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In [10, 11, 12] a new graph topology 7 was introduced which is useful in applications to differential
equations. In this paper we study topological properties of 7 and relations between 7 and other known
topologies. For example, we find conditions under which 7 coincides with Back’s generalized compact-
open topology successfully used for convergence of utility functions [2] and for convergence of dynamic
programming models [19].
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1. Introduction

Topologies and convergences of graph spaces (spaces of functions identified with their
graphs or epigraphs) has been applied to different fields of mathematics, including differ-
ential equations, convex analysis, optimization, mathematical economics, programming
models, calculus of variations etc. [2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 17, 19, 20, 21, 24].

The definition of a new graph topology 7 was motivated by concrete problems in the
theory of hereditary differential equations.

Let (X, d) be a metric space, CL(X) be the family of all non-empty closed subsets and
G={[(f,Q): Qe CL(X), feC(,R™)} be the set of all graphs.

In [8, 9, 13], the authors studied a Cauchy problem (P) for ordinary differential equations
with delay. By virtue of the generality of the hereditary structure, the solutions of problem
(P) are elements of the graph set G (where X = E is a closed interval of R). To study
problem (P) the authors introduced the topology 7 in G [10]; it arose as a localization on
compact sets of the Hausdorff metric topology; the connection between 7 and Hausdorff
metric topology is the same as that between the compact-open topology 7¢o and the
uniform convergence topology in C(E,R™).
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In [11, 12] the authors extended the 7-topology over the graphs of functions defined on
subsets of a metric space X, preserving its main properties. The aim is to introduce a
same general hereditary structure in the theory of partial differential equations.

The peculiar property of 7, which makes it useful in applications to hereditary differential
equations, is the homeomorphism between the topological space (G, 7) and the quotient
space [(CL(X),7r) x (C(X,R™),7c0)]/R with respect to a suitable equivalence relation,
where 7 is the Fell topology. In force of this homeomorphism, the theory of hereditary
differential equations in G' has been reduced to the classical theory in C'(X,R™).

In [10] (X = F C R) the proof of the homeomorphic property was constructive, while in
metric spaces (see [11, 12]), the existence of the homeomorphism was proved by using the
Dugundji’s continuous extension and Michael’s continuous selection theorem.

We wish to point out that none of the already known hypertopologies has this homeo-
morphic property without involving heavy restrictions on the family C'L(X).

In the present paper we analyse topological properties of 7, and we compare it with other
known topologies. By using of a similar idea as Back [2], we find a subbase for the topology
generated by 7-convergence. As a consequence the topology 7 is well defined for every
topological space X and the 7-convergence doesn’t depend on the choice of a metric in
X.

We here summarise the main results obtained telling the properties valid only for conver-
gence of sequences from the ones formulated for nets.

(1) 7-convergence of sequences and convergence in Back’s generalized compact-open
topology [2, 19] coincide; in the case of nets the same convergences coincide if and
only if X is locally compact.

(2) T-convergence of sequences implies Kuratowski [3] convergence of graphs and do-
mains; we find additional conditions under which also opposite is true. For nets 7
implies Fell convergence, while the Kuratowski is implied if and only if X is locally
compact.

(3) If X islocally compact, then 7 is uniformizable; if X is locally compact and separable,
then 7 is metrizable and (G, 7) is a Polish space.

(4) 7 is finer than the Attouch-Wets topology [1] if and only if X is boundedly compact.

2. Notations and definitions

In what follows let (X, d) be a metric space. For basic notions and definitions the reader
is referred to recent Beer’s monograph [3]. Given two subsets A, B of a metric space
(X,d), the excess or Hausdorff semi-distance of A over B is denoted by e4(A,B) =
Sup,ea infpep d(a,b) with the convention ey(A, D) = +oo if A # () and eq4(0, B) = 0.

It is well known that Hy(A, B) = max{eq(A, B),eq4(B, A)} defines the Hausdorff distance
between A and B.

