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Bellman’s dynamic programming and Pontryagin’s maximum principle are two basic tools for studying
optimal control theory. We consider the optimal control problem under state constraints and examine
the relationship between the maximum principle and dynamic programming via the adjoint, Hamiltonian
and value functions. For this purpose the notions of generalized superdifferentials are introduced.

1. Introduction

Consider two real numbers ty < 7', a vector g € R" and the following numerical functions:

P:R" = R,
filto, T] x R" x R™ = R,
g:[t, T] xR* - R.

Let U : [ty, T] ~ R™ be a set-valued map and consider the control system:

(1.1)

{x' = f(t,z,u(t)), u(t) € U(t) ae. in [ty,T]
g(t,z(t)) <0 Vt € [to, T

A function z : [ty,T] — R" is called a solution of (1.1) if x € AC(ty,T;R™) (set of
absolutely continuous functions from [tg, 7] to R") and z verifies (1.1).

In this article we consider the following Mayer’s problem:

min{¢(x(T)) ‘ (1.2)

x is a solution of (1.1), }
x(to) =X '

The value function V' (which is the main tool in dynamic programming) associated to this
problem is defined by: for all (s, y) such that s € [ty,T] and g(s,y) <0,

Vis,y) :inf{¢(x(T)) ‘ i(i;)a:szlution of (1.1) in [s, T, }

L. S. Pontryagin and his colleagues proved a group of necessary conditions (which is called
the maximum principle) for optimality (see [13]). Since Pontryagin, many proofs to the
maximum priciple and associated subjects have been developed (see [6], [8], [10], [11], [12],
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[14]). In particular, R. B. Vinter & G. Pappas and F. H. Clarke, in [14] and [8], deduced
it by nonsmooth analysis when there exist state constraints of the type:

g(t,z) <0.

We will examine the relationship between dynamic programming and the maximum prin-
ciple. For our purpose we use the following theorem proved by F. H. Clarke in [8]: (for
the hypotheses of this theorem, see [8])

Theorem 1.1. Assume that (z,u) is optimal for the problem (1.2). Then there ezists ¢ €
{0,1}, a positive Radon measure u, a measurable function v and an absolutely continuous
function p such that

() () € Buf(t,2(t), u(t))" ( +ft0tv(s uis)) ae.
(ii) maX< +ft0t s)du(s), ,U)

eu(t)
= (p(t) + fj  ¥(5)da(s), F(1,3(0), a(t))> wel
)

(s)d
(iii) ( ) € 0,9(t,%(t)) p -a.e. and supp(u) C {t|g(t, Z(t)) = 0}
(V) p(T) + Jiso.mq v(s)du(s) € —cOp(z(T))
(v) e+ lull +llpll > 0.

In the theorem 0, f is the generalized Jacobian of z — f(t, z,u) which is defined as follows:
let g : R* — R! be locally Lipschitz continuous at the point s. The generalized Jacobian
dg(s) of g is the convex hull of the set of accumulation points of sequences (Dg(s;)),
where we consider all sequences (s;) converging to s such that the usual Jacobian matrices
Dy(s;), 1 =1,2, ..., exist.

The multifunction 0v is the generalized Jacobian which is defined as follows: let v :
R™ — R be locally Lipschitz continuous at a given point z. Then

Of (z) ={¢ € R" | limsup fly+tv) — f(y)

y—x,t—0t t

> < (,v> YveR"}L

The multifunction 0,¢ is defined as
5zg(t7 :C) = CO{IIIIICZ | Cz € 8xg(tiaxi): (tzaxz) - (tv .T)}

||i2|| denotes the measure norm.

Remark 1.2. In the following we will consider only the case where ¢ = 1 in the above
Theorem. When ¢ = 0, the above necessary conditions do not involve the cost function
¥(-). In this case, the problem is considered abnormal.

When there are no state constraints, if the value function V(-,-) is continuously differen-
tiable, then the known result is a relationship between the adjoint vector and the value
function as follows (see [10]):

—p(t) = Va(t, Z(t)) (1.3)
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where Z(-) is the optimal state function and p(-) is the associated adjoint function in the
maximum principle.

