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Let (X, ||-||x) be an order-continuous Banach ideal space over a o— finite measure space (2,2, u) and E
a Banach space. We prove that a function f of the vector Banach ideal space X (E) is a denting point
of the unit ball of X (E) if and only if : (i) the modulus function |f| : ¢t — || f(¢)|| is a denting point of
the unit ball of X and (ii) f(t)/||f(t)|| is a denting point of the unit ball of E for almost all ¢ in supp(f).
This gives an answer to the open problem raised in the paper [3].

1. Introduction

Let (€2,3, 1) be a o- finite measure space. By Banach ideal space (shortly Banach i.s)
over (2,3, 1) we mean an ideal X of the vector lattice L°(p) of real measurable functions
which is equipped with a monotone norm ||.||x (that is ||f||x < ||g|]|x whenever f,g € X
and |f| < |g|) for which it is a Banach space. The notion of Banach i.s is an adequate
slight generalization of what is known in some literature ([7] 1.b.17) as Kothe function
space, that comes from works of the Russian School (c.f. Zabrejko [13], Kantorovich-
Akilov [6]). Indeed, it can be proved that Banach i.s X over (€2, X, ) are those spaces for
which there are a Probability measure v on 2 with v < p, and a non-negative measurable
function a on (2 such that the set inclusions

al® (v) C X C aL' (v)

hold and are topological (the spaces aL>®(v) and aL'(v) being respectively equipped with
the norms || f|la,co = || 2 flloo and || flla,s = [ £f|l1). For a recent monograph on the subject
of ideal spaces, we refer the reader to the book [12] of M. Vith.

Banach ideal spaces can naturally be extended to the vector case. Let F be a Banach
space and X be a Banach i.s. We denote by X (FE) the set of all strongly measurable
functions f : 2 — E such that the modulus function |f|: ¢ —— || f(¢)|| belongs to X. For
more convenience we will identify every function f in X (F) with its equivalence class for
the binary relation “equality u — a.e ”. This leads us to define a norm in X (F) by setting

Al = WAl > feX(E)

and X (F) becomes a Banach space under this norm.

Before going to the main part of our subject let us recall some notations and definitions.
If A is a non-empty subset of E, co(A) (resp. ¢6(A)) denotes the convex hull (resp. the
closed convex hull) of A and 6* (., A) will denote the support function of A , that is the
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function defined in E* by 6*(z*, A) = sup{z*(z) : x € A}. Suppose that A is convex
closed and let x € A. We say that z is a strongly extreme point of A if for every ¢ > 0
there exists 6 > 0 such that for all y, z € A, the condition ||1/2(y + z) — z|| < § implies
lly — z|| <. We say that z is a denting point of A if for every € > 0, x ¢ ¢o(A\B(z,¢))
where B(z,¢) is the set of all y of E such that ||z — y|| < e. It is well known that “z is a
denting point of A” = “z is a strong extreme point of A” = “ z is an extreme point
of A” and that the converse implications are false. For a given Banach space Z, we will
denote by Bz the closed unit ball of Z.

The purpose of this paper is to give necessary and sufficient conditions for a function f in
X(FE) to be a denting point of the unit ball Bx gy of X(E). In the case where X = LP(p)
with 1 < p < oo, the problem was solved by B. L. Lin and P. Lin [8] and the necessary
and sufficient conditions found were f(t)/||f(t)|| is a denting point of By for almost all ¢
in supp(f). Next, Castaing and Pluccienik [3] extended the result in the case of Kothe-
Bochner functions spaces X (E) with the assumption X locally uniformly rotund (LUR).
Moreover, the authors raised in the end of their paper the open question of whether their
main result can be true without requiring this assumption. Note that a Banach space
which is LUR possesses the property that every unit vector is a denting point of the unit
ball. So it is natural to wonder what happens if we replace in Castaing-Pluccienik result
the condition “X is LUR” by the less restrictive condition “|f| is a denting point of the
unit ball of X”. In this paper we give an affirmative answer to this problem. We obtain
necessary and sufficient conditions ensuring that function to be denting points of the unit
ball. It is worth to mention that our proofs are new and rely on some topological properties
of ideal spaces and characterizations of denting points. Nevertheless the paper [3] played
an important role in our investigation since several parts of our proof are modifications
of arguments given there. The paper contains also other results characterizing denting
points of the set of measurable selections of an integrably bounded convex closed valued
multifunction.