Denote by CL(X) the family of all non-empty closed subsets of X and by K(X) the
family of all compact sets in CL(X).

The open (resp. closed) ball with center z and radius r > 0 will be denoted by S(z,7)
(resp. B(z,7)). The open (resp. closed) r-enlargement of A is the set S(A,r) = {z €
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X :d(z,A) < r} (B(A,r) = {z € X : d(z,A) < r}), where by d(z,A) we mean
inf{d(z,a) : a € A}.

For every Q@ € CL(X), C(Q,R™) denotes, as usual, the space of all continuous functions
f:Q=>R" If feC(Q,R™) we denote by T'(f,Q) = {(w, f(w)) : w € Q} the graph of
f-Let G ={T(f,Q): Qe CL(X), f € C(2,R™)} denote the set of all graphs.

Let u be the metric in R™ induced by the natural norm. In what follows the excess e on
closed subsets of X x R™ is induced by the box metric D of d and u.

Given two elements I'(f,2), ['(g,A) in G and a set K € (X), we define
pr(I'(f,9),T(g,4)) = max{e(I'(f, 2N K),I'(g,4)),e(T(g, AN K),T'(f,92))}.

Remark 2.1. Note that px is non decreasing with respect to K, i.e. if K1 C K5 then
i, (5 4) < pr, (-, -)- We also have that pg(-,-) < H(-,-).

Moreover, we have
e(N(f,2N K),I'(g,A)) =e(l'(f,QN K),T'(9, AN B(K,))) (%)
for every number r > e(I'(f, 2N K),T'(g, A)).

Definition 2.2. Let (X,d) be a metric space. A net {I'(f,,$,) : 0 € £} in G is said
to be 7-convergent to I'(fo, ) if for every K € (X)) the numerical net {px(T(fo, ),
I'(fy,%)) : 0 € X} converges to zero.

Of course Hausdorff metric convergence in GG implies T-convergence and if X is compact
these two convergences coincide.

3. T-convergence of sequences in G

In this part we introduce some facts valid for 7-convergence of sequences in G for general
metric spaces. (Most of these results cannot be formulated for nets.) We will be interested
particularly to its relation to Kuratowski convergence of sequences in G.

Kuratowski convergence of sequences of restricted graphs in CL(X x R™) as well as
sequences of domains is convergence with respect to the Fell topology [3, Theorem 5.2.10].
As such, they can be also expressed in terms of excess as given by the following

Corollary 3.1 ([3, Corollary 5.1.7]). Let (X,d) be a metric space, let A € CL(X),
and let {A, : 0 € ¥} a net in CL(X). Then {A, : 0 € X} converges in the Fell
topology to A if and only if for each K € K(X), we have both {eq(AN K, A,) : 0 € ¥},
{ea(As N K, A) : 0 € ¥} converge to zero.

From this perspective, it is natural to try to link 7-convergence with Kuratowski conver-
gence of restricted graphs and domains.

By Lim Q,, Li2, and Ls Q, of the sequence {{2,}, in CL(X) we mean [3] the Kuratowski
limit, a lower closed limit and an upper closed limit of {€,},, respectively.

Lemma 3.2. Let (X,d) be a metric space. If {T'(fn, Q) }n T-converges to T'(f,Q), then
LimI'(f,,Q,) =[(f,Q) and LimQ,, = Q.
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Proof. Let z € Q. We show that x € LiQ, and (z, f(z)) € Lil'(f,,Q,). There is
z, € , such that

max{d(z, zn), | fo(zn) = () [} < pray(T(fn, ), T(f, 1)) + %

for every n € Z7.
From pys1 ((fr, 2s), L'(f,Q)) = 0, we have z,, = z and f,(2,) — f(z); done.
Now we prove that LsI'(f,,2,) C I'(f,Q2); the proof of Ls,, C 2 is similar.