In [7] F. H. Clarke and R. B. Vinter examined the validity of (1.3) which had no differ-
entiability and interpreted it as an inclusion containing the partial generalized gradient,
ie.,

—p(t) € 0,V (t, z(t)).
Again the relationship (1.3) was interpreted by using superdifferentials:

—p(t) € 6+V$(t7 i(t))’ (14)

(B 20,00, -p(0) € 0.V (2(1) (15)

(see [4], [5], [15]). We prove the relationship between dynamic programming and the
maximum principle as being similar to (1.4) and (1.5) in the presence of state constraints.

2. Hypotheses and Definitions

In this section we provide hypotheses and some definitions for later use. In the following
we fix an optimal couple (Z, @) of our state-constrained problem (1.2) and suppose all the
same hypotheses as in Theorem 1.1. Furthermore we assume that f(¢,-, ) is continuously
differentiable, that %(-, z(+), u(+)) is continuous and that g(¢,-) is differentiable.

Remark 2.1. Under our hypotheses the inclusion in (i) of the above theorem can be
replaced by equality.

We note by X (-) the fundamental solution of the system
: o o i -
x(0) = L (1,20, 30X )

where Id is the identity matrix. Let X (¢)* be the transpose of matrix X (¢).

Recall the definition of a polar cone. Let K be a subset of a Banach space X. The positive
polar cone of K is defined by

K*={peX'|VueK, (p,u)>0}
where X’ is the dual space of X. The negative polar cone of K is defined by
K- ={peX'|VueK, (p,u) <0}

Let E be a normed vector space and K C E. The contingent cone Tk (x) of K at z is
defined by:

B .. dist(z+ hv, K)
Tg(z)={veFE| 11hn_1>é£1f -

= 0}.

The following lemma is for later use.
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Lemma 2.2. All the solutions p € AC(to, T;R™) of the system

—p' = g—i(s,:ﬁ(s),ﬂ(s))*w v(s) ae.
verify
p(t) = (XY (XD + [ X(oyo(s)as) i .7
Proof. Set

_of

A(s) = 5 (5,509, 0(5))

Since X (s)X (s)~! = Id, we have for almost all ¢ € [ty, T,

0 = X'(s)X(s)" +X()(X7)'(s)
= A(s)X(s)X(s) "+ X(s)(X 1)'(s)
= A(s) + X(s)(X 1) (),

therefore

Hence

pl(t) = (X()") "plto) = [ (X(O1) "X (5)"0(s)ds Ve € [t T],

to

thereby
T
p(to) = X(T)*p(T) +/ X (s)*v(s)ds.
to
This proves that

pl0) = (X(0) (X090 + [ X(6yets)is).

O

Definition 2.3. Let X be a normed vector space, ¢ : X — R U {+oo},v € X and
zo € X such that ¢(x) # +oo.
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The contingent epiderivative of ¢ at x( in the direction v is defined by:

Dio(x0)(v) = liminf p(zo + hv') — @(z0)

h—0t v —v h

and the contingent hypoderivative of ¢ at xy in the direction v is defined by:

D, p(x)(v) = limsup plao+ hv') = w(xo).

h—0t v —v h

The superdifferential of ¢ at z( is the closed convex set defined by:

o(z) — p(x0) — (p, T — )

04+¢(xg) = {p € R"|limsup < 0}.
230 [l — ol
The subdifferential of ¢ at z( is the closed convex set defined by:

o 2 — 7ol
Proposition 2.4. Let ¢ : R® — R U {400} be an extended function. Then
Op(x) ={C € R" [Vv € R", Dyp(x)(v) < ((,v)}
and
d_p(z) = {C € R" [ Vv € R", Diop(x)(v) = (¢, v)}.

Proof. See [3].

339

O

With the aid of the above Proposition, we can define the generalized superdifferential

(subdifferential) as follows:

Definition 2.5. Let ¢ : R® - R U {£o0} be an extended function and E C R". The

generalized superdifferential of ¢ at = for E is defined by
0% p(z) = {¢ € R" | Vv € B, Dyp(z)(v) < (¢, v)}
and the generalized subdifferential of ¢ at x for E is defined by

O%p(r) = {¢ € R" | Vv € E, Dyp(x)(v) > (¢, v)}.