2. Preliminary results

Some results on denting points can be found in the literature [10], [11], [9]. The following
criteria are useful

Lemma 2.1 (Lin-Lin-Troyanski [10]). Let K be a non-empty convex closed subset of
E and let x € K. The following assertions are equivalent :

(i) =z is a denting point of K.

(ii) For all sequences (x)1<i<v, of K and sequences (of)i<i<, of positive scalars
with Y o = 1, n € N, the condition lim, o || D ", o'zl — x| = 0 implies
limy, 0 Z;jil aff|z} —z|| = 0.

(iii) There exist no sequences (z})1<i<y, of K and sequences (o )1<i<u, of positive scalars
with Y ", o = 1(n € N) such that lim,,_,, || >°;", a2l —z|| = 0 and ||z} —z|| > ¢,
Vn,1 <i<uv,, for somee > 0.

The following result is a variant of the preceding lemma. It allows us to avoid a use of
double indexed sequences, which can be useful in some other situations (c.f. Theorem 2.5
below).
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Proposition 2.2. Let K be a non-empty conver closed subset of E and let x € K. The
following assertions are equivalent :

(i) =z is a denting point of K.

(ii)  For any sequence (x,) of K, if there exists a sequence (y,) such that y,, € co{xy :
k>n}, ne€N, and lim,_, ||y, — z|| = 0, then x is a strong cluster point of (xy).

(iii) For any sequence (x,) of K, the condition liminf, ,. z*(z,) < z*(z), Vz* € E*,
implies that liminf,,_, ||z, — z|| = 0.

(iv) There exists no sequence () in K such that ||z, —z|| > ¢, Vn € N, for somee >0
and such that there ezists a sequence y, € co{xy : k > n} with im,_, ||y, — z|| = 0.

Proof. Let us prove the implication (i)=(ii). Let us first remark that the condition
“there exists a sequence y, € co{zy : k > n}, n € N, such that lim,_, ||y, — z|| = 0”
is equivalent to the condition “z € (), 5,C0{z; : k¥ > n}”. Hence for every ¢ > 0, since
z ¢ ©o(K\B(z,¢)) and z € Go{xy : k > n}, the set {z; : k > n} cannot be contained in
the set K\ B(x,¢). Hence we obtain: for every € > 0 and every n > 0, there exists m > n
such that ||z, — z|| < &. This is clearly the analytique definition of a cluster point of the
sequence (z,,).

The implication (ii)=-(iv) is obvious. Let us prove (iv)=-(i). Suppose z is not a denting
point of K. Then there exist sequences (z})i<i<y, in K and (o)i<i<y, in [0,1] with
dYomial =1, and € > 0 such that ||z — z|| > ¢ for all n and 1 < i < v, and
limy, 0 || Zzyil afz} — x| = 0.

Set N(1) := 0 and N (k) := >.¥'v; for k > 2. Let (yn)n>1 be the sequence in K defined

b
Y YUnyei =2F fork>1and 1<i <y, (2.1)

i <} and since N(k)+i >k (1 <i < 1y) we have 2 € co{y,, : m > k}. On the other
hand, by hypothesis, we have lim;_,« ||2x — z|| = 0 and ||y, — z|| > € for every m € N.
Thus (iv) is not satisfied.

For all k£ > 1, the vector z; := Y 7%, oz is contained in the convex hull of {yny4i 1 1 <
=1 """ (k)

