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We deal with nonlinear parabolic unilateral problems by means of the homographic approximation,
introduced by C. M. Brauner and B. Nicolaenko in the linear elliptic case (see [7]). The interest in this
kind of penalty method arises from the fact that, in contrast with the usual penalization (see [12], [16]
and [10]), the homographic approximation is a “bounded penalty”, which turns out to be convenient
to have a priori estimates on the approximate solutions. We present two different situations in which
the homographic approximation gives advantages to solve evolutionary unilateral problems. First, in a
variational framework, we are interested in strong solutions to nonlinear parabolic variational inequalities;
then, in a second case, we consider obstacle problems with L1 data.

1. Introduction

Parabolic variational inequalites have been widely studied in the literature. In the case
of regular obstacles, the classical penalty method of J. L. Lions [12] yields existence and
uniqueness of weak solutions. Applying the same kind of approximation, F. Mignot and J.
P. Puel obtained existence of minimal weak solutions if the obstacles are only measurable
functions (see [14] and [16]).

The existence of a unique strong solution in the case of regular constraints has been
previously proved by Brezis [1] and P. Charrier and G. M. Troianiello [8] for the linear
case, and by F. Donati [10] for the nonlinear monotone case. In [8] the result is obtained
by means of an elliptic regularization method and of dual estimates. The approach of [10]
is based on a penalty method and yields a regularity result in terms of Lewy-Stampacchia
inequality. In Section 3 we will extend the existence and uniqueness result of strong
solutions to unilateral problems with obstacles admitting “downward jumpsÔ with respect
to time (see Remark 3.3). The proof, based on the homographic approximation, will also
imply a dual estimate of Lewy-Stampacchia type.

Section 4 deals with the case of parabolic unilateral problems with L1 data. Since the
classical formulation of obstacle problem is not appropriate, it will be necessary to give
a new definition of the solution. As for elliptic unilateral problems (see [3]), under some
regularity assumptions on the obstacle, it is possible to give a definition of solution similar
to that of entropy solution for parabolic equations with L1 data (we refer to [15]), and
to prove existence and uniqueness together with a Lewy-Stampacchia inequality. We will
show that such solution also satisfies a minimality condition, given by (4.4) below. This
new characterization of solution allows us to extend the existence and uniqueness results
so as to include the case of obstacles of a more general type. For this purpose we will use,
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once more, the homographic approximation and, therefore, we will also prove an estimate
of Lewy-Stampacchia type.

2. Notation and hypotheses

Throughout the paper, Ω is an open bounded set of RN , with N ≥ 2, and Q is the cylinder
Ω× (0, T ), T > 0.

We will denote by χE the characteristic function of a measurable set E ⊂ RN .

Let us consider the following nonlinear operator in divergence form

A(u) = − div(a(x, t,Du)),

where a : Q× RN → RN is a Carathéodory function such that, for almost every (x, t) in
Q, and for every ξ, ξ1 and ξ2 in RN with ξ1 6= ξ2, one has

a(x, t, ξ) · ξ ≥ α|ξ|p, (2.1)

|a(x, t, ξ)| ≤ β(b(x, t) + |ξ|p−1), (2.2)

(a(x, t, ξ1)− a(x, t, ξ2)) · (ξ1 − ξ2) > 0, (2.3)

where α, β > 0, 1 < p < +∞ and b is a nonnegative function in Lp′(Q).

These hypotheses are classical and assure that A is a coercive, continuous and pseu-
domonotone operator of Leray-Lions type, acting from Lp(0, T ;W 1,p

0 (Ω)) into its dual.

Define the reflexive Banach space

V = W 1,p
0 (Ω) ∩ L2(Ω),

equipped with the norm ‖v‖V = ‖Dv‖Lp(Ω) + ‖v‖L2(Ω), and denote by V ′ the dual of V.
Identifying L2(Ω) and its dual, one has

V ⊂ L2(Ω) ⊂ V ′,

where the embeddings are continuous and dense. Therefore, from classical results (see
[12]) it follows that, setting

W = {v ∈ Lp(0, T ;V ) : vt ∈ Lp′(0, T ;V ′)},

one obtains
W ⊂ C([0, T ];L2(Ω)).

Denoting by 〈 , 〉 the duality pairing of V and V ′, we have that

τ
∫

0

〈ut, v〉 = −
τ

∫

0

〈vt, u〉+
∫

Ω

u(τ)v(τ)−
∫

Ω

u(0)v(0) (2.4)

holds for all τ ∈ [0, T ] and u, v ∈ W. Moreover, if φ : R → R is a Lipschitz bounded
function such that φ(0) = 0, then

τ
∫

0

〈ut, φ(u)〉 =
∫

Ω

Φ(u(τ))−
∫

Ω

Φ(u(0)) (2.5)



M. C. Palmeri / Homographic approximation 355

for all u ∈ W, where

Φ(s) =

s
∫

0

φ(σ)dσ.

In the sequel we will use the truncation function Tk : R → R, defined as the Lipschitz
bounded function

Tk(s) = max{−k,min{k, s}}
for every positive real number k, and its primitive Θk : R → R+

Θk(s) =

s
∫

0

Tk(σ) dσ.

3. Variational framework: existence and uniqueness of the strong solution
and proof of the Lewy-Stampacchia inequality

In this section we study existence of strong solutions for the evolutionary unilateral prob-
lem involving the nonlinear operator A in the case of right hand side f in Lp′(0, T ;V ′),
initial datum u0 in L2(Ω) and obstacle function ψ in Lp(0, T ;V ). In other words, defining
the (nonempty) closed convex set

Cψ = {v ∈ Lp(0, T ;V ) : v ≥ ψ almost everywhere in Q}, (3.1)

we look for a function u ∈ Cψ ∩ W satisfying the initial condition u(0) = u0 and the
variational inequality

T
∫

0

〈ut, v − u〉+
∫∫

Q

a(x, t,Du) ·D(v − u) ≥
T
∫

0

〈f, v − u〉, (3.2)

for all v ∈ Cψ.
Let us first suppose that ψ ∈ W, ψ(0) ≤ u0, and that the element h of Lp′(0, T ;V ′),
defined by

h = ψt + A(ψ)− f,

can be decomposed as h = h+ − h−, where h+ and h− are nonnegative elements of the
dual space Lp′(0, T ;V ′) (that is, ψt + A(ψ) − f belongs to the ordered dual space of
Lp(0, T ;V ), which is well-know to be a proper subspace of Lp′(0, T ;V ′)). Due to a result
of [10] (proved by using classical penalty approximation), there exists a unique strong
solution u of the parabolic unilateral problem for A with data f, u0 and ψ. Moreover, the
following inequality of Lewy-Stampacchia type holds