3. Relationship between Dynamic Programming and the Maximum Principle

Set, for all t € [ty, T],

olt) = 22 (1, 7(1).
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Assume that

(., Og . :
(i) 6_x(’ Z(-)) is differentiable
(ii) Y(t,y) € [to, T] x R" such that g—i(t,i(t))y <0, we have
dg 0 _
g+ 92 (4, 2(0)) 9 (1, 7(1), 5(1))y < 0
(iii) V¢ 39 such that

%9t 5(0)i < 0 and /(1) + 92 (1, 7(0) (1, 3(6), (1)) < 0.

Define, for all ¢ € [to, T7,

K(0)={y € R | 22(, () < 0)
and
R (1 < o)
k(t) = { K(t) (to<t<T)
R (t>T)

Note that Graph(K) and Graph(k) are closed.
Lemma 3.1. Assume (3.1). For all (t,y) € Graph(K), we have

(12 1,200, 50w € Torapniro (v 9)

Proof. Fix (t,y) € Graph(K) and A € (0,1). Set
ya =y + (1 =3
Note that ¢(t)y, < 0.

Because of (3.1) (which implies that %(-, Z(+)) is continuous) and the fact that

dg

St () <0

there exists a sequence h, — 0T such that
P _
a_i(t + h'n, .’L‘(t + h’n))y)\ + 22 ag

hy, ox

= 80t o B+ a))ya — Gt 2(1)y
< -

(t+ hy, Z(t + hy, ))8 (t,z(t), a(t))yx

o2+ b2t + b)) 2L (1,200, 00

_plt+ h;: — o(t) Us + g—i(t + i, B( 4 ha)) 5o (8, 2(8), u(2))ya

< 0.

(3.1)
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Therefore

dg _ of . _, .\

2t + hay (¢ + b)) (92 + ha s (1, (1), a(t)y) <0,
i.e.,

0
(t,00) + o (1, 52 (6,20, 50 ) € Graph().
X

Hence we obtain the result by taking the limit when A — 1. O

We recall some definitions and the viability theorem. Let F' : R™ ~» R" be a set-valued
map. Dom(F) is defined by:

Dom(F) = {z | F(z) # 0}.

We say that the map F' is upper semicontinuous at x € Dom(F') if and only if for any
neighborhood N of F(z),

n > 0 such that Vz' € B,(z), F(z') C N.

It is said to be upper semicontinuous if and only if it is upper semicontinuous at any point
z € Dom(F).

Theorem 3.2 (Viability Theorem). Let F': R" ~ R" be a set-valued map and K C
Dom(F') be a nonempty closed set. Assume that F' is upper semicontinuous with nonempty
compact conver images and with linear growth in the sense that there exists ¢ > 0 such
that

Ve eR" sup ||v] < c(]|z||+1).

veF(x

If for all x € K,
F(z) NTk(z) # 0,

then for any initial state xy € K, there exists at least one solution x(-) to the differential
inclusion

7' € F(z)

starting at xo which is viable in K in the sense that x(t) € K for allt > 0.

Set
(1, oL (ty, 3 (to), a(to))y) (t < to)
Jty) =2 (LEGaw,a0)y)  (to<t<T)
(1.4 @a@),am)y) ¢>1)
By Lemma 3.1,

J(t,y) N Taraphe) (t, y) # 0 V(t,y) € Graph(x).
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It is easy to see that J is an upper semicontinuous set-valued map.

Consider the viability problem:
(r,w)'(s) € J(7(s),w(s))
(r, w)(t) = (¢, wy) (3.2)
(1(s),w(s)) € Graph(k).

By the viability theorem, for all w; € K(t), there exists a solution (7(s),w(s)) of (3.2).
On the other hand, 7(s) = s. Thereby

w'(s) = %(s,i(s),ﬂ(s))w(s), t<s<T
and

99

e (s,z(s))w(s) <0, t<s<T.

Suppose that there exists p > 0 and w(-) such that

w'(s) = g—i(s,i‘(s),ﬂ(s))w(s) a.e. in [to, T (53)
g—i(saﬂc(S))W(S) <-p Vs € {t € [to, T] | g(t, %(t)) = O}.