Now we only need to prove that (ii)<>(iii). This follows from the fact that the condition
“z is a strong cluster point of (x,)” is equivalent to the condition “liminf, . ||z, —z| =
0” and that the condition “z € (,,,C0{zx : k > n}” is equivalent to the condition
“liminf, o 2*(z,) < 2*(x), Vz* € E*”. The first fact is standard. Let us prove the
second one. Suppose that z € (),5,C0{zx : K > n} and let z* € E*. Then for all n € N,

we have 2(z) < 6 (&, Tl - k > n}) = 0% (2, {2 - k > n})
= sup =" (z)
k>n

Hence z*(z) < inf, sup,s,, *(zx) = limsup,,_, ., z*(x,). A simple change of z* with —z*
shows then that the converse inequality is also true with lim inf instead of lim sup. Let us
prove the converse implication. Suppose for contradiction that « ¢ (1),,>,c0{zs : £ > n}.
Then z ¢ T6{z,, : k > ng} for some integer ny. By the Hahn-Banach Theorem there
exists z* € E*\ {0} such that

sup ¥ (zg) = 0™ (2", €0 {zk : k > ng}) < z* (2)

k>ng

Thus limsup,,_, ., *(z,) < z*(z) and so liminf, . y*(z,) > y*(x) with y* = —z*. O
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Recall that the Banach i.s X is said to be order continuous if for every decreasing sequence
(fn) of X (the positive cone of X) such that inf,,>o f, = 0 (we write shortly f, | 0) we
have lim,, , || fnllx = 0.

The following lemma is an analogue of the Lebesgue dominated convergence theorem for
the case of order continuous Banach ideal spaces. For a proof of a more general result we
refer the reader [12], Theorem 3.3.5.

Lemma 2.3. Suppose that X is order continuous. Let (f,) be a sequence in X converging
i — a.e or in measure to the null function and such that there exists a function g € X
such that |f,| < g for alln € N. Then (f,) converges in norm to 0 in X.

Let us now recall the support of a Banach ideal space. For a function f of X (or X (E)),
we define the support of f by

Sy =supp(f) :={t € Q: f(t) # 0}

The support of a function f of X (or X(F)) is a measurable set defined except for a
u-negligible set since the function f is itself identified with its own equivalence class for
the p — a.e equality relation. On the other hand, it is known that the o—algebra X is a
complete lattis for the preorder: A Ce B iff A\B is a pu—negligible set. We define the
support of X as the supremum in ¥ (equipped with Cess) of the family Fx of all supports
Sy of functions f € X. We denote it by supp(X).

Lemma 2.4. There ezists a function o in X such that a(t) > 0 for all t € supp(X).

Proof. Set S := supp(X). From the definition of the support, we have 15 = esssup{ls, :
f € X}. Hence, there exists a sequence of functions (h,) in X such that 1 = sup,,5 1s, .
For each n > 1, choose a number n, > 0 such that 7, ||A.]lxy < 27" and set o, =
> p—1 Mkhk. Then (oy,) is a Cauchy sequence in X. So it converges to a function o € X .
Since (ay,) is increasing, we have necessary o = sup,,»; o, It follows that

Sa = San = Sha

n>1 n>1

On the other hand U,>1S5,, = S. Hence modifying o on a p—negligible set, we get the
required function. 0

Without loss of generality it can be assumed that supp(X) = Q. In this case, we say that
X is a Banach fundamental space (shortly Banach f.s), c.f. [6], Chap. IV, §3. We will

assume this is true in all that follows. Let us recall the dual i.s of X, denoted by X',
defined as the space of all functions g € L°(u1) such that

supp(g) C supp(X) and f.g € L'(n), Vf € X.

It is proved that X' is a Banach ideal space for the norm

||g||Xf=Sup{/f-gdu:f€X, ||fllxﬁ1} , ge X’
Q
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and that supp(X’) = supp(X) = Q (c.f. [6], Chap VI, §1). From Lemma 2.4, choose a
function 3 in X’ such that §(¢) > 0 for all t € 2. We can suppose further that |3, = 1.

Consider now the o—finite measure v = Bu: A — [ 4B dpon X. From the definition of
X' it is clear that the set inclusion X C L'(v) holds. Furthermore, we have

£l < MIfllx forall feX (2.2)

where ||.||; is the L' —norm in L'(v). This property will us help later. It reduces the study
from X to L'—spaces.

When the Banach space E is not necessarily separable, it is difficult to give an adequate
general measurability theory for multifunctions I' from Q to subsets of E ([4], Chap III).
Fortunately, for the purpose of this paper, we can always reduce to this case. Indeed,
let f be a non-zero function in X (FE). Then, there exists a non trivial separable Banach
subspace Ey of F such that f(t) € Ey p - almost everywhere. The vector Banach i.s X (Ey)
can no longer be identified with a Banach subspace of X (F) containing the function f.
So if f is a denting point of the unit ball of X (F), then it is also a denting point of the
unit ball of X (Ej).