Suppose that (z,y) € Ls['(f,,€,). By Lemma 5.2.8 in [3] there is a sequence {(zy,,
fr (0, )} such that z,, € Q,, for every k € Z* and (z,,, fu,(@n,)) — (z,y). Put
K ={z,, : k€ Z*} U {x}. For every k € Z* there is w,, € €2 such that

1

max{d(xnk7wnk)7 | fnk(xnk) - f(wnk) ‘} < pK(F(fnk, an)’r(f’ Q)) + n_k

Since wy, — z, we have z € Q. The continuity of f at = and f,, (z,,) — vy implies that
y = f(z), done. O]

The following proposition gives an equivalent description of 7-convergence in the language
of Langen’s generalized continuous convergence [19].

Proposition 3.3. Let (X,d) be a metric space. Then {U(f,, %)} = T(f,Q) if and
only if

(i) LimQ, = Q;

(ii)  for any x € Q and any sequence T, — x, T, € U, n € ZT, fu(x,) = f(x).

Proof. Let I'(f,Q)€ G and {I'(f,, )}, be a sequence in G satisfying (i) and (ii). Sup-
pose that {I'(f,, 2,)}, fails to 7-converge to I'(f,€2). There is K € K(X), ¢ > 0 and an
infinite subset I of Z* with

prc (T ([, ), T (£, €2)) > €

for every n € I.
We have two possibilities:

(a) there is an infinite subset I; of I with e(T'(f,, 2, NK), (T'(f,2)) > € for every n € Iy;
(b) there is an infinite subset Iy of I with e(I'(f, QNK), (I'(fn, ) > € for every n € I,.

In the case (a) choose for every n € I, z, € Q, N K with D((z,, fo(z,)),[(f,Q)) > e
Let z € K be a cluster point of {x,}; without loss of generality we can suppose that x is
a limit point of {z,}. By (i), = € Q. There is a sequence {z,} with {z,} — z, 2, € Q,
for every n € Z* and {z,} is a subsequence of {z,}. By (ii) we must have f,(z,) — f(z),
a contradiction.

In the case (b) choose for every n € Iy, z,, € QN K with D((zp, f(zn)), T[(fa, ) > €. Let
xz € K be a cluster point of {z,}. By using of (i) and (ii) there is a sequence {z,} — =
such that z, € Q, for every n € Z* and f,(z,) — f(z). The continuity of f at x gives a
contradiction with D((z,, f(x,)), [(fa, Q) > €, for every n € I.

To prove the opposite implication we use the similar argument as above. O
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From the previous proposition we can guarantee the coincidence of 7-convergence of se-
quences in GG and convergence in Back’s generalized compact-open topology.

In [2] Back introduced a generalized compact-open topology on the space of utility func-
tions. A utility function is a pair (2, f) where Q € CL(X) and f € C(,R). In [1§]
this topology was extended on the class P of all partial maps, i.e. pairs (€, f) where
Qe CL(X) and f € C(X,Y). Of course, we can identify every partial map (€2, f) with
its graph I'(f, Q).

For any open set U C X, K € K(X) and open (possibly empty) I C R™, let
U ={(Q,f)eP:QNU #0}and [K : I|={(Q,f) e P: f(KNQ) C I}

Denote by 7. the topology on P which has as a subbase the family of sets [U], [K : I]. If
m =1 7, is just the Back’s topology.

Corollary 3.4. If (X,d) is a metric space, then T-convergence and T.-convergence for
sequences coincide.

Proof. Follows immediately from Proposition 3.3 and Lemma 1 in [2] which works also
for P. O

Lemma 3.5. Let (X, d) be a metric space. If {TI'(fn,2)}n T-converges to T'(f,2), then
for every K € K(X) the sequence {f,(Q2, N K)},, is equibounded (i.e. there is a bounded
set B C R™ such that f,(Q2, N K) C B for every n).

