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ABSTRACT. Lett, , be then-th positive integer number which can be written as a pober
t > s, of a primep (s > 1is fixed). Letr,(x) denote the number of prime powers ¢ > s,
not exceeding:. We study the asymptotic behaviour of the sequengeand of the function
7s(z). We prove that the sequentg, has an asymptotic expansion comparable to thai,of
(the Cipolla’s expansion).
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1. INTRODUCTION

Let p,, be then-th prime. M. Cipollal[1] proved the following theorem:
There exists a unique sequerg¢X) (j > 1) of polynomials with rational coefficients such
that, for every nonnegative integer,

(-1
(1.2) pn:nlogn—i—nloglogn—n—l—z(

Jj=1

Y~ nP;(loglogn) +0( n ) .

log’ n log™ n

The polynomialsP; (X') have degreg and leading coefficienit.

X2 -6X +11
P(X) =X =2, P(X) =T

If m = 0 equation[(1.]) is:
(1.2) pn = nlogn + nloglogn —n + o(n).
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2 RAFAEL JAKIMCZUK

Let 7(x) denote the number of prime numbers not exceedirthen

(1.3) m(x) = (Z “_—1)'5“) +€<w>(”fog—ml;!x (m>1),

where lim ¢(x) = 0.

r—00

Lemma 1.1. There exists a positive numb&f such that in the interval, co), |e(z)| < M.

Proof. Let us consider the closed interyal a|. In this interval,r(z) < z, sor(z) is bounded.

The functions(j;g—?f, i=1,...,mand (ngj)fx are continuous on the compdet a|, so they
are also bounded.
As

(i -1l log™ x
e(z) = [ (Z; log’ x )] — 1’
e(z) is in its turn bounded of2, a.
Sinceq is arbitrary andlim ¢(x) = 0, the lemma is proved. O

r—00

Let us consider the sequence of positive integer numbers which can be written as a‘power
of a primep (¢t > 1 is fixed). The number of prime poweps not exceeding: will be (in view

of (2.3))
-4 w(at) = (Z m) +e (at) (m = Dot

2. THE FUNCTION 7(x)

Let ¢, be then-th positive integer number (in increasing order) which can be written as a
powerp’, t > s, of a primep (s > 1 is fixed). Letr,(z) denote the number of prime powers
t > s, not exceeding.

Theorem 2.1.

" sl — 1)l s
(2.1) ms(T) = Z%) +o (102’”37) :
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Using (1.4), we obtain

@amm:<zﬁﬂ;ﬁﬁ>ﬂ%ﬁyﬂ%§%ﬁ

log" x

y " (s 4 §) (i — 1)z LN (54 7)™ (m = Dlzss
+Z<<Z( +J) (Z ) >+€<xs+j>( +J) lo(gm:v ) )

j=1 i=1 log"

_ (i s'(i — 1)!xi) - (x;> s™(m ;1)!15
: ¢ log™ x

log" x

" (s ) (- Dl ) L\ (54 5)" (m = 1)la
+Z(Z( ) (i=1) >+Z€(W>< y)lsgmx> |

i=1 \j=1 log"x

In the given conditions, the following inequalities hold far

_1
Z (5+.7 (i— 1)'$S+J Z (5 (Z D! )'ajerJ log

log® «

1
s

sm(m—1)lx’s gjé
log™ x
ko ()t G- m—i (os+k-+1
< (sm (m—=1)! IOg (2 A )
<> Erzsyen
j=1 2 s(s+7)

(s+k) (s+k+1)""

1 k
1 (2@)
Ck(sHR) (s+k+D)™ G=1...m)

M-

J

1 k
(")
Now, since
k k)’ k+1)""
lim P )(81+ + "y (i=1,...,m),
we find that
k
(s (i— 1'x3+
Z_: +] log® ]
(2.3) lim = p— =0 (i=1,...,m).
T—00 sm(m—1)lzs
log™ x