Suppose now that the Banach space E is separable. A multifunction I' from € to 2% is
called measurable if its graph gr(l') = {(t,z) : « € I'(t)} belongs to ¥ ® B(E) where
3 is the p-completion of ¥ and B(E) is the Borel tribe of E. For more properties on
measurability of multifunctions, we refer the reader to the monograph [4], Chap III. In
particular, it is found there different kinds of measurability and some relations between
them. Our choice of the previous definition of measurability aims at covering the most
general case including multifunctions, not necessarily convex or closed valued.

Let I" be a measurable multifunction from €2 to non-empty convex closed subsets of E.
We will say that [ is X-bounded if there exists a function g € X, such that u — a.e,
['(t) C g(t)Bg. In that case we will denote by LX(u) the set of all selections f € X(E)
of . Note that L () is a non-empty convex closed and bounded subset of X (E). The
following theorem generalizes Theorem 3.6 of [1] (Chap II):

Theorem 2.5. Let I' be a measurable multifunction from € to non-empty conver closed
subsets of E. Suppose that I' is X-bounded and let f € L¥ (u). Then f is a denting point
of the set LX (u) if and only if f(t) is a denting point of T'(t) for almost all t € .

Proof. As we have remarqued above let us choose 3 € X' such that 3 > 0 on Q. Then
we have the set inclusion X C L!(v) and the relation (2.2) with v := 3.p.

Sufficiency: Let us suppose by contradiction that f is not a denting point of the set LX ().
Then, by Proposition 2.2, there exists a sequence (f,,) in L (u) such that ||f, — f||x > e,
V n, for some € > 0 and such that there exists a sequence of convex combinations g, =

o A fie (o >0, Y aff = 1) satisfying lim, o ||g, — fllx = 0. Since the norm-
convergence in X implies convergence in measure ([6] Théoreme IV.3.1, or [12] Theorem
3.1.1), we can suppose along a subsequence that g, (t) = f (t) p—a.ein E. On the other
hand f (¢) is a denting point of I' (¢) p — a.e, thus by Lemma 2.1 we have

lim Y o [lfs (1) = f @)1 =0 p—ae.
k=n
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By the Vitali-Lebesgue Theorem, we deduce that the sequence of functions Y ;" af | fr — f]
norm-converges to zero in L' (v). So

. . . <‘ 3 n — prmd
fmintlfe =l < HminfD | of I = 7l =0

Hence there exists a subsequence (fy,) such that limy_,o ||fn, — f|l; = 0. Thus the
sequence (| fn, — f|), converges in measure to 0 and is order bounded by 2g. Lemma 2.3
implies then that (f,, — f)r converges strongly to zero in X, a contradiction with our
hypothesis.

Necessity: Suppose that f is a denting point of the set L (u). Since I' is X — bounded
and X C L' (v), the set L () coincides with the set Ll (v) of all v—Bochner integrable
selections of the multifunction I'. Let us prove that the function f is also a denting point
of L¥ (1) = LL(v) relative to the Banach space L;(v). We will use for this the criteria

of Lemma 2.1. Let A > 0, ZN" AP =1, and f € L (n), 1 < i < N,, such that
lim,, HZN" AL fH = 0. The sequence h,, := Zf\;"l A fI' converges in measure v,
1

to the function f. Since v = B.u and S > 0 on 2, the sequence (h,) converges also in
measure 4 to f. On the other hand |h,| < g € X, n € N. Thus Lemma 2.3 implies that
|hn — fllx — 0. It follows from Lemma 2.1 that

Nnp,
nh_{{)loz_l:)‘z |fi — f”X =0.

Since |||l < ||-||lx, it follows also that lim, o 20" A?||f* — f|l, = O proving our claim.

