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Abstract. In this note we construct a complete orthonormal system (ONS)
of uniformly bounded functions, such that for any function f € L2?[0,1]
its Fourier series with respect to the system, taken in decreasing order of
magnitude of the coeflicients, converges almost everywhere.

1. The famous Kolmogorov “rearrangement theorem” (1927) shows that
there exists a function f € L?[0,1] such that the Fourier series

[~ > fn)ermint (1)
neZ

after an appropriate rearrangement of its terms diverges almost everywhere.
In 1961, Olevskii and Uljanov proved that such a divergence theorem
holds for any orthonormal basis in L?. Namely:

THEOREM A. Let {1} be an orthonormal basis in L*[0,1]. Then there
exists a series

Zanwn(x>ﬂ Z|an|2 <0 (2)
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which diverges a.e. after some rearrangement.

See [4], Ch. III for the proof and historical details.
Recently, T. Korner [1] gave an interesting improvement of Kolmogorov’s
original theorem. Namely, he constructed a series

ZaneQﬂ'int ; Z |an|2 < 00

such that its decreasing coefficient rearrangement diverges:

lim sup Z ane%mt‘ =oc a.e.

=0+ lan|>n

The proof of Kérner’s result combines the general approach developed in
[4] with a new delicate construction in which specific properties of charac-
ter’s system are used in an essential way.

Therefore, the natural question arises: whether such an improvement can
be done in a general setting?

We prove here that this is not the case.

Theorem 1. There exists an orthonormal basis {1} in L*[0,1], consisting
of uniformly bounded functions, such that every series (2), ordered by de-
creasing magnitude of the coefficients, converges almost everywhere.

By a rearrangement of (2) in decreasing order of magnitude of the coef-
ficients we mean a rearrangement that puts the term whose coefficient has
maximum modulus over all coefficients first, followed by the term whose
coefficient has maximum modulus over all remaining coeflicients, and so on.
If there are terms with coefficients of the same modulus those terms may
be placed in any order relative to each other.

2. Our construction of {¢,} is a slight modification of one used in [3].
We use the following results:

Lemma 1 (See [4], Ch. IV). There exist square matrices Ay = ||a8€)\| (1<
i, <28 k=1,2,... such that:
1) Each matriz is orthogonal.
2) alF) = A fori=1,2,...,2".
3) The inequality
Slal<c ik
j

holds (where C' is an absolute constant).
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Lemma 2 (See [3], §1). Let {pr(x)} (1 < k < n) be an orthonormal sys-
tem of polynomials with respect to the Rademacher system. Then for any
numbers {dy} the following mequality holds:

Z dipr(z

k=1

1< <
0 m<n el

(A is an absolute constant).

Consider the Walsh system {w,,} on [0,1]. (For definitions of Walsh and
Rademacher systems see, for example, [4]).

It is well known that {w,,} is a basis in L?[0, 1], consisting of uniformly bo-
unded functions, and that Fourier series with respect to this system conver-
ges a.e. for any function f € L2. The Rademacher system is a subsystem

of {wp}.

Our system {1} will consist of polynomials with respect to the Walsh
system.

Divide the system {w,} into two systems {u,} and {v,}, where {v,} is
the Rademacher system with the natural ordering. Define

N, =29 k=12 .
Divide the system {v,} into blocks
Bg:{vgk),vék),...,v%ﬂg} k=1,2,....

From each block B} take the function UYC) and combine them to form the
system {yn}, with the same order. In each block B} replace v%k) with wuy,.
So we get a new system, consisting of blocks
k k
By, = {uk,vé ),... vgvk)}

Using the matrices Ay from Lemma 1 we put:

9" = aitt uHZa(’“) ot = & +Za(”’“

1§2§Nk, uk:m’f, k=1,2,....

In this way, we get a system {g, }, consisting of blocks

By ={g™, ¢, ... ,gN)}

Now combine {g,} and {y,} in one system {¢,,} in the following way: Put
Yo =Gn, Yon-1=Yn n=12,....

Thus we construct the system {1, }. The following properties of {t,} are
clear:
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1) {¢,} is an orthonormal basis in L?[0, 1].
2) {4} consists of uniformly bounded functions. (This follows from the
uniform boundedness of Walsh system and property 3 of matrices Ay).