0 ≤ ut + A(u)− f ≤ (ψt + A(ψ)− f)+ in Lp′(0, T ;V ′). (3.3)

From the above inequality (3.3) it follows that the regularity of the solution depends only
on the positive part of h. This agrees with the nature of the problem. Indeed, the solutions
of unilateral problems, with the obstacle placed below, intuitively may depart from the
constraint only “jumping upwardsÔ. From here the interest in removing the assumption
on the distribution ψt +A(ψ)− f to belong to the ordered dual space of Lp(0, T ;V ), and
this is the actual content of the next theorem.
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Theorem 3.1. Let f ∈ Lp′(0, T ;V ′) and u0 ∈ L2(Ω). Suppose that ψ ∈ Lp(0, T ;V ) and
that there exists g in Lp′(0, T ;V ′) such that g is nonnegative and ψ is a (weak) subsolution
of the nonlinear parabolic problem with right hand side f + g and initial datum u0, that is

−
T
∫

0

〈ϕt, ψ〉+
∫∫

Q

a(x, t,Dψ) ·Dϕ ≤
∫

Ω

u0ϕ(0) +

T
∫

0

〈f + g, ϕ〉, (3.4)

for all ϕ ∈ W such that ϕ ≥ 0 and ϕ(T ) = 0.

Then there exists a unique function u such that u ∈ Cψ ∩ W, u(0) = u0 and inequality
(3.2) holds.

Moreover, the obstacle reaction associated with u, which is the nonnegative element of
Lp′(0, T ;V ′) defined as µ = ut + A(u)− f, satisfies

0 ≤ µ ≤ g in Lp′(0, T ;V ′). (3.5)

Proof. We begin by proving that there exists at most one strong solution. Let u and ū
be in Cψ ∩W such that u(0) = ū(0) = u0 and satisfying inequality (3.2). Then

T
∫

0

〈ut − ūt, u− ū〉+
∫∫

Q

(a(x, t,Du)− a(x, t,Dū)) ·D(u− ū) ≤ 0,

where
T
∫

0

〈ut − ūt, u − ū〉 = 1
2

∫

Ω

|u − ū|2(T ). From assumption (2.3) it then follows that

u = ū.

To complete the proof of the theorem we proceed in two steps. First we assume that
g belongs to Lp′(Q) and, using the homographic approximation, we construct a strong
solution u. To deal with the general case we then argue by approximating g. Inequality
(3.5) will be a consequence of the penalty method.

First case: g ∈ Lp′(Q), g ≥ 0. Let λ > 0. We consider the following homographic
approximation to the variational inequality (3.2):











uλ
t + A(uλ) + g uλ−ψ

λ+|uλ−ψ| = f + g in Q,

uλ(x, 0) = u0(x) in Ω,

uλ(x, t) = 0 on ∂Ω× (0, T ).

(3.6)

From classical results (see [12]), equation (3.6) admits a unique solution uλ ∈ W. Notice
that uλ ∈ C([0, T ];L2(Ω)), so that the initial datum makes sense.

Now, using assumption (3.4), we prove that uλ ≥ ψ. Take ϕ ∈ W such that ϕ ≥ 0 and
ϕ(T ) = 0. Multiply equation (3.6) by ϕ and integrate by parts. We have, from (3.4), that

T
∫

0

〈ϕt, ψ − uλ〉+
∫∫

Q

(a(x, t,Duλ)− a(x, t,Dψ)) ·Dϕ+

∫∫

Q

g
uλ − ψ

λ+ |uλ − ψ|
ϕ ≥ 0. (3.7)
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Consider the time-regularization zk,ν of the function Tk(ψ − uλ)+ ∈ Lp(0, T ;V ), defined
as the solution of the problem











−zk,νt + νzk,ν = νTk(ψ − uλ)+ in Q,

zk,ν(x, T ) = 0 in Ω,

zk,ν(x, t) = 0 on ∂Ω× (0, T ),

where ν > 0. Explicitly, we have

zk,ν(x, t) = ν

T
∫

t

Tk(ψ − uλ)+(s) exp(ν(t− s)) ds,

and thus zk,ν is a nonnegative sequence which belongs to Lp(0, T ;V ) ∩ C([0, T ];L2(Ω))
and converges to Tk(ψ−uλ)+ strongly in Lp(0, T ;V ) as ν → +∞ (see, for instance, [10]).
Moreover, since Tk(ψ − uλ)+ belongs to L∞(Q), and zk,ν turns out to have the same
regularity, then we get zk,νt ∈ L∞(Q). Finally, we can see that

∫∫

Q

zk,νt (ψ − uλ) ≤ 0, (3.8)

for all ν > 0; indeed, we have

∫∫

Q

zk,νt (ψ − uλ) =

∫∫

Q

zk,νt (ψ − uλ)+ −
∫∫

Q

zk,νt (ψ − uλ)−,

where

∫∫

Q

zk,νt (ψ − uλ)+ =

∫∫

Q

zk,νt Tk(ψ − uλ)+ +

∫∫

Q

zk,νt ((ψ − uλ)+ − k)+ =

=

∫∫

Q

zk,νt

(

−1

ν
zk,νt + zk,ν

)

+ ν

∫∫

Q

(zk,ν − k)((ψ − uλ)+ − k)+ =

= −1

ν

∫∫

Q

|zk,νt |2 − 1

2

∫

Ω

|zk,ν(0)|2 − kν

∫∫

Q

exp(ν(t− T ))((ψ − uλ)+ − k)+ ≤ 0,

and
∫∫

Q

zk,νt (ψ − uλ)− = ν

∫∫

Q

(zk,ν − Tk(ψ − uλ)+)(ψ − uλ)− = ν

∫∫

Q

zk,ν(ψ − uλ)− ≥ 0.

Let us take ϕ = zk,ν in (3.7). Using (3.8) and taking the limit for ν → +∞, we get

∫∫

Q

(a(x, t,Dψ)− a(x, t,Duλ)) ·DTk(ψ − uλ)+ ≤ 0,
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so that from (2.3) it follows that Tk(ψ − uλ)+ = 0 for all k > 0, and thus uλ ≥ ψ.

Thus we can rewrite (3.6) as

uλ
t + A(uλ) = f + g

λ

λ+ uλ − ψ
, (3.9)

and so we have that uλ is monotone nonincreasing as λ → 0+; indeed, if λ ≤ η, then uλ

is a subsolution of the problem with η so that

uλ
t − uη

t + A(uλ)− A(uη) ≤ g
η(uη − uλ)

(η + uλ − ψ)(η + uη − ψ)
,

and thus, multiplying the last expression by (uλ−uη)+ and integrating on Q, we get that
uλ ≤ uη.