Now, we have proved that f is a denting point of L} (v). Consequently, by Théoreme 3.6
n [1], Chap. II, f(¢) is a denting point of I'(¢) for almost all ¢ € Q. O

Remark 2.6. Using the representation theorem of the strong dual of X (£) which can
be found in e.g [2], it is also possible to give a direct proof of the Theorem 2.5 similarly
to the proof of Theorem 3.6 in [1].

3. Main result
We can now state the main result of the paper.

Theorem 3.1. Let (X, ||.||x) be an order continuous Banach ideal space over (Q, %, u).
A function f in X (E) is a denting point of the unit ball Bxg) if and only if

(i)  the modulus function |f| is a denting point of the unit ball Bx of X.
(ii)  f@)/||f(@®)] is a denting point of Bg for almost all t € supp(f).

Proof. Let f € X (E) satisfy the conditions (i) and (ii) and suppose by contradiction
that f is not a denting point of Bx ). Then there are ¢ > 0, scalars of > 0 with

Yo o =1, and functions f* € Bx(g), @ = 1, ..., my,, such that || f* — f||, > € and
mn
Zaznfin -
i=1

=0. (3.1)

lim
n—oo

X



H. Benabdellah / Denting points in Bochner Banach ideal spaces X(E) 189

Let us consider the sequences of modulus functions

mn

n rn
E :Ofi Ji
=1

It is clear that 0 < w, < v, and that u,,v, € Bx. Set u), = u, + 1/2 (v, —u,) and
up = up — 1/2 (v, — uy). It is easy to check that u, < u), <wv, and —v, < u! < wu, < v,.
It follows that u!, € Bx and u!! € Bx. Now remark that by (3.1),

Up =

mn
and v, = Za? If1 -
i=1

1
3 (ul, +ul) =u, — |f| strongly in X.

Since |f| is a denting point, it is a strongly extreme point of Bx. Consequently, ||u!, —
|f|llx — 0. Since v, = 2u], — u,, we deduce that ||v, —|f|||x — 0. Hence we have proved
that

lim (Yol [f7] = |f]| =0 (3:2)
=1 X
Forn € Nand 1 <i<m,, set A? ={|f" < |f|} and
() if t € A}

O =IO e iy ar

£ @l
It is easy to check that the “regularized ” functions g} satisfies the following properties
gl < IS gl < IfP] and  [f =g | <[f71 =11 (3.3)

It follows that
Mp Mn
Dozl = ailly < 3o ar 7= Ifllx
i=1 i=1
Since |f| is a denting point of By, condition (3.2) implies, by virtue of Lemma 2.1, that
Mn
Jim 3 o 11771~ 1l =0
1=
and hence
mMn
lim Y o |/ = gillx =0, (3.4)
i=1

Now, we have the following inequality

Mn

n,.n
E:aigi - f
=1

mn
Z a/'?fin - f
=1

mn
<> alllgr— fPllx +
X =1

X
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from which we deduce that

= 0. (3.5)

lim
n—o0

Eiﬂﬁ—f
=1

1=

X

It is known that the norm convergence in X implies convergence in measure ([6],Chap.
IV, §3) and hence i — a.e convergence along a subsequence. Thus condition (3.5) implies

the existence of an increasing sequence of integers n; < ny < - - - such that
mnk
; Nk || ok _ — _
Jim 3l (0= £ 0] =0 4—ae (3.6

On the other hand, the sequence of functions Y, af* |gi" — f| is order dominated by

the function 2 |f|. So by Lemma 2.3, condition (3.6) implies that

Mpy,
: ng | Nk __ _
lim % 2o g — £l =0. (3.7)
i=1 X
We will prove now that there exists &’ > 0 such that
g — fllx > €' foralln € Nand 1 <i < m,,. (3.8)

Set I, = {1 <i<my : ||f— g*|lx <e/2}. Then if ¢ € I, we have

9 9
o7 = Fllx 2 A7 = fll = 17 = Pllx > 2= 5 ==

Let now 1 <4 < m,, such that ¢ ¢ I. Then

1" = gi'llx = (3.9)

5
5
Since | f] is a strongly extreme point of By, there exists § > 0 (depending only on |f| and
¢) such that for all g, h € By,

> 4. (3.10)

€ 1
lg—hllx > 5 =[5 (g+h) —|f]