3. Now we will prove that a series (2) with respect to the system {,},
taken in decreasing order of magnitude of the coefficients, will converge a.e.

As a series from L? with respect to the Rademacher system converges
a.e. after any rearrangement, we need only to prove that the series

D obagn(z) D bafF <1 (3)

converges a.e. when taken in decreasing order of magnitude of the coeffi-
cients.

First of all, we prove that {g,} (and so {1, }) is a system of convergence.
(Remember that an ONS {g,} is called a system of convergence if each
series (3) converges a.e.).

We have:

Np, Ng
(k) _ Yk (vk), (k) _ Yk — Yk Vi), ()

Uk Yk L) i N k=12
m +p’L —/L— k’ b B

where p(k) ijl ag}j’“)v‘;k), 1<i< Nisk=1,2,..., forming orthonormal
polynomials with respect to Rademacher system. So:

angn—z Zbk) (k

k=1 i=1
blgk)p(k)

We prove that all three series (denoted by S, 2, .8%) converge a.e.

0 N 40
> U@ =2 3 ()

k

St is a series from L? with respect to {pl(-k)} and its convergence after any
rearrangement follows from Lemma 2 as shown in [3], §1.

Now for
N, b(k)

k=1,2,...

we have:

Z ex[? = Z\

Ny b(k) 00

<Z Z|b(k = |bnl* < o0
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Thus the series 3.7 ; cpug(z) belongs to L2[0,1] and, therefore, converges
(2)

a.e. Each partial sum Sy, of 52 consists of some number m of entire blocks
and, possibly, a part of the block with number m + 1, so it has the form:

@ _ Y o b
Sy = crug(z) + L Um+1(T
> () + 3 a0

where m and M depend on n. However,
(m+1)

\Zw—umﬂ o) < 3B = ol

and we get that S? converges a.e. The same arguments tell us that S% also
converges a.e. So we get that a series (3) converges a.e.
We prove now that the series

Ny b(k)

k)

taken in decreasing order of magnitude of the numbers bl(» , converges a.e.
For £k =1,2,... put

A = {z J\lfk < |b(k | < N_l/lo}
A= {1 < - (1)

A= {a o) > N0

As D ien, |b |/\/ < 1/v/Ny, we get that the series

b
A=k (T)

converges absolutely.
From the definition of the set A} and the inequality in (3) we get that

the cardinality of A} is at most N,i/5, SO Y iy \bgk)|/\/Nk < N;/E’/\/N =

Nk_3/ 10 .1nd the series S Sie Ag(bgk) /vV/Ni)ug(z) converges absolutely.
As is clear from (4)

(K 1 1 k+1 . .
| )|>Nk N1/102|b( )| ZEA/C? ]EAk-i-la k:172v
k+1

so when we arrange the series >3 > icp, (bz(-k)/\/Nk)uk(:r) by decreasing
order, the rearrangement can only take place “inside” the blocks. However
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such a series converges a.e. — the proof is the same as for convergence a.e.
of S2, taken in the original order.

From here the convergence a.e. of S? follows after the decreasing order
rearrangement.

The same statement (with the same argument) is true for S3.

Combining this with the result on S' we finish the proof.

4. Remarks.

1. A system {¢,} in Theorem 1 can be constructed as trigonometrical
polynomials as well. For this we take the trigonometric ONB as {w,}
and subtract a lacunary subsystem ug(= wyr ). Then we proceed with
the same construction as before. The only changes needed in the
proof would be to use the original Carleson theorem instead of its
Walsh version (due to Billard) and to prove the corresponding variant
of Lemma, 2.

2. Actually one can get Theorem 1 without using deep convergence re-
sults. It is enough to start the construction with an ONB {w,} which
is a system of convergence, consisting of bounded functions and con-
taining a uniformly bounded infinite subsystem. A simple example of
such a {wy} can be found in [3], Section 1.2.

3. We mention an interesting open question posed by T. Kérner in [2],
p. 18: if one takes the Haar system as {1}, does every series (2) in
decreasing coefficients rearrangement converge a.e.?”
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