In view of the fact that the homographic term (uλ−ψ)/(λ+|uλ−ψ|) is uniformly bounded
in L∞(Q) with respect to λ > 0 and that A is coercive, multiplying (3.6) by uλχ(0,τ) we
obtain

1

2

∫

Ω

|uλ(τ)|2 − 1

2

∫

Ω

|u0|2 + α

τ
∫

0

∫

Ω

|Duλ|p ≤
τ

∫

0

〈f, uλ〉+
τ

∫

0

∫

Ω

g|uλ| ≤ c





τ
∫

0

‖uλ‖pV





1
p

.

For p ≥ 2, this implies, since ‖uλ‖Lp(0,T ;V ) ≤ c‖uλ‖Lp(0,T ;W 1,p
0 (Ω)), that uλ is bounded in

Lp(0, T ;V ). Let us consider the case 1 < p < 2. We have that

‖uλ(τ)‖2L2(Ω) + 2α

τ
∫

0

‖Duλ‖pLp(Ω) ≤ c+ c





τ
∫

0

‖Duλ‖pLp(Ω)





1
p

+ c





τ
∫

0

‖uλ‖pL2(Ω)





1
p

.

Hence, using Young’s inequality,

‖uλ(τ)‖2L2(Ω) + α

τ
∫

0

‖Duλ‖pLp(Ω) ≤ c+ c





τ
∫

0

‖uλ‖pL2(Ω)





2
p

. (3.10)

It follows that

‖uλ(τ)‖pL2(Ω) ≤ c+ c

τ
∫

0

‖uλ‖pL2(Ω)

and then, by the Gronwall lemma, we deduce that ‖uλ(τ)‖L2(Ω) ≤ c. This implies that uλ

is bounded in Lp(0, T ;L2(Ω)) and, by estimate (3.10), in Lp(0, T ;W 1,p
0 (Ω)). Finally, we

conclude that ‖uλ‖Lp(0,T ;V ) ≤ c.

Now, from (2.2) it follows that A(uλ) is bounded in Lp′(0, T ;V ′), and therefore, going
back to equation (3.6), we get

‖uλ
t ‖Lp′ (0,T ;V ′) ≤ c.
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Consequently, there exists a function u such that uλ converges to u weakly in Lp(0, T ;V )
and uλ

t converges to ut weakly in Lp′(0, T ;V ′). By compact embedding theorems (see
[17]) we then have that uλ → u strongly in Lp(Q). Thus u ≥ ψ. We also deduce that
u ∈ C([0, T ];L2(Ω)), u(0) = u0 and that

T
∫

0

〈ut, u〉 ≤ lim inf
λ→0+

T
∫

0

〈uλ
t , u

λ〉.

Let v ∈ Cψ and multiply (3.9) by v − uλ. Since uλ − v ≤ λ+ uλ − ψ it follows that

T
∫

0

〈uλ
t , v − uλ〉+

∫∫

Q

a(x, t,Duλ) ·D(v − uλ) ≥
T
∫

0

〈f, v − uλ〉 − λ

∫∫

Q

g. (3.11)

From the above results we have that (3.11) yields (3.2), provided that

lim sup
λ→0+

∫∫

Q

a(x, t,Duλ) ·D(v − uλ) ≤
∫∫

Q

a(x, t,Du) ·D(v − u). (3.12)

To prove (3.12) we choose v = u in (3.11) to find

lim inf
λ→0+

∫∫

Q

a(x, t,Duλ) ·D(u− uλ) ≥ 0.

Thus, since A is pseudomonotone and uλ converges to u weakly in Lp(0, T ;V ), we have
that (3.12) holds for all v ∈ Lp(0, T ;V ) and that A(uλ) converges to A(u) weakly in
Lp′(0, T ;V ′) (see [12]).

Finally, equation (3.9) yields that

0 ≤ uλ
t + A(uλ)− f ≤ g in Lp′(0, T ;V ′),

hence, letting λ → 0+, we obtain that inequality (3.5) holds.

General case. Consider now g ∈ Lp′(0, T ;V ′), g ≥ 0. It is shown in [10] that there exists
{gn} ⊂ Lp′(Q), gn ≥ 0, such that gn → g strongly in Lp′(0, T ;V ′) as n → +∞. Define

fn = f − gn + g.

Thus fn ∈ Lp′(0, T ;V ′) and fn → f strongly in Lp′(0, T ;V ′).

Since f + g = fn + gn, assumption (3.4) is automatically satisfied with right hand side
fn + gn. From the above result, there exists un ∈ Cψ ∩W such that un(0) = u0 and

T
∫

0

〈un
t , v − un〉+

∫∫

Q

a(x, t,Dun) ·D(v − un) ≥
T
∫

0

〈fn, v − un〉, (3.13)
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for all v ∈ Cψ. Moreover, µn = un
t +A(un)− fn, the obstacle reaction associated with un,

is a nonnegative element of Lp′(0, T ;V ′) such that

0 ≤ µn ≤ gn in Lp′(0, T ;V ′). (3.14)

This implies that ‖un
t +A(un)‖Lp′ (0,T ;V ′) ≤ ‖fn‖Lp′ (0,T ;V ′)+ ‖gn‖Lp′ (0,T ;V ′); thus, since {fn}

and {gn} are convergent sequences, we have

‖un
t + A(un)‖Lp′ (0,T ;V ′) ≤ c. (3.15)

Taking v = un+(ψ−un)χ(0,τ) ∈ Cψ in (3.13), from estimate (3.15) and assumption (2.1),
we get

1

2

∫

Ω

|un(τ)|2 − 1

2

∫

Ω

|u0|2 + α

τ
∫

0

∫

Ω

|Dun|p ≤
τ

∫

0

〈un
t , u

n〉+
τ

∫

0

∫

Ω

a(x, t,Dun) ·Dun ≤

≤
τ

∫

0

〈un
t , ψ〉+

τ
∫

0

∫

Ω

a(x, t,Dun) ·Dψ +

τ
∫

0

〈fn, un − ψ〉 ≤ c+ c





τ
∫

0

‖un‖pV





1
p

.

Consequently, reasoning as before, we obtain

‖un‖Lp(0,T ;V ) ≤ c.

Using (2.2) we also deduce that A(un) is bounded in Lp′(0, T ;V ′). This implies, by (3.15),
that

‖un
t ‖Lp′ (0,T ;V ′) ≤ c.