2 7 |2 «
Set g = |g| + 1/2(1f7 — |g7l) and h = |g7| — 1/2(1f7] — |g7]). As in the begin-
ning of the proof , we can easily check that ¢ € Bx and h € Bx. Furthermore
lg — hllx = I/ — 97|l x and from the definition of g7, we can easily show that the
identity ||f'] — |g/|l = [f* — gF'| holds. So, by (3.9), [lg —hllx = [If7 —gllx > &/2.
Applying (3.10), we get

1
laf| = 171l = |5t + 0 - 171 >

It follows that ||g]" — fllx > ||lg*| — |f|llx > 6. Now, by setting ¢’ = inf(¢/2,d) > 0, it is
clear that condition (3.8) is satisfied.
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Forp>1,neNand1<i<m,,set
an, ={een: irol<ia o - ron}-
Let us prove that there exist 7 > 0 and p > 1 such that
HlA%jMX>>77fbraH7zand]_§i;§7nn. (3.11)

Suppose by contradiction that the opposite of (3.11) holds. Then for every p > 1 there
exist n(p) € Nand 1 < i(p) < mpp) such that the set A (p) := AZ(S’)) satisfies || Lap) f]| <
g'[4. For p > 2/¢', we have

< [ (£ =g, + 1o (7 -5,

n(p)
Hf_%@

< |[taw /Iy + \umgz(;\ + [tovio (7= 42|,
< 2H1Ap)f”x _Hf”X

! 1
< 224‘1—) < €

This contradicts (3.8). Hence condition (3.11) is true. Now, in virtue of the definition of
A7 . we have

7,p?
1 )
Z—)lAgp\f\Swin_f‘ , ne N, 1 <1< my.
Hence

1 Mn Mn
o< 18 et 1< St -
=1 =1

In virtue of (3.7), we deduce that

Mny,
lm1§:aﬁlwv| = 0.
Hence
My,
Jim Za Lowr [fI = Ifl| =0
X

Since 1o 4= |f| € Bx and |f] is a denting point of By, it follows from Lemma 2.1 that
P

lim a
k—00 <

avare 1= 171 =
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On the other hand, by (3.11), H19\A@k 1= |f] ‘ - HlA”’“fH > forall kand 1 < i <
i,D X i,D X

my,. We obtain hence a contradiction which proves the direct part of the theorem.

Let us prove the converse implication. Let f be a denting point of the unit ball Bx(g)
of X (F) and let us prove that conditions (i) and (ii) of the theorem hold. As remaked
in section 2, we may suppose w.l.o.g that supp(X) = 2 and that the Banach space F is
separable. For each t € Q, set I'(t) = ||f(¢)|| Be. Then I' is a measurable X —bounded
multifunction from € to the non-empty convex closed subsets of E and f € L¥(u) C
Bx(g). Hence f is also a denting point of the closed convex bounded set L¥ (u). By
theorem 2.5 this implies that u—a.e, f(t) is a denting point of I'(¢) and so condition (i) is
satisfied. It remains to prove (ii). Let (h}'),;cy, be a sequence of Bx and (A} )1<z<N a

sequence of positive scalars with 32 A? = 1, such that lim,, . HZN” APRE —|fIIl =
X

To complete the proof of theorem it remains to check that

Np
nlggozl)‘z 17 = 1flllx =0. (3.12)
Let us define the function
f@ .
ifte S
u(t) = IF Ol !
0 ifte S]Cc = Q\Sf

Then we have f = [f|u:t+ |f| () u(t) = f(t). Set A? := huforn € Nand 1 <i < N,,.
Then h? € Bx(r) and

Ny,
we-g| = (2 - 1)
X 1=1 X
< Z AR —Iflll =0
X
Since f is a denting point of Bx(g), we deduce that
Nn, )
lim Y P [~ £]| = 0. (3.13)
i=1
Let us now remark the following equality
|hf = f = (A = [fD) ul = [Ls, (B} = [f])]-

Hence condition (3.13) becomes

,};ngoZA” s (= 1) = 0. (3.14)
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We define now a new sequence