Proof. Let K € K(X). Let f be any continuous extension of f : Q — R™ to all X.
There is § > 0 such that | f(z) — f(y) |< 1 for every z,y € X with d(z,y) <d and z € K
(a consequence of the uniform continuity of ﬁ k). So the set L = f(S(K,§)) is bounded
in R™. We show that f,,(Q, N K) C S(L, ) eventually. There is Ny € Z* such that for
every n > Ny, pr(U(fn, ), [(f,Q)) < %. Let n > Ny and z € Q, N K. By the definition
of pr(L'(fn, ), T(f,2)) there is z € €2 such that

max{d(z, z), | fu(z) = f(2) |< pxc(T(fn, ), T(f, ) + g <.

Thus z € S(z,d) C S(K,9) and fp(z) € S(f(2),d) C S(L,9), done. Put B = S(L,5) U
Uffil (2, N K). Then f,(2, N K) C B for every n, and of course B is bounded in
R™. O

The following proposition gives another characterization of 7-convergence.

Proposition 3.6. Let (X, d) be a metric space. Then {U'(f,, %)} = T(f,Q) if and
only if

(1) Lim[(f,, ) =T(f,Q);

(2)  for every compact K the sequence {f,(Q, N K)}, is equibounded.

Proof. Let {['(f,, )}n 7-converges to I'(f,€2). Then by Lemmas 3.2 and 3.5 (1) and
(2) are satisfied.

Suppose now that (1) and (2) are satisfied. We show that also (i) and (ii) from Proposition
3.3 hold. ©Q C Li2, is obvious from (1). Suppose now that z € Ls(,, i.e. there is a
sequence {Zp, }k, Tn, € Qn, for every k ({ny} is an increasing sequence in Z*) such that
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Ty, = 2. Put K = {z,, : k € ZT} U {z}. K is compact, so by (2) {f.(2, N K)},
is equibounded, so there is a cluster point y € R™ of the sequence {f,, (%n,)}s. Then
(z,y) € LsT(fn, ) Le. (2,9) € T(f, Q). Thus 2 € Q.

To verify (ii) let z € Q and {z, }, be a sequence such that z,, € Q, for every n and z,, — x.
To prove {fn(x,)}n converges to f(x) it is enough to show that every subsequence of
{fnu(zn)}n has a subsequence convergent to f(x). So let I be an infinite subset of Z*
and consider {f,(z,) : n € I}. Since z, — x by (2) {f.(z,) : n € I} has a cluster
point y € R™. By (1) (z,y) € I'(f,Q) since (z,y) € Ls['(f,,Q,) ie. y = f(z). So
{fn(zy) : n € I} has a subsequence convergent to f(x). O

The following two propositions give some sufficient conditions under which 7 and Kura-
towski convergence of sequences in GG coincide.

Proposition 3.7. Let (X,d) be a closed conver set in a linear metrizable space and
Q,Q,.(n € ZT) be closed convex sets in X. TFAE:

(1) LimI(f,,Q,) =T(f,Q) and LimQ,, = §;
(2)  AT(fn, Q) }n T-converges to T'(f,2).

Proof. (2) = (1) by Lemma 3.2.

To prove (1) = (2), by Proposition 3.6 it is sufficient to verify that for every compact set
K the sequence {f,(£2, N K)}, is equibounded. Suppose no. So there is a compact set K
for which {f,(22,NK)}, is not equibounded. There is a sequence {z, },, z, € Q,NK such
that {f.(z,)}n is unbounded. Let x € K be a cluster point of {z,},. So z € Ls{,, C Q.
There is a sequence {y,}n,Yn € Qp such that y, — z and f,(y,) — f(z) for every n.
There is an increasing sequence {ny} of positive integers such that | f,, (z,,) — f(z) |> €,
| for Yn,)—f(2) |< €/2 for every k and z,,, — x, yn, — x. The convexity of §2,,, guarantees
the existence of a point z,, € [Zn,,Yn,] C 2y, such that f, (z,,) € Fr(B(f(z),¢)) for
every k. The compactness of F'r(B(f(z),€)) implies the existence of a point y which is a
cluster point of {f,, (zn,)}x- So (z,y) € Ls'(fn, ) C I'(f,2), a contradiction. O