Therefore, there exists a function u such that, up to a subsequence, un → u weakly
in Lp(0, T ;V ), un

t → ut weakly in Lp′(0, T ;V ′), un → u strongly in Lp(Q). Moreover
u ∈ C([0, T ];L2(Ω)), u(0) = u0 and

T
∫

0

〈ut, u〉 ≤ lim inf
n→+∞

T
∫

0

〈un
t , u

n〉.

Choosing now v = u in (3.13), we get

lim inf
n→+∞

∫∫

Q

a(x, t,Dun) ·D(u− un) ≥ 0,

and since the Leray-Lions operator A is pseudomonotone, this yields

lim sup
n→+∞

∫∫

Q

a(x, t,Dun) ·D(v − un) ≤
∫∫

Q

a(x, t,Du) ·D(v − u),

for all v belonging to Lp(0, T ;V ). Moreover, we have that A(un) converges to A(u) weakly
in Lp′(0, T ;V ′).

Taking the limit in (3.13) and (3.14) we prove both the existence of a solution and in-
equality (3.5).
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Remark 3.2. The solution of (3.2) is also the minimal function u ∈ Cψ ∩ W such that
u(0) = u0 and

T
∫

0

〈ut, ϕ〉+
∫∫

Q

a(x, t,Du) ·Dϕ ≥
T
∫

0

〈f, ϕ〉, (3.16)

for all ϕ ∈ Lp(0, T ;V ) with ϕ ≥ 0. Indeed, if ϕ ∈ Lp(0, T ;V ) and ϕ ≥ 0, we can choose
v = u+ϕ ∈ Cψ in (3.2), so that (3.16) follows. Let now ū ∈ Cψ∩W be such that ū(0) = u0

and

T
∫

0

〈ūt, ϕ〉+
∫∫

Q

a(x, t,Dū) ·Dϕ ≥
T
∫

0

〈f, ϕ〉,

for all ϕ ∈ Lp(0, T ;V ) with ϕ ≥ 0; taking ϕ = (u−ū)+ and choosing v = u−(u−ū)+ ∈ Cψ
in (3.2), we have that

T
∫

0

〈ut − ūt, (u− ū)+〉+
∫∫

Q

(a(x, t,Du)− a(x, t,Dū)) ·D(u− ū)+ ≤ 0,

which yields that u ≤ ū.

Remark 3.3. If the obstacle ψ is such that ψ ∈ W, ψ(0) ≤ u0, and that h = ψt+A(ψ)−f
belongs to the ordered dual space of Lp(0, T ;V ), then hypothesis (3.4) is satisfied with
g = h+. Thus we have that there exists a unique function u such that u ∈ Cψ ∩ W,
u(0) = u0 and inequality (3.2) holds. Moreover, from estimate (3.5) we deduce the Lewy-
Stampacchia inequality (3.3). This is the same result proved in [10]. We now give a simple
example in which the obstacle is irregular in time (ψt does not belong to Lp′(0, T ;V ′))
and condition (3.4) is satisfied, provided that ψ does not “jump upÔ.

Consider the case where the operator A is the Laplacian, f = 0, and u0 = 0. Define the
obstacle function

ψ(x, t) = [tχ(0,τ)(t) + c(1− χ(0,τ)(t))]w(x),

where τ ∈ (0, T ) is fixed, c is a real constant, and w ∈ H1
0 (Ω) is the positive solution of

the following elliptic problem
{

−∆w = 1 in Ω,

w = 0 on ∂Ω.

Note that, if c 6= τ, ψ is not continuous in t. In particular, if c < τ then ψ “jumps downÔ
and, if c > τ then ψ “jumps upÔ.

Let us check that assumption (3.4) holds. Take ϕ in L2(0, T ;H1
0 (Ω)) such that ϕt belongs
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to L2(0, T ;H−1(Ω)), ϕ ≥ 0 and ϕ(T ) = 0. We have

−
T
∫

0

〈ϕt, ψ〉+
∫∫

Q

Dψ ·Dϕ = −
τ

∫

0

t〈ϕt, w〉 − c

T
∫

τ

〈ϕt, w〉+
τ

∫

0

∫

Ω

tϕ+ c

T
∫

τ

∫

Ω

ϕ =

=

τ
∫

0

∫

Ω

wϕ− τ

∫

Ω

wϕ(τ) + c

∫

Ω

wϕ(τ) +

τ
∫

0

∫

Ω

tϕ+ c

T
∫

τ

∫

Ω

ϕ =

= (c− τ)

∫

Ω

wϕ(τ) +

τ
∫

0

∫

Ω

(t+ w)ϕ+ c

T
∫

τ

∫

Ω

ϕ.

Thus, if c ≤ τ,

−
T
∫

0

〈ϕt, ψ〉+
∫∫

Q

Dψ ·Dϕ ≤
τ

∫

0

∫

Ω

(t+ w)ϕ+ τ

T
∫

τ

∫

Ω

ϕ

and condition (3.4) is satisfied with

g(x, t) = χ(0,τ)(t)(t+ w(x)) + τ(1− χ(0,τ)(t)),

which is a nonnegative element of L∞(0, T ;L2(Ω)).

Remark 3.4. Let us point out that hypothesis (3.4) implies that there exists z ∈ Cψ∩W.
Indeed we can choose z as the solution of the parabolic problem











zt + A(z) = f + g in Q,

z(x, 0) = u0 in Ω,

z(x, t) = 0 on ∂Ω× (0, T ).

Assume now that Cψ ∩W is nonempty and consider the case where A = −∆. It is shown
in [16] that there exists u such that: u ∈ Cψ and

T
∫

0

〈vt, v − u〉+
∫∫

Q

Du ·D(v − u) +
1

2

∫

Ω

|v(0)− u0|2 ≥
T
∫

0

〈f, v − u〉, (3.17)

for all v ∈ Cψ ∩W (that is, u is a weak solution).

In [16] u is obtained as the nondecreasing limit, for ε → 0+, of the solution uε of the
following penalized problem











uε
t −∆uε − 1

ε
(uε − ψ)− = f in Q,

uε(x, 0) = u0 in Ω,

uε(x, t) = 0 on ∂Ω× (0, T ).



M. C. Palmeri / Homographic approximation 363

With this method u turns out to be the minimal weak solution and is characterized as
the minimal function in Cψ such that

−
T
∫

0

〈ϕt, u〉+
∫∫

Q

Du ·Dϕ ≥
T
∫

0

〈f, ϕ〉+
∫

Ω

u0ϕ(0)

for all ϕ ∈ W with ϕ ≥ 0 and ϕ(T ) = 0.