We require the following notations:

Notations

S={telt, ]9t z(t) =0},

Li={re[t,T]| g(r,z(r)) = 0} Vt € [to,T],

B(t) = { {v] 50,20}y <03, tes
{AK(t) + (1= Nw(t)|X € (0,1)}, t € [to, TI\S.

Lemma 3.3.
E(t)={ K@)+ (1-=X)Nw(t) | A€ (0,1)} (3.4)

Proof. Let e(t) be the right side of the equation in (3.4). It is sufficient to consider ¢t € S.
If z € e(t), then there exists A € (0,1) and y € K(t) such that z = Ay + (1 — N)w(¢).
Therefore

99

5, (LE1)z < =(1=X)p <0.

Conversely, if z € E(t), for A < 1 sufficiently near to 1, we have

1 1—A_
T Tw(t) € E(t) C K(t).
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Thereby
= (52— 200 + (1= Vi) € efo).

O

In the following we consider only the normal case where ¢ of Theorem 1.1 is equal to 1.

Theorem 3.4. Assume (3.1) and (3.3). The function p(-) of Theorem 1.1 verifies, for
all t € [to, T,

—p(t) + a(t) — B(t) € 87OV, (¢, 2(1))
(=p(t) +a(t) — B(1),¢) > D Vi(t,2(t))(¢) V¢ € E(t)

where DV, is the contingent hypoderivative with respect to x and

alt) = (X1 [ X067 2L 5706706 |, ) as

B(t) = (X (1)) X(T)" / v(s)dp(s).

[to,T]
Proof. Fix ( € E(t). Then by Lemma 3.3, there exists £ € K(t) and X € (0,1) such that
=X+ (1= Nw(t).
By Lemma 3.1 and the viability theorem, there exists w(-) such that
¢=Aw(t)+ (1 —Nw(?)

where w verifies:

w'(s) = g—i(s,x(s),u(s))w(s), s€[t,T)

and

(s, a(s)w(s) <0, s € [1,7)

Set, for s € [t,T],
wa(s) = Aw(s) + (1 — A)@(s).
Note that

X(M)X () ¢ = w(T)+ (1 - Nw(T).
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Fix an arbitrary sequence (wj)pso such that w) — ¢ when h — 07. Then by the

variational equation, for all A > 0 that are sufficiently small, there exists z; such that

{st) = f(s,2)(s),a(s)) ae. in [t,T]
2A(t) = 2(t) + hw}

and

)\ —

h

— w) uniformly in [¢, 7. (3.5)

We will prove that for all sufficiently small A,

g(s,z7(s)) <0 Vs € [t,T).
15 case: s € I,. Set
) _ wa(s), s€[t,T).

By (3.5), €x(s) — 0 uniformly when h — 07, i.e.,
Ve 36 such that |ley(s)]| <€ if 0 < h <.
We have
_ 0 _
g(s,z3(s)) = g(s,2(s)) + <a—i(8,$(8)), hwy(s) + hen(s))
+o(|[hwx(s) + hen ( )|

—h(1 - )p+h<—( z(s)), en(s))
+o([[wa(s )+h6h( )D)-

IA

Therefore, for all € > 0, there exists n such that if ||hwy(s) + hex(s)|| < n, we have

o(5,2)(5) < —h(1 = Npt (2 (5, 7(s)), en(s))
Fellhwa(s) + hen(s)];

i.e., for all ¢, there exists v such that if 0 < h < v,

g(s,22(s)) < —h(1 =X)p+ hMe+ ehNy + che
= h(—(l—)\)p+M6+6N>\+62)

where

0 _
M = sup ||a—g(s,x(s))|| and Ny = sup |wr(s)]-
set,7] 0% s€[t,T)
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ond cage: s € I; s\I; where 6 > 0 (we will fix §) and
Lis={r€[to,T) | 7 € I, + 6[-1,1]}.
We know that for all € > 0, there exists § > 0 such that
0

sup (22 (s,2(s)), @(s)) < —p + c.
SEIt,(s\It al‘

By the same calculation as the 15t case, for all sufficiently small h,

9(s, 23(s))

<h(1—2X) sup (@(s, z(s)), w(s)) + hMe + ehNy + €he
s€Iy 5\It oz

< h(—(l — N)p+ (1= N)e+ Me+ €N, +62).
Fix 0 such that
—(1—=XNp+ (1 —=XNe+ Me+eNy+€2<0.