Proposition 3.8. Let (X, d) be a closed convex set in a normed reflexive space (where d
is a metric induced from the norm) and Q, Qn(n € ZT) be closed convex sets in X. TFAE:

(1)  LimD(fn, Q) =T(f,Q);
(2)  AT(fn, Q) }n T-converges to T'(f,2).

Proof. By Proposition 3.7 it is sufficient to verify that Lim 2, = .
Lim ['(f,, 2,) = T'(f, Q) implies Q C LiQ, so only LsQ,, C Q remains to prove.

So let z € Ls(, and suppose z & 2. There is a sequence {z, : n € J} where J is
an infinite subset of Z* such that z, € Q, for every n € J and z, — z. Of course
{fu(zy) : n € J} converges to no point from R™.

Let n = d(x,9Q). Since  is a closed convex set in a reflexive space, there is [ €
such that d(z,l) = d(z,Q). There is a sequence {y,}n,yn € Qp for every n € Z* such
that y, — [ and f,(y,) — f(I). There is 6 > 0 and an infinite subset .J; of J such
that f,(y,) € S(f(1),2) and fu(z,) & S(f(1),0), for every n € J;. For every n € J;
there is a point z, € [zn,yn] C €, such that f,(z,) € Fr(B(f(l),%)). Let y be a
cluster point of {f,(z,) : n € Ji}. For every n € J; let g, € (0,1) be such that z, =
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GnZn + (1 — ¢)yn. Without loss of generality we can suppose that {f,(z,):n € Ji1} =y
and {g, : n € Ji} — ¢q € [0,1] (otherwise we pass to subsequences). If ¢ = 1 then
{zon : m € 1} = z, {fu(2n) : n € 1} — vy, so (z,y) € Ls ['(f,,Q2,) C I'(f,Q) ie.
xz € Q, a contradiction. Suppose now that ¢ = 0. Then {2z, : n € J1} = I, {fn(zn) :
ne i} =y, ie (l,y) € LsT(fn, Q) C T(f,Q). Thus y = f(I), a contradiction. Now
let ¢ € (0,1). Then {z, : n € Ji} — (¢z + (1 — ¢)l) and {fn(2,) : n € J1} — y, ie.
(gz+(1—q)l,y) € Ls'(f, ) = I'(f,92). So (qz+(1—¢q)l) € Q, but [[z—(gz+(1—-¢)))[| =
=1 —-gq)llz =1 < ||z =1 =d(x,), a contradiction. O

Corollary 3.9. Let (X,d) be a closed convez set in RF(k € Z) and Q,Q,(n € Z1) be
closed convex sets in X. TFAE:

(1)  LimT(fa, Q) =T(f,Q);
(2) AT (fn, ) }n T-converges to T'(f,2).

4. Topological properties of T7-convergence

In this part we will study topological properties of 7-convergence in G. At first we prove
that this convergence is always topological by finding a topology which topologizes 7-
convergence.

First some notations. In Section 3 we mentioned Back’s topology defined by a subbase
from sets of the form [U] and [K : I]. Here we use the same notations also for sets in G
(of course we can identify partial maps with their graphs). So for every open sets U,V in
X, K € K(X), open J C R™ and open (possibly empty) I C R™, let

U] ={T(f,Q) €G:QNU # 0},
K :1]={T(},Q) € G: f(KNQ) C I},
[V x J)={T(f,Q) € G:T(f,Q) NV x J #0}.