On the other hand, the existence of weak solutions in the case of nonlinear parabolic
operators of Leray-Lions type requires something more than the natural assumption that
Cψ ∩ W is nonempty. In [12, Chapter II n.9] it is given a “compatibility conditionÔ on
the convex Cψ which assures existence and uniqueness of the weak solution. For instance,
Cψ satisfies the hypotheses of compatibility if ψ = 0 and u0 = 0; for all f ∈ Lp′(0, T ;V ′)
there exists then a unique function u ∈ C0 such that

T
∫

0

〈vt, v − u〉+
∫∫

Q

a(x, t,Du) ·D(v − u) +
1

2

∫

Ω

|v(0)|2 ≥
T
∫

0

〈f, v − u〉,

for all v ∈ C0∩W. Notice that, in this case, Theorem 3.1 can be applied only if f belongs
to the ordered dual space of Lp(0, T ;V ).

Remark 3.5. It has been pointed out in [16] that if there exists a strong solution u of
the parabolic unilateral problem involving a linear operator A then u is the unique weak
solution.

The same situation happens in the nonlinear case so that, under the hypotheses of Theo-
rem 3.1, we not only have uniqueness for (strong) solutions but also uniqueness for weak
solutions. Indeed, let u be the strong solution of our problem; if there exists a weak
solution ū ∈ Cψ then, since u ∈ Cψ ∩W and u(0) = u0, one has

T
∫

0

〈ut, u− ū〉+
∫∫

Q

a(x, t,Dū) ·D(u− ū) ≥
T
∫

0

〈f, u− ū〉,

and, from inequality (3.2),

T
∫

0

〈ut, ū− u〉+
∫∫

Q

a(x, t,Du) ·D(ū− u) ≥
T
∫

0

〈f, ū− u〉.

It follows that
∫∫

Q

(a(x, t,Du)− a(x, t,Dū)) ·D(u− ū) ≤ 0

and so u = ū.
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4. L1 data

Let us consider evolutionary unilateral problems with L1 data. We take

f ∈ L1(Q), u0 ∈ L1(Ω), ψ+ ∈ L1(Q), (4.1)

and define the (nonempty) closed convex set

Kψ = {ϕ ∈ L1(Q) : ϕ ≥ ψ almost everywhere in Q}. (4.2)

We recall that the study of parabolic equations with L1 data has been carried out using
the notion of entropy solution (see [15]), introduced in [2] for elliptic equations. Here,
using the concept of entropy solution, we adapt to the case of data as in (4.1) the mini-
mality condition which characterizes the solutions of parabolic unilateral problems in the
variational framework (see Remark 3.2).

Set

Y = {ϕ ∈ Lp(0, T ;W 1,p
0 (Ω))∩C([0, T ];L1(Ω)) : ϕt ∈ Lp′(0, T ;W−1,p′(Ω))+L1(Q)}, (4.3)

and observe that Y ∩ L∞(Q) ⊂ C([0, T ];Lγ(Ω)) for all 1 ≤ γ < +∞. Moreover, by
virtue of Lemma 2.4 of [6], formula (2.5) holds for any u ∈ Y such that u(0) ∈ L2(Ω),
where now, and in what follows, 〈 , 〉 denotes the duality between W−1,p′(Ω) +L1(Ω) and
W 1,p

0 (Ω) ∩ L∞(Ω).

We will say that u is the solution of the parabolic unilateral problem with data (4.1) if u
is the minimal function in Kψ ∩ C([0, T ];L1(Ω)) such that Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)) for
all k > 0, and

∫

Ω

Θk(ϕ(0)− u0)
+ +

T
∫

0

〈ϕt, Tk(ϕ− u)+〉+
∫∫

Q

a(x, t,Du) ·DTk(ϕ− u)+ ≥

≥
∫∫

Q

fTk(ϕ− u)+ +

∫

Ω

Θk(ϕ− u)+(T ) (4.4)

for all k > 0 and ϕ ∈ Y ∩ L∞(Q).

We have the following result.

Theorem 4.1. Let f ∈ L1(Q) and u0 ∈ L2(Ω). Suppose that Tk(ψ) ∈ Lp(0, T ;W 1,p(Ω)),
Tk(ψ − ϕ)+ ∈ Lp(0, T ;W 1,p

0 (Ω)) for all k > 0 and ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q), and

that there exists a nonnegative function g ∈ L1(Q) such that

T
∫

0

〈ϕt, Tk(ψ − ϕ)+〉+
∫∫

Q

a(x, t,Dψ) ·DTk(ψ − ϕ)+ ≤

≤
∫∫

Q

(f + g)Tk(ψ − ϕ)+ +

∫

Ω

Θk(u0 − ϕ(0))+, (4.5)
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for all k > 0 and ϕ ∈ Y ∩ L∞(Q).

Then there exists a unique minimal function u ∈ Kψ ∩ C([0, T ];L1(Ω)) such that Tk(u)
belongs to Lp(0, T ;W 1,p

0 (Ω)) for all k > 0, and (4.4) holds.

Moreover, the obstacle reaction associated with u, that is µ = ut+A(u)−f, is a nonnegative
element of L1(Q) such that

0 ≤ µ ≤ g almost everywhere in Q. (4.6)

Before giving the proof of Theorem 4.1 we recall that the entropy solution of a nonlinear
parabolic Dirichlet problem with right hand side f ∈ L1(Q) and initial datum u0 ∈ L1(Ω)
is a function u such that Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)) for all k > 0 and satisfying the
following inequality

∫

Ω

Θk(u− ϕ)(T ) +

T
∫

0

〈ϕt, Tk(u− ϕ)〉+
∫∫

Q

a(x, t,Du) ·DTk(u− ϕ) ≤

≤
∫∫

Q

fTk(u− ϕ) +

∫

Ω

Θk(u0 − ϕ(0)),

for all k > 0 and ϕ ∈ Y ∩ L∞(Q). Existence and uniqueness of the entropy solution have
been proved in [15].

Proof of Theorem 4.1. The proof is divided into various steps.

The homographic approximation. We first consider the family of nonlinear parabolic
problems











uλ
t + A(uλ) + g uλ−ψ

λ+|uλ−ψ| = f + g in Q,

uλ(x, 0) = u0(x) in Ω,

uλ(x, t) = 0 on ∂Ω× (0, T ),

(4.7)

depending on the parameter λ > 0.