31d case: s € [t,T)\1;. Note that

sup ¢(s,Z(s)) < 0.
s€ft,T\Iy,5

By the same calculation as in the 15t

g(s, 23(s))

0
< sup g(s,2(s) +h(1—N) sup (=2(s,Z(s)), B(s))
s€t,TI\ .5 se[t,T\I.s O

+h(Me+ eN,, +62>.

case, for all sufficiently small h,

Up to this point we have proved that for all sufficiently small A,
g(s,22(s)) <0 Vs e [t,T].

Since

p(T) = —Vi(a(T)) - / v(s)dp(s),

[tO 1T]

we have, by Proposition 2.2,

I
=

= lim Y(p(T)) = (z(T))
h—0Tt h
> timsup VBT + i) = V(5,2 (1)

h—0+ h

345
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Because this inequality is true for all sequence (w;) which converge to ¢ when h converges
to 0T, we have

(=p(t) + a(t) — B(2), () = D, Va(t, z(#))(C)

from which we obtain the result. O

Next we examine the relationship between the Hamiltonian and the value functions. The
Hamiltonian function is defined by:

H(t,z,p) = sup (p, f(t,z,u)).
ueU(t)

Set
E(t) ={(a,az'(t) + ) e R x R" | ( € E(t)}.
(

Theorem 3.5. Assume (3.1) and (3.3). For almost all t € [to, T], we have

(12000 + [ o) + (e +50) ~ [ (51,2 ),

05t)
—p(t) + a(t) - B(1))
e 5OV (¢, z(t)).
Proof. Let ( € E(t). Then by Lemma 3.3, there exists £ € K(t) and A € (0,1) such that
=X+ (1= Mw(t).
Then there exists w(-) such that

¢=Aw(t)+ (1 - Nw(?)

where w verifies:

w'(s) = g—i(s,i(s),a(s))w(s), s €[t,T]
and
99
%( ) ( ))w(s) <0, se [taT]'
Set

wx(+) = dw(:) + (1 = Aa ().

Fix an arbitrary sequence (wj)pso such that w} — ¢ when h — 07. Then by the

variational equation, we can construct a sequence of trajectories (z7) such that

2 (t) = 2(t) + hw;
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and

A

h

— wy, uniformly in [¢y, 7).

By virtually the same proof as that of Theorem 3.4, we can prove that for all sufficiently
small h,

g(s,zp(s)) <0on [t —¢T).

In this case, if g(¢,z(t)) = 0, then € = ¢ (for this 0, see the 91d case of Theorem 3.4). On
the other hand, if g(¢,z(t)) < 0, then € =y > 0 and this ~ is sufficiently small such that
9(s,z(s)) < 0on [t —1,t].

Therefore, by the proof of Theorem 3.4, for all sequences (a;) which converge to a, we
have

a((H(t,3(0),p(t) + [y, v(8)du(s)) + (—alt) + B(E) — fy,  v(s)du(s), #(1)))
H=p(t) + a(t) — B(t), aF' () + ()

= (=p(t) + a(t) = (1))

Y(@ (1))~ (&(T))

= lim sup;,_, o+ 5
V(t+hap,x) (t+hap))—V(t,2(t))

> lim supy,_, o+
A A

3 V(t+hah,z(t)+h(wg+w))—v(t@(t))

= 1M SUpyp_,o+ h

Note that the above inequality is valid for all sequences (wy, a;) which converge to (¢,a)
and that for all a;, — a, we have

Th(t + hap) — (1)
h
_ap(t+ hap) — Tt + hay) + Tt + hap) — z(t) + Z(t) — 25(¢)
B h

— (+ax'(t) — ¢ = aZ'(1).

Therefore for all (¢, ay) — (aZ'(t) + ¢, a),

a( H(t, (), p(t) + /

[tO 5t)

V(5)dn(s)) + (=alt) + 50) ~ [ v(s)au(s)). 7 (1)

[tost)
+(=p(t) + a(t) — B(t),az'(t) + ()

> Tim sup V(t + hap, Z(t) + h¢p) — V (2, :E(t))

h—0t h

Thus this inequality leads to the conclusion of Theorem 3.5. O
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