Theorem 4.1. Let (X,d) be a metric space. Then the topology which has as a subbase
all sets of the form [U],[K : I],[V x J| where U,V are open sets in X, K € K(X) and
I,J are open sets in R™ (I possibly empty) topologizes T-convergence.

Proof. Let {I'(f;,€,) : 0 € £} be a net in G which 7-converges to I'(f,2). It is an easy
exercise to verify that this net converges also in the above defined topology.

Now suppose {['(f,,€,) : 0 € ¥} converges to I'(f,2) in the above mentioned topology,
but fails 7-converge. So there is K € K(X), e > 0 and a cofinal subset A in ¥ such that
pr(L(fry Q26), T(f,2))> € for every o € A. There are two possibilities:

(a) there is a cofinal subset A; of A such that e(I'(f,, 2, N K),T'(f,)) > € for every
S Ala

(b) there is a cofinal subset Ay of A such that e(T'(f,Q2N K),T'(f,,€)) > € for every
o€ AQ.

In (a) let z, € Q, N K for every o € A; such that (z,, f,(2,)) &€ S(T(f,),€). Let z be
a cluster point of {z, : 0 € A;}. It is easy to verify that z € Q. Let 0 < § < € be such
that f(S(z,6) N Q) C S(f(z),€). Put C = K N B(z, %), then T'(f,Q) € [C : S(f(z),¢)],
so I'(f,, Q) € [C : S(f(x),¢€)] eventually, a contradiction.
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In (b) let z, € QN K for every 0 € Ay such that (z,, fr(2,)) & S(T(f,Q),¢). Let z
be a cluster point of {z, : 0 € Ay}. Then x € QN K. Let 0 < 6 < € be such that
£(S(z.6) ") € S(f(), 5).

S(z,2) x S(f(x), £) NT(fr, Q) # 0 eventually, a contradiction. O

In what follows denote by 7 also the topology described in the previous theorem. From
the presentation of 7-convergence by using of the above mentioned topology 7 we see that
this convergence doesn’t depend on the choice of a metric in domain X. The topology 7
is even well defined for every topological space X.

From the presentation of Back’s topology 7. given in Section 3 we see that 7. C 7. We
can characterize the local compactness of X by a coincidence of 7 and 7.

Theorem 4.2. Let (X, d) be a metric space. TFAE:

(1) X is locally compact;
(2) T-convergence of nets in G and T,.-convergence coincide.

Proof. (2) = (1). Suppose X is not locally compact. There is a point € X which has
no compact neighbourhood of z. Denote by U(x) the family of all open neighbourhoods
of . For every K € KK(X) and U € U(z) there is a point zxy € U \ K. Consider the
following directions on K(X) and U(z): if B,C € K(X) then B > C < B D C and if
UV eU(z) then U >V & U C V. Let K(X) x U(z) be equipped with the natural
direction induced by the above ones. For every (K,U) € K(X)xU(z) put Qg p = {rxuv}
and define ugy on Qg by ukv(rky) = 1. Let further Q = {z} and u be the function
defined on Q by u(z) = 0. The net {['(ux v, Qxv) : (K,U) € K(X) xU(x)} T.-converges
to T'(U,§2). Let V be an open set in X such that I'(u,Q)€ [V]. Then QNV # 0, ie.
z€V,s0V €U(x). Choose aset K € K(X). For every (B,U) € K(X) xU(zx) such that
(B,U) > (K,V) we have I'(ugy, Q2sv) € [V]. Now take C € K(X) and open I C R™
such that I'(u, Q)€ [C : I]. Let U € U(x) be arbitrary. Then for every (B,V) > (C,U)
we have Qpy NC =0, s0 I'(upy,Qpyv) € [C:I] for every (B,V) > (C,U).

It is easy to verify that the net {I'(upy,Qpy) : (B,U) € K(X) x U(z)} does not -
converge to I'(u,2), since p(o}(T(upv, 2,v),['(u,€)) =1 eventually.