Let us prove that there exists a unique entropy solution of (4.7). Take fn = Tn(f),
gn = Tn(g), u

n
0 = Tn(u0) and consider the approximate equations











uλ,n
t + A(uλ,n) + gn

uλ,n−ψ
λ+|uλ,n−ψ| = fn + gn in Q,

uλ,n(x, 0) = un
0 in Ω,

uλ,n(x, t) = 0 on ∂Ω× (0, T ).

(4.8)

Due to calssical results (see [12]) problem (4.8) admits a unique solution uλ,n ∈ W; further,
Theorem 7.1 of [13], Chapter III, implies that uλ,n ∈ L∞(Q). Let us point out that, since
the equation gives uλ,n

t ∈ Lp′(0, T ;W−1,p′(Ω)), uλ,n actually belongs to Y ∩ L∞(Q). One

can also see, using the fact that the sequence {fn+gn(1− uλ,n−ψ
λ+|uλ,n−ψ|)} is bounded in L1(Q)

and arguing as in [5], that

‖Tk(u
λ,n)‖p

Lp(0,T ;W 1,p
0 (Ω))

≤ ck,
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and

‖uλ,n‖L∞(0,T ;L1(Ω)) ≤ c,

for all k > 0, λ > 0 and n ∈ N. Then, applying the well-known Gagliardo-Nirenberg
embedding result (see Proposition 3.1 of [9]), it follows that

meas({(x, t) ∈ Q : |Duλ,n| > k})k
p(N+1)

N ≤
∫∫

Q

|Tk(u
λ,n)|

p(N+1)
N ≤

≤ c‖Tk(u
λ,n)‖

p
N

L∞(0,T ;L1(Ω))

∫∫

Q

|DTk(u
λ,n)|p ≤ ck,

and thus

meas({(x, t) ∈ Q : |uλ,n| > k}) ≤ ck−p1 , p1 = p
N + 1

N
− 1, (4.9)

for all k > 0, λ > 0 and n ∈ N. Moreover, reasoning as in the elliptic case (see [2]), we
deduce that

meas({(x, t) ∈ Q : |Duλ,n| > k}) ≤ ck−p2 , p2 = p− N

N + 1
, (4.10)

for all k > 0, λ > 0 and n ∈ N. From estimate (4.9), equation (4.8) and standard compact-
ness results, one can prove that there exists uλ such that (up to a subsequence) uλ,n con-
verges to uλ almost everywhere in Q. Consequently, using (4.10), (4.8) and Theorem 3.3 of
[4], it follows thatDuλ,n converges toDuλ almost everywhere in Q, whereDuλ denotes the
measurable function defined almost everywhere in Q by Duλχ{|uλ|<k} = DTk(u

λ) for every
k > 0. Taking now n,m ∈ N and τ ∈ (0, T ], and multiplying (4.8) by T1(u

λ,n−uλ,m)χ(0,τ),
we get

∫

Ω

Θ1(u
λ,n − uλ,m)(τ) ≤

≤
∫

Ω

Θ1(u
n
0 − um

0 ) +

∫∫

Q

|fn − fm|+
∫∫

Q

|gn − gm|+ 2

∫∫

Q

g|T1(u
λ,n − uλ,m)|.

Thus, using the fact that uλ,n converges to uλ almost everywhere in Q and following the
proof of [15], we deduce that uλ ∈ C([0, T ];L1(Ω)) and uλ,n converges to uλ strongly in

C([0, T ];L1(Ω)). Finally, observing that the sequence {fn + gn(1 − uλ,n−ψ
λ+|uλ,n−ψ|)} strongly

converges to the function f + g(1 − uλ−ψ
λ+|uλ−ψ|) in L1(Q) as n → +∞, and arguing again

as in [15], one can check that uλ is an entropy solution of equation (4.7). Further, using
assumption (2.3) and the monotonicity of the homographic map s → s

λ+|s| , one can easly

see that if v is another entropy solution of (4.7) then v = uλ.

Let us check that uλ ≥ ψ. Choosing ϕ = uλ,n in (4.5) and multiplying equation (4.8) by
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Tk(ψ − uλ,n)+, we get

∫∫

Q

(a(x, t,Dψ)− a(x, t,Duλ,n)) ·DTk(ψ − uλ,n)+ ≤

≤
∫∫

Q

(f − fn)Tk(ψ − uλ,n)+ +

∫

Ω

Θk(u0 − un
0 )

+.

It then follows from Fatou’s lemma and hypothesis (2.3) that Tk(ψ − uλ)+ = 0 for all
k > 0, and this implies uλ ≥ ψ. Consequently, equation (4.7) can be rewritten as

uλ
t + A(uλ) = f + g

λ

λ+ uλ − ψ
. (4.11)

The solution of the obstacle problem. Consider the entropy solution uλ of equation
(4.11), given by the previous step. We begin by proving that uλ is monotone nonincreasing
as λ → 0+. Let λ ≤ η, and let uλ,n and uη,n be the corresponding solutions of (4.8); then

∫

Ω

Θk(u
λ,n − uη,n)+(T ) +

∫∫

Q

(a(x, t,Duλ,n)− a(x, t,Duη,n)) ·DTk(u
λ,n − uη,n)+ ≤

≤
∫∫

Q

gn

(

uη,n − ψ

η + |uη,n − ψ|
− uλ,n − ψ

λ+ |uλ,n − ψ|

)

Tk(u
λ,n − uη,n)+

and thus

∫∫

Q

(a(x, t,Duλ)− a(x, t,Duη)) ·DTk(u
λ − uη)+ ≤

≤
∫∫

Q

g

(

uη − ψ

η + uη − ψ
− uλ − ψ

λ+ uλ − ψ

)

Tk(u
λ − uη)+ ≤

∫∫

Q

g
(uλ − ψ)(λ− η)k

(λ+ uλ − ψ)(η + uη − ψ)
.

Then
∫∫

Q

(a(x, t,Duλ)− a(x, t,Duη)) ·DTk(u
λ − uη)+ ≤ 0,

which implies, from assumption (2.3), that uλ ≤ uη.

We have then proved that there exists a function u such that u ≥ ψ and the solution uλ

of (4.7) converges to u, as λ goes to zero. Our goal is now to show that such a function
u satisfies inequality (4.4) and the minimality property.

As a consequence of the previous step we have both the following estimates

‖Tk(u
λ)‖p

Lp(0,T ;W 1,p
0 (Ω))

≤ ck,

and
‖uλ‖L∞(0,T ;L1(Ω)) ≤ c,
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for all k > 0 and λ > 0. Therefore Tk(u) belongs to Lp(0, T ;W 1,p
0 (Ω)) for all k > 0,

u ∈ L1(Q) and, thanks again to the Gagliardo-Nirenberg inequality, we obtain

meas({(x, t) ∈ Q : |uλ| > k}) ≤ ck−p1 , p1 = p
N + 1

N
− 1,

and

meas({(x, t) ∈ Q : |Duλ| > k}) ≤ ck−p2 , p2 = p− N

N + 1
,

for all k > 0 and λ > 0.