On the other hand, from the lemma we have the following inequality
k

25 (xsij> (s+ 7)™ (m — 1)z

log™ x

< Mzk: (s+7)" (m— 1)!a:$j‘

log™ x

j=1 j=1

This inequality and (2]3) withh = m give

(2.4) lim
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Finally, from (2:2), [2:B) and (2}4) we find that
ma(z) = (i st(i — 1)!xi> N 8,(wsm(m —1)lzs

~ log'z log™ x
where lim £'(z) = 0. The theorem is proved. O

r—00

From [1.4) and[(2]1) we obtain the following corollary

Corollary 2.2. The functionsr,(x) andw <:131> have the same asymptotic behaviour> 1).

3. THE SEQUENCES (ts,, )% AND p,
Theorem 3.1.

(3.1) (tsm)

o |

log" n

an+0< - ) (r>0).

Proof. We proceed by mathematical inductionxan

Equation|[(2.1L) givesit = 1)
(3.2) lim ™) _ g

T—00 sx’s
logx

If we putz = t,,, we get

1
t. )5
(3.3) fim — o)™y
"= nlog (tsn)®
From [3.3) we find that
(3.4) lim (log s+ log (tsyn)% —logn — loglog t&n) = 0.
Now, since
1
1 tsn s
(3.5) lim 108 Ean)® _
n—oo  logn
we obtain 1
tS n s
lim —( n) =1
" nlog (tsn)®
if and only if
ton)
lim (o) =

n—oo n logn
We also derive
ts,n
im ———— = 1.
n—oo N log” n

From (3.5) we find that

(3.6) lim (—logs + loglogts, —loglogn) = 0.
(3.4) and[(3.6) give
(3.7) log (ts,n)% = logn + loglogn + o(1).
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Equation|(2.1L) givesit = 2)

€Ts €Ts e
() = -+ ~ to - ,
logzs  Jog? <x§> log? x5>
SO
T T+
xézﬂs(x)logxs — -+ 0 -
ogTs log x5

(3.8) ()t = o (ta)t — o) g [ Lan)® )
log (ts,)* log (ts,)*

Finally, from (3.8), [(3.B) and (3] 7) we find that

(3.9) (tsm)% =nlogn +nloglogn —n+o(n).

Therefore, for- = 0 the theorem is true because [of {1.2) dnd|(3.9).

Letr > 0 be given, and assume that the theorem holds fare will prove it is also true for
r+ 1.

From the inductive hypothesis we have (in view|of [1.1))

i=1nP;(loglogn) N o( n ) |

log’ n

~ (=1
(3.10) pn:nlogn+nloglogn—n+z( )

j=1
and

o |

(3.11)  (tsn)

—~ (-1
:nlogn+nloglogn—n+z(

J=1

)~ 'nP;(loglogn) N o< n ) ‘

log’ n
From (3.10) we find that

(3.12) logp, =logn + loglogn

loglogn —1 <= (=1)"!P;(loglogn) < 1 )
1+ — + .
+ + Z 0 log’r‘-i-l n

logn = log/t ' n

+ log

Let us write [(1.B) in the form

(3.13) r(z) = (f w) e (logi3x> .

Py log" x

If we putz = p, and use the prime number theorem, we get

n (& (i—1) 1
3.14 — =Y = ,
(844 P ( 1og@pn> e (log”+3n)

i=1

Similarly, from (3.11) we find that

1

(3.15) log (ts,,)® =logn + loglogn
1+10glogn—1+Zr:(—1)j_1Pj(loglogn) +0< 1 >] ‘

+1o ,
& logn log’t ! n log" ' n

j=1
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Let us write [2.11) in the form

B <= (i — 1)l s
(3.16) Ts(z) = ;W +0 M .