B n if
Fnt) = h% (t) u (t) 1 te Sy
h? (t) To ifte S}Cc

where zy € E, ||zo|| = 1, a fixed vector. For n € N and 1 < i < N, we have h? € Bx(x)

since |h}

= |h?|. Furthermore,

N
mpn gl = (Z Ahu — | f] u> + Lsg (Z Aghg) z
X = X (3.15)
< ||1s; (Z Avhi — |f‘> + || Lsg (Z Anhn)
=1 X X
Let us remark now that
Ny
(300 = 30 - 1, S
i=1
and that YN ArA? — |f], 15, (2;&1 Aghg) — |f| strongly in X . Hence
N
g&lw(i%%ﬂ =0,
=1 X
so condition (3.15) implies that
lim Z)\ b = 0.
X
Since f is a denting point of Bx(g), we deduce that
N )
JLIEO;A;% A — fHX = 0. (3.16)

From the definition of iL?, it can now be easily checked that

By = f| = 1o, 1B = 1]+ Lsg A1,

Hence

Nn,
PLY

Ny,

Ny
i~ fHX + > s, he =151 -
=1
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It follows from (3.14) and (3.16) that

Np
lim E A
n—o0

i=1

Finally we have the following inequality

Lge [ 17|

‘X —0. (3.17)

N N Na
SN = 1l < DA, (= 17D+ DN s a2
i=1 i=1 i=1
which together with conditions (3.14) and (3.17) implies our claim (3.12). O

Remark 3.2. Using the tools developed in [2], concerning the representation of the strong
dual of X(F), most results obtained in this paper can be transposed without essential
changes to the study of denting points in the strong dual Banach space X (E)*. Perhaps
it is also possible to give by means of these tools new proofs of the results obtained in [5]
relative to weak* denting points in LP(u, X)*. This would be shown in a further work.

Note. While writing this paper I received from Professor C. Castaing the preprint [9] of
P-K. Lin and H. Sun where the authors study similar problems given in this work. I wish
to thank C. Castaing for sending me this preprint and also for the paper [3].

References

[1] H. Benabdellah: Contribution aux probléemes de convergence fort-faible, a la géometrie des
espaces de Banach et aux inclusions différentielles, Thése de Doctorat, Univ. Montpellier
11, 1991.

[2] H. Benabdellah: Espaces de type X[E] et X[E. ], Introduction et étude de la compacité
faible, Preprint, Fac. Sc. Semlalia, Marrakech.

[3] C. Castaing, R. Pluciennik: Denting points in Kothe-Bochner spaces, Set-Valued Analysis
2 (1994) 439-458.

[4] C. Castaing, M. Valadier: Convex Analysis and Measurable Multifunctions, Springer-
Verlag, Berlin et al., Lect. Notes Math. 580, 1977.

[5] Z. Hu, B-L. Lin: A characterization of weak* denting points in LP(u, X)*, Rocky Mt. J.
Math. 24(3) (1994) 997-1008.

[6] L. Kantorovitch, G. Akilov: Analyse Fonctionnelle: Tome 1, Editions Mir, Moscow, 1981.

[7] L. Lindenstrauss, L. Tzafriri: Classical Banach spaces II, Functions Spaces, Ergeb. Math.
ihrer Grenzgeb. 97, Springer-Verlag, Berlin et al., 1979.

[8] B-L. Lin, P-K. Lin: Denting points in Bochner LP—spaces, Proc. Amer. Math. Soc. 97(4)
(1986) 629-633.

[9] P-K. Lin, H. Sun: Denting points in Kothe-Bochner function spaces, preprint.

[10] B-L. Lin, P-K. Lin, S. L. Troyanski: Characterizations of denting points, Proc. Amer. Math.
Soc. 102(3) (1988) 526-528.

[11] M. Valadier: Différents cas ol grace & une propriété d’extrémalité une suite de fonctions
intégrables faiblement convergente converge fortement, Sém. Anal. Convexe, Montpellier,
exposé 5 (1989).

[12] M. Vith: Ideal Spaces, Lecture Notes in Math. 1664, Springer-Verlag, Berlin et al., 1997.
[13] P. P. Zabrejko: Ideal spaces of functions I, Vestnik Jarosl. Univ. (1974) 12-52 (in Russian).