Let us take λ, η > 0 and τ ∈ (0, T ]. Multiplying (4.8) by T1(u
λ,n − uη,n)χ(0,τ), and letting

n → +∞, we get
∫

Ω

Θ1(u
λ − uη)(τ) ≤ 2

∫∫

Q

g|T1(u
λ − uη)|.

Then, since uλ → u almost everywhere in Q, we are able to establish, arguing as in [15],
that uλ is a Cauchy sequence in C([0, T ];L1(Ω)), and thus u ∈ C([0, T ];L1(Ω)) and uλ

converges to u strongly in C([0, T ];L1(Ω)).

Moreover, using the fact that {f + g − g uλ−ψ
λ+|uλ−ψ|} is uniformly bounded in L1(Q), it

is possible to apply, once more, Theorem 3.3 of [4] to obtain the almost everywhere
convergence of Duλ to Du, where Du denotes the measurable function defined almost
everywhere in Q by Duχ{|u|<k} = DTk(u) for every k > 0.

To prove (4.4) we multiply (4.8) by Tk(u
λ,n − ϕ)+, with ϕ as in the statement of the

theorem, and we get, as n → +∞,

∫

Ω

Θk(ϕ(0)− u0)
+ +

T
∫

0

〈ϕt, Tk(ϕ− uλ)+〉+
∫∫

Q

a(x, t,Duλ) ·DTk(ϕ− uλ)+ ≥

≥
∫∫

Q

fTk(ϕ− uλ)+ +

∫

Ω

Θk(ϕ− uλ)+(T ).

The claim then follows taking the limit as λ → 0+.

We now prove the minimality of u. Let ū ∈ Kψ ∩ C([0, T ];L1(Ω)) be such that Tk(ū)
belongs to Lp(0, T ;W 1,p

0 (Ω)) for all k > 0, and such that (4.4) holds. Setting ϕ = uλ,n in
(4.4) and multiplying equation (4.8) by Tk(u

λ,n − ū)+, we obtain

∫

Ω

Θk(u
λ,n − ū)+(T ) +

∫∫

Q

(a(x, t,Duλ,n)− a(x, t,Dū)) ·DTk(u
λ,n − ū)+ ≤

≤
∫∫

Q

{

gn

(

1− uλ,n − ψ

λ+ |uλ,n − ψ|

)

+ fn − f

}

Tk(u
λ,n − ū)+ +

∫

Ω

Θk(u
n
0 − u0)

+.

Again, by Fatou’s lemma, we have
∫∫

Q

(a(x, t,Duλ)− a(x, t,Dū)) ·DTk(u
λ − ū)+ ≤

∫∫

Q

g
λ

λ+ uλ − ψ
Tk(u

λ − ū)+.
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Hence, since uλ ≥ ψ and ū ≥ ψ,
∫∫

Q

(a(x, t,Duλ)− a(x, t,Dū)) ·DTk(u
λ − ū)+ ≤ λ

∫∫

Q

g,

so that it follows, again from Fatou’s lemma and the coercivity of A, that u ≤ ū.

Inequality (4.6). The constructive approximation of the solution u given in the previous
step allows us to verify without difficulty inequality (4.6). Let us set

µλ = g
λ

λ+ uλ − ψ
. (4.12)

Since 0 ≤ µλ ≤ g, there exists a function µ̂ ∈ L1(Q) such that, up to a subsequence,
µλ → µ̂ weakly in L1(Q) and 0 ≤ µ̂ ≤ g almost everywhere in Q. Thanks now to the
penalized equation (4.7), we get

−
∫∫

Q

uλϕt +

∫∫

Q

a(x, t,Duλ) ·Dϕ−
∫∫

Q

fϕ =

∫∫

Q

ϕµλ,

for every ϕ ∈ D(Q); this yields, as λ → 0+, that the distribution µ = ut + A(u) − f
coincides with µ̂.

The proof of Theorem 4.1 is now completed.

Remark 4.2. Observe that if p > 2− 1
N+1

then p2 = p− N
N+1

is greater than 1. Conse-

quently, in this case, u ∈ Lq(0, T ;W 1,q
0 (Ω)) for any 1 ≤ q < p2. We deduce, in particular,

that Du ∈ L1(Q).

In the following proposition we will suppose, in addition to assumption (4.5), that ψ+ ∈
L∞(Ω), and we will prove that the minimal function u ∈ Kψ ∩ C([0, T ];L1(Ω)) such that
Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)) for all k > 0, and (4.4) holds, is also characterized as the unique
solution of an “entropy variational inequalityÔ (see formulation (4.13) below).

Proposition 4.3. Assume that the obstacle function ψ satisfies assumption (4.5) and that
ψ+ ∈ L∞(Q). Then, Kψ ∩Y ∩L∞(Q) is nonempty and the solution u of the parabolic uni-
lateral problem with data (4.1) is the unique function such that u ∈ Kψ ∩C([0, T ];L1(Ω)),
Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)) for all k > 0, and

∫

Ω

Θk(ϕ(0)− u0) +

T
∫

0

〈ϕt, Tk(ϕ− u)〉+
∫∫

Q

a(x, t,Du) ·DTk(ϕ− u) ≥

≥
∫∫

Q

fTk(ϕ− u) +

∫

Ω

Θk(ϕ− u)(T ) (4.13)

for all k > 0 and ϕ ∈ Kψ ∩ Y ∩ L∞(Q).

Remark 4.4. Let us point out that if Kψ ∩ Y ∩ L∞(Q) is nonempty then ψ+ ∈ L∞(Q).
From Proposition 4.3 it thus follows that, under assumption (4.5), Kψ ∩ Y ∩ L∞(Q) is
nonempty if, and only if, ψ+ ∈ L∞(Q).
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Proof of Proposition 4.3. We first observe that if Kψ ∩ Y ∩ L∞(Q) is nonempty (and
thus inequality (4.13) makes sense) and ψ satisfies assumption (4.5), then the solution
u of the obstacle problem is also a solution of the entropy variational inequality (4.13).
Indeed, multiplying (4.8) by Tk(ϕ−uλ,n), with ϕ ∈ Kψ∩Y∩L∞(Q), and letting n → +∞,
we have

∫

Ω

Θk(u
λ − ϕ)(T ) +

T
∫

0

〈ϕt, Tk(u
λ − ϕ)〉+

∫∫

Q

a(x, t,Duλ) ·DTk(u
λ − ϕ) ≤

≤
∫

Ω

Θk(u0 − ϕ(0)) +

∫∫

Q

fTk(u
λ − ϕ) +

∫∫

Q

g
λ

λ+ uλ − ψ
Tk(u

λ − ϕ) ≤

≤
∫

Ω

Θk(u0 − ϕ(0)) +

∫∫

Q

fTk(u
λ − ϕ) + λ

∫∫

Q

g,

which yields, taking the limit as λ → 0+, inequality (4.13).