If we putz = t,,, and use[(3]5), we get

(3.17) _n f (i —1)! ( 1 )
. T = — + 0 T— .
(tsom)® =1 log’ <(t5m)§> log" ™ n

If x > 1andy > 1, Lagrange’s theorem gives us the inequality
logy —log x| < |y — x|
with (3.12) and[(3.15), it leads to

1 1
(318) 10g (tSﬂL)S — logpn =0 (W) .
From [3.18) we find that
1 1 1 1
3.19 — =0 =0 k=1,....,r+3).
( ) log" pn log” (ts,n)% (108;T+k+2 n) (logﬂrg ”) ( )

(B.14). [3.1F) and (3.19) give

that is
1 1 1

2 lsin e Lsyn s 1
(3.20) (tam)* = = (ts)* o (1)
If we write
substituting[(3.2)1) intd (3.20) we find that

Pn
= 1
f(n) 10gr+2 n + 0(1)0( )7
SO
n

(3.22) f(n)=o (bgm n)
B23) and[3:22) give

The theorem is thus proved.
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4. THE ASYMPTOTIC BEHAVIOUR OF tsn

Theorem 4.1. There exists a unique sequeneg;(X) (j > 1) of polynomials with rational
coefficients such that, for every nonnegative integer

@.1) b= cufi(n) +zm: ) (loglogn)+0(log;n).

= log n

The polynomialsd’; ;(X) have degreg + s — 1 and leading coefﬁmenztm—l)

The f;(n) are sequences of the formilog” n (loglogn)" and thec; are constants f;(n) =
n®log®nandc; = 1, if i # 1 thenf;(n) = o(f1(n)).
If m = 0 equation|[(4.1L) is

(42) ts,n = Zczfz<n) + O(ns)'
Proof. From (1.1) and(3]1) we obtaip (4.1)

m+s—1 i s
(=1)"'nP;(loglogn) ( n )
ten = |nlogn +nloglogn —n + , +o| —
’ & 508 Z log’ n log™ ™
7=1
B "\ (=1)" ' P, j(log log n) n®
— Zczfz(n) + Z og’ n +0 Tog™ 1

7=1
if we write

03 ru0= Xt () () e vreen - m,

r
(r,k) jit....+jt=j+r

wherer + k +t = s.

The first sum runs through the vectqrsk) (r > 0,k > 0, r + k € {0,1,...,5 — 1}),
such that the set of vectofs, jo, . . ., j:) whose coordinates are positive integers which satisfy
Jj1+Jo+ -+ j. = 7+ ris nonempty. The second sum runs through the former nonempty set
of vectors(ji, 72, - . ., ji) (this set depends on the vectork)).

If m = 0 we obtain[(4.R).

Let us consider a vectdr, k). The degree of each polynomial

() (T - DR B B )

is j + r + k. Hence the degree of the polynomial

@.4) > et () () e - 00 P B

o o r
Jitjetetje=j+r

does not exceegh-r+k. Sincer+k € {0,1,...,s—1}, the greatest degree of the polynomials
(4.4) does not exceefl+ s — 1. On the other hand, i (4.3) there ar@olynomials [(4.4) of
degreej + s — 1. Since in this case= 1, theses polynomials are

() () -0 ks
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and their sum is
(4.5) 2:04Y<i>(Si;il)ﬁx—lf”*PHAX)
r=0

) (s = 1)(X = 1)* TP (X).

Since the leading coefficient of the polynomifal., (X) is ]ﬁ the leading coefficient of the
polynomial [4.5) will be

S

_1(_1>r<5>5.—7“: '1 ‘

= r/gtr ()

Hence the degree of the polynom4.3)’ i$ s — 1 and its leading coefficient i Hg,l). The
theorem is thus proved. O
Examples.

L (—1
tin = nlogn+nloglogn—n+z (

e log’ n log™ n

Y~ nP;(loglogn) +0< n )

ton = n? log2 n+ 2n*lognloglogn — 2n?logn + n2(10g log n)2
- 3n2 i i (—1)j*1n2P27j(10g log n) +o ( n2 > ‘
j=1

log’ n log™n

Corollary 4.2. The sequences,, andp? (s > 1) have the same asymptotic expansion, namely

@.D).
Note. G. Mincu [2] proved Theorerin 3.1 and Theorem|4.1 wken 2.
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