JZ/O M({a s max (7 log" lan) > t})dt =

—1 1o+
[ max O log* aul)M(de) (1)

where the last equality follows from Appendix II, in [2]. Combining (10)
with (11) and applying the Lebesgue monotone convergence theorem we
obtain (7).

2. (#1) = (i) We will show that (v) and (vv) are satisfied. Consider (v).
Under the notations:

B=A{z:|z| <1},
C = {z : |zx] < exp(At/2)}

we have the estimate:

L. :/Oo/ (I Syl A 1) M (dz)dt (12)
0 H

g/ /HStwanQM(dx)dt
0 B

+/ / (1Semaz |2 A 1) M (dar)dt
0 'NCYN...NCr
—|—/ M(OiU...UC;L)dt::Il—i-fg—i-lg.
0
By the same method as in the first part of the proof we obtain:
I <2 / sup(Ar ! log™ |ax]) M (dz). (13)
H &k

From (8) we have:

n< / / 1S,z M (d)dt < / e*25tdt/ |z|2M(dz).  (14)

o JB 0 B

By the properties of the Lévy spectral measure M (e.g. [5]) the above
expression is finite and so is M(B’) in (15) below:

L<TM®B) + / / ISimnz|2M (dz)dt, (15
'NC1N...NCh

where T is given in (A2).
The last term in (15), denoted by Ia, , can be estimated as follows:

I, < / / Ze ’\’“thac dt < M (B Z)\ ML 4o,
’ (16)

The inequalities (12)—(16) show that the expressions L,, in (12) are boun-
ded from above by a constant independent of n. Then, by the Fatou lemma,
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(v) follows. Comsider (vv): by (8) the second integral is equal to 0. For the
first one we have:

/ / S| M (de) <

0 B'N{x:||Stx||<1}
// (1Smnz|2 A 1) M (d) + I
0 B'NCiN...nCx

Thus (vv) follows by the same method as (v).

3. The equivalence (ii) < (7it) follows from Theorem 2 in [8]. Indeed, note
that the inequalities

logTt <log(l+1t)<log2 +logtt, t>0,
imply that (i) holds iff [, >, ¢(z)M(dz) < +oo, and that (iii) holds iff

E¢(Zy) < +oo, with ¢(x) := supy, [A\; * log(1+]|(z, gx)|)] being a subadditive
function. 0

4. Stationary solution for heat equation (1).

Corollary 1. There exists a stationary solution of (1) iff (iii) holds. Mo-
reover a stationary solution on (—oo,+00) is unique up to modification and
given by the formula

t
X, - / S,_ydZ,. (17)

Proof. 1t follows from (5) and (6) that the eigenvalues of the operator A
defined in (2) have the properities:

ford=1, Y52 \" <40

ford>2, Y527 < +oo, ifp> 4.
Then (A2) holds and the first part of the corollary follows from Theorem 1.
To prove the uniqueness suppose that X} and X7 are such solutions and
L(X}) = L(X?) = p, —oo <t < oo. Fixt. Since S; is stable, S;_su
converges weakly to dy as s tends to —oo. Then S;_, X’ converges to 0 in
probability, ¢ = 1,2. Hence taking s — —oo in the equality

X} - X} =S ,X} S X2,
we get X} = X2. The formula (17) follows from the proof and (xx). O
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