We now check that if assumption (4.5) is satisfied and ψ+ ∈ L∞(Q), then Kψ∩Y∩L∞(Q)
is nonempty. Approximate Tj by a sequence of regular functions T ε

j : for j > ε, define
T ε
j ∈ C2(R,R) as follows



















(T ε
j )

′(s) = 0 if |s| ≥ j,

(T ε
j )

′(s) = 1 if |s| ≤ j − ε,

|T ε
j (s)| ≤ |s| for all s ∈ R,

≤ (T ε
j )

′(s) ≤ 1 for all s ∈ R.

Let us choose j > ε + ‖ψ+‖∞, so that T ε
j (u

λ) ≥ T ε
j (ψ) ≥ ψ almost everywhere in Q.

Multiplying equation (4.8) by (T ε
j )

′(uλ,n)ϕ, with ϕ ∈ D(Q), and by passage to the limit
(n → +∞), we get

(T ε
j (u

λ))t − div ((T ε
j )

′(uλ)a(x, t,Duλ)) + (T ε
j )

′′(uλ)a(x, t,Duλ) ·Duλ =

=

(

f + g
λ

λ+ uλ − ψ

)

(T ε
j )

′(uλ) in D′(Q), (4.14)

which implies that (T ε
j (u

λ))t belongs to Lp′(0, T ;W−1,p′(Ω)) + L1(Q). As a consequence
T ε
j (u

λ) is in Kψ ∩ Y ∩ L∞(Q). This yields that Kψ ∩ Y ∩ L∞(Q) is nonempty.

To prove uniqueness of the solution of inequality (4.13), we show that if ū belongs to
Kψ ∩ C([0, T ];L1(Ω)), Tk(ū) ∈ Lp(0, T ;W 1,p

0 (Ω)) for all k > 0, and

∫

Ω

Θk(ϕ(0)− u0) +

T
∫

0

〈ϕt, Tk(ϕ− ū)〉+
∫∫

Q

a(x, t,Dū) ·DTk(ϕ− ū) ≥

≥
∫∫

Q

fTk(ϕ− ū) +

∫

Ω

Θk(ϕ− ū)(T ), (4.15)
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for all k > 0 and ϕ ∈ Kψ ∩Y ∩L∞(Q), then ū = u. To this end we will essentially use the
same method as for the proof of uniqueness of entropy solutions for parabolic equations
with L1 data given by A. Prignet in [15].

We first observe that (4.14) yields

T
∫

0

〈(T ε
j (u

λ))t, ϕ〉+
∫∫

Q

(T ε
j )

′(uλ)a(x, t,Duλ) ·Dϕ+

+

∫∫

Q

(T ε
j )

′′(uλ)a(x, t,Duλ) ·Duλϕ =

∫∫

Q

(

f + g
λ

λ+ uλ − ψ

)

(T ε
j )

′(uλ)ϕ,

for all ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q), and thus for ϕ = Tk(T

ε
j (u

λ)− ū). Then, since

(T ε
j )

′(uλ)Tk(T
ε
j (u

λ)− ū) ≤

≤ (T ε
j )

′(uλ)Tk(T
ε
j (u

λ)− ψ) ≤ (T ε
j )

′(uλ)(T ε
j (u

λ)− ψ) ≤ (T ε
j (u

λ)− ψ)χ{|uλ|≤j},

we obtain

T
∫

0

〈(T ε
j (u

λ))t, Tk(T
ε
j (u

λ)− ū)〉+
∫∫

Q

(T ε
j )

′(uλ)a(x, t,Duλ) ·DTk(T
ε
j (u

λ)− ū)+

+

∫∫

Q

(T ε
j )

′′(uλ)a(x, t,Duλ) ·DuλTk(T
ε
j (u

λ)− ū) ≤

≤
∫∫

Q

f(T ε
j )

′(uλ)Tk(T
ε
j (u

λ)− ū) + λ

∫∫

{|uλ|≤j}

g
T ε
j (u

λ)− ψ

λ+ uλ − ψ
. (4.16)

Now, taking ϕ = T ε
j (u

λ) ∈ Kψ ∩ Y ∩ L∞(Q) as a test function in (4.15), we also have

∫

Ω

Θk(T
ε
j (u0)− u0) +

T
∫

0

〈(T ε
j (u

λ))t, Tk(T
ε
j (u

λ)− ū)〉+
∫∫

Q

a(x, t,Dū) ·DTk(T
ε
j (u

λ)− ū)

≥
∫∫

Q

fTk(T
ε
j (u

λ)− ū) +

∫

Ω

Θk(T
ε
j (u

λ)− ū)(T ), (4.17)
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which implies, from (4.16), that

∫∫

Q

(a(x, t,DT ε
j (u

λ))− a(x, t,Dū)) ·DTk(T
ε
j (u

λ)− ū)+

+

∫

Ω

Θk(T
ε
j (u

λ)− ū)(T ) +

∫∫

Q

f(1− (T ε
j )

′(uλ))Tk(T
ε
j (u

λ)− ū) ≤

≤
∫

Ω

Θk(T
ε
j (u0)− u0) + k

∫∫

Q

|(T ε
j )

′′(uλ)|a(x, t,Duλ) ·Duλ + λ

∫∫

{|uλ|≤j}

g
T ε
j (u

λ)− ψ

λ+ uλ − ψ
.

(4.18)

Using the fact that limε→0+ λ
∫∫

{|uλ|≤j}
g
T ε
j (u

λ)−ψ

λ+uλ−ψ
≤ λ

∫∫

Q

g, and following the same calcula-

tions of [15], we can take the limit in (4.18) as ε → 0+, then λ → 0+ and then j → +∞,
and we obtain

∫

Ω

Θk(u− ū)(T ) +

∫∫

Q

(a(x, t,Du)− a(x, t,Dū)) ·DTk(u− ū) ≤ 0, for all k > 0.

From assumption (2.3), it then follows that u = ū.
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