(1) = (2). Let {T'(f,,Q,) : 0 € £} be a net in G 7.-convergent to I'(f,2). By Theorem
4.1 and the description of Back’s topology it is sufficient to verify that if ['(f,Q) € [V x I],
where V, I are open sets in X, R™ respectively, then also I'( f,,2,) € [V xI] eventually. [

In the following part of our paper we are interested in uniformizability and metrizability
of the topology 7.

Proposition 4.3. If (X,d) is a locally compact metric space, then T is uniformizable.
Proof. For every K € K(X) and € > 0 put
UK,E = {(F(fa Q),F(g, A)) €EGXG: IOK(F(fa Q),F(Q,A)) < 6}'

We show that the family {Uk, : K € K(X) and € > 0} is a base for a uniformity U on
G. Let K € K(X) and € > 0. Then Uk, = Uy, and Uk contains the diagonal in G x G.
Now, we show that there is C' € K(X) and 6 > 0 such that Ugs 0o Ucs C Uk,. The
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local compactness of X implies that there is § > 0, § < § such that B(K,¢) is compact.
Put C = B(K,0). Let (I'(f,Q),I'(g,A)) € Ugs o Ugs. There is T'(h,X)€ G such that
(I'(f,Q),['(h, X)) € Ugys and (I'(h,%),T(g,A)) € Ugs. We have

e(T'(f, QN K),T'(g,A)) <e(f,QNK),T'(h,XNB(K,0d)))+

te(D(h, SN B(K,8)),T(g,A)) <6 +6 < e

where the first estimation is implied by the inclusion Ugs C Uk s and the property ().

Finally, let K, Ky € K(X) and €,€6; > 0. Put K = K; U K, and € = min{ey, e2}. Then
Uke C Uk, ey NUkye,- S0 the family {Uk, : K € K(X) and € > 0} forms a base for
a uniformity U on G. It is easy to verify that the convergence in the topology of the
uniformity U is just 7-convergence in G. O

Proposition 4.4. If (X,d) is a locally compact and separable metric space, then T is
metrizable.

Proof. For a metric space (X, d) the locally compactness and separability is equivalent
to hemicompactness, that is the existence of an increasing sequence {K,}, of compact
sets such that for every compact K € K(X) there is n € ZT with K C K,,. X is locally
compact [15], so by Proposition 4.3 the family {Uk, : K € K(X),e > 0} is a base for a
uniformity U on G. It is easy to verify that the family {Uy 1 :n € Z*} is a countable
base of U. " O

Proposition 4.5. If (X,d) is a locally compact and separable metric space, then (G, )
15 a Polish space.

Proof. By Theorem 4.2 7 and 7, coincide on G. By Theorem 3.4 in [18], as X is hemi-
compact, then (G, 7) is a Polish space. O

Of course to find a complete metric which describes 7-convergence in G for a locally
compact and separable metric space (X,d) would be useful. We solve this problem at
least for a closed interval X in R.

Let X be a closed interval in R equipped with the natural metric. In [10] for every
f e C(Q,R™) the extension f € C(X,R™) of f was defined such that the mapping
U (G,7) = (C(X,R™),7¢0), ¥(L'(f,Q)) = f is continuous (r¢o is the compact-open
topology).

Denote by 7 the Fell topology on CL(X) [3, 16] and define the mapping ¢ : (G,7) —
(CL(X),rr) x (C(X,R™),7¢0) by ®(T(f,Q)) = (Q, f). By Theorem 4.2 in [18] ® is a
homeomorphism and ®(G) is a closed subspace of (CL(X),7r) x (C(X,R™),7c0). On
CL(X) the Fell topology coincides with the Attouch-Wets topology [1, 3], for which the
well-known expression of a complete metric is

di (A, B):Zz—iminu, sup | d(z, A) —d(z, B) |}.

d(z,z0)<1
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Also the compact-open topology 7¢o on C(X,R™) can be described by the following
complete metric

df.9) =Y 2 min{l, swp | f(@) = g(o) |}

d(x,x0)<1i

Thus if we define
L(T(f,2),T(g,:4)) = i (2, A) + do(f, §)

we obtain a compatible complete metric for (G, 7).

5. Comparison with hyperspace topologies

In the last part of our paper we would like to present some results concerning relations
between 7-topology and some hyperspace topologies induced on G from CL(X xR™). Hy-
perspace topologies on graphs of continuous functions with common domain were studied
in many papers. We quote at least some [4, 5, 6, 7, 17, 20, 21].

Denote further by 7, Taw, 7 the Fell [16], Attouch-Wets [1] and Hausdorff metric topo-
logy [3, 23, 24], respectively. We are going to show that 7= C 7 and if X is boundedly
compact, then also 74 C 7. Of course 7 C 75 in G.

From Lemma 3.2 we know that 7-convergence of sequences implies 7x-convergence (since
it coincides with Kuratowski convergence). Now we show that also 7-convergence of nets
implies 7p-convergence.

Proposition 5.1. Let (X,d) be a metric space. Then 7 C T in G.

Proof. Let {['(f,,$,) : 0 € X} 7-converges to ['(f,€2). It is sufficient to show that if
K is a compact set in X x R™ such that T'(f,Q)NK = (), then also I'(f,,Q2,) N K = 0
eventually.

Suppose there is a cofinal subset A of ¥ such that ['(f,,Q,) N K # ) for every o €
A. Since II;(K) is compact in X (where II;(K) is the projection of K to X) we have
pry ) ({T(fo,Q0), T(f,€2)) — 0. Therefore for every e > 0 S(K,e) NT(f,€) # 0 (where
by S(K,€¢) we mean an enlargement induced by the box metric of d and u). So also
KNT(f,Q) #0, a contradiction. O

The following proposition shows that Lemma 3.2 does not work in general for nets. Of
course, if X is locally compact, then from previous propositon we see that 7-convergence
of nets implies Kuratowski convergence (77 topologizes Kuratowski convergence in locally
compact spaces).

Proposition 5.2. Let (X,d) be a metric space. TFAE:

(1) X is locally compact;
(2) 7-convergence of nets implies Kuratowski convergence in G.

Proof. Only (2) = (1) needs a proof. Suppose X is not locally compact. There is a
point x € X which has no compact neighbourhood. We use the same notation as in
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the proof of Theorem 4.2. For every (K,U) € K(X) x U(z) put Qxv = {zxuv,y},
where 2y € U \ K and y is a point in X different from z, and define ug y on Qg as
ug,u(y) = ukv(zky) = 0. Let further Q = {y} and w is defined on 2 as u(y) = 0. Then
{T(ukp, Qxp) : (K,U) € K(X)xU(x)} T-converges to I'(u, §2), but not Kuratowski since
($, O) € Li F(’LLK,U, QK,U) \ F(U, Q) ]

Proposition 5.3. Let (X,d) be a metric space. TFAE:

(1) X is boundedly compact (i.e. every closed bounded set is compact);
(2) Taw C T onG.

Proof. (1) = (2) The proof in this direction uses the same idea as in [10].

(2) = (1) Suppose X is not boundedly compact. So there is a closed bounded set B which
is not compact. Let {z1,z9,...,2,,...} be a sequence in B which has no cluster point.
Put Q = {z1} and Q, = {z1,z,} for every n € Z*. Let u,u,(n € Z*) be restrictions
of the zero function on €2, ,, respectively. Then it is easy to verify that {I'(un,2,)}x
T-converges to I'(u, 2), but fails 74-converge to I'(u, ). O

We finish with the following proposition.
Proposition 5.4. Let (X,d) be a metric space. TFAE:

(1) X is compact;
(2) Tg=71ongdG.

Proof. For (2) = (1) we can use a similar proof as in the previous proposition. O
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