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ABSTRACT. Let ts,n be then-th positive integer number which can be written as a powerpt,
t ≥ s, of a primep (s ≥ 1 is fixed). Letπs(x) denote the number of prime powerspt, t ≥ s,
not exceedingx. We study the asymptotic behaviour of the sequencets,n and of the function
πs(x). We prove that the sequencets,n has an asymptotic expansion comparable to that ofpn

(the Cipolla’s expansion).
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1. I NTRODUCTION

Let pn be then-th prime. M. Cipolla [1] proved the following theorem:
There exists a unique sequencePj(X) (j ≥ 1) of polynomials with rational coefficients such

that, for every nonnegative integerm,

(1.1) pn = n log n + n log log n− n +
m∑

j=1

(−1)j−1nPj(log log n)

logj n
+ o

(
n

logm n

)
.

The polynomialsPj(X) have degreej and leading coefficient1
j
.

P1(X) = X − 2, P2(X) =
X2 − 6X + 11

2
, . . . .

If m = 0 equation (1.1) is:

(1.2) pn = n log n + n log log n− n + o(n).
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2 RAFAEL JAKIMCZUK

Let π(x) denote the number of prime numbers not exceedingx, then

(1.3) π(x) =

(
m∑

i=1

(i− 1)!x

logi x

)
+ ε(x)

(m− 1)!x

logm x
(m ≥ 1),

where lim
x→∞

ε(x) = 0.

Lemma 1.1. There exists a positive numberM such that in the interval[2,∞), |ε(x)| ≤ M.

Proof. Let us consider the closed interval[2, a]. In this interval,π(x) ≤ x, soπ(x) is bounded.
The functions(i−1)!x

logi x
, i = 1, . . . ,m and logm x

(m−1)!x
are continuous on the compact[2, a], so they

are also bounded.
As

ε(x) =

[
π(x)−

(
m∑

i=1

(i− 1)!x

logi x

)]
logm x

(m− 1)!x
,

ε(x) is in its turn bounded on[2, a].
Sincea is arbitrary andlim

x→∞
ε(x) = 0, the lemma is proved. �

Let us consider the sequence of positive integer numbers which can be written as a powerpt

of a primep (t ≥ 1 is fixed). The number of prime powerspt not exceedingx will be (in view
of (1.3))

π(x
1
t ) =

(
m∑

i=1

(i− 1)!x
1
t

logi x
1
t

)
+ ε

(
x

1
t

) (m− 1)!x
1
t

logm x
1
t

(1.4)

=

(
m∑

i=1

ti(i− 1)!x
1
t

logi x

)
+ +ε

(
x

1
t

) tm(m− 1)!x
1
t

logm x

=

(
m∑

i=1

ti(i− 1)!x
1
t

logi x

)
+ o

(
x

1
t

logm x

)
.

2. THE FUNCTION πs(x)

Let ts,n be then-th positive integer number (in increasing order) which can be written as a
powerpt, t ≥ s, of a primep (s ≥ 1 is fixed). Letπs(x) denote the number of prime powerspt,
t ≥ s, not exceedingx.

Theorem 2.1.

(2.1) πs(x) =

(
m∑

i=1

si(i− 1)!x
1
s

logi x

)
+ o

(
x

1
s

logm x

)
.

Proof. If x ∈ [2s+k, 2s+k+1) (k ≥ 1), then

πs(x) = π
(
x

1
s

)
+

k∑
i=1

π
(
x

1
s+i

)
.
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Using (1.4), we obtain

πs(x) =

(
m∑

i=1

si(i− 1)!x
1
s

logi x

)
+ ε

(
x

1
s

) sm(m− 1)!x
1
s

logm x
(2.2)

+
k∑

j=1

((
m∑

i=1

(s + j)i (i− 1)!x
1

s+j

logi x

)
+ ε

(
x

1
s+j

) (s + j)m (m− 1)!x
1

s+j

logm x

)

=

(
m∑

i=1

si(i− 1)!x
1
s

logi x

)
+ ε

(
x

1
s

) sm(m− 1)!x
1
s

logm x

+
m∑

i=1

(
k∑

j=1

(s + j)i (i− 1)!x
1

s+j

logi x

)
+

k∑
j=1

ε
(
x

1
s+j

) (s + j)m (m− 1)!x
1

s+j

logm x
.

In the given conditions, the following inequalities hold forx:
k∑

j=1

(s+j)i(i−1)!x
1

s+j

logi x

sm(m−1)!x
1
s

logm x

=

k∑
j=1

(s+j)i

sm · (i−1)!
(m−1)!

x
1

s+j logm−i x

x
1
s

≤
k∑

j=1

(s+j)i

sm · (i−1)!
(m−1)!

logm−i
(
2s+k+1

)
2

(s+k)j−s
s(s+j)

≤
k∑

j=1

(s + k)i (s + k + 1)m−i(
2

1
s(s+1)

)k

=
k (s + k)i (s + k + 1)m−i(

2
1

s(s+1)

)k
(i = 1, . . . ,m).

Now, since

lim
k→∞

k (s + k)i (s + k + 1)m−i(
2

1
s(s+1)

)k
= 0 (i = 1, . . . ,m),

we find that

(2.3) lim
x→∞

k∑
j=1

(s+j)i(i−1)!x
1

s+j

logi x

sm(m−1)!x
1
s

logm x

= 0 (i = 1, . . . ,m).

On the other hand, from the lemma we have the following inequality∣∣∣∣∣
k∑

j=1

ε
(
x

1
s+j

) (s + j)m (m− 1)!x
1

s+j

logm x

∣∣∣∣∣ ≤ M
k∑

j=1

(s + j)m (m− 1)!x
1

s+j

logm x
.

This inequality and (2.3) withi = m give

(2.4) lim
x→∞

k∑
j=1

ε
(
x

1
s+j

)
(s+j)m(m−1)!x

1
s+j

logm x

sm(m−1)!x
1
s

logm x

= 0.
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Finally, from (2.2), (2.3) and (2.4) we find that

πs(x) =

(
m∑

i=1

si(i− 1)!x
1
s

logi x

)
+ ε′(x)

sm(m− 1)!x
1
s

logm x
,

where lim
x→∞

ε′(x) = 0. The theorem is proved. �

From (1.4) and (2.1) we obtain the following corollary

Corollary 2.2. The functionsπs(x) andπ
(
x

1
s

)
have the same asymptotic behaviour(s ≥ 1).

3. THE SEQUENCES (ts,n )
1
s AND pn

Theorem 3.1.

(3.1) (ts,n)
1
s = pn + o

(
n

logr n

)
(r ≥ 0).

Proof. We proceed by mathematical induction onr.
Equation (2.1) gives (m = 1)

(3.2) lim
x→∞

πs(x)

sx
1
s

log x

= 1.

If we putx = ts,n, we get

(3.3) lim
n→∞

(ts,n)
1
s

n log (ts,n)
1
s

= 1.

From (3.3) we find that

(3.4) lim
n→∞

(
log s + log (ts,n)

1
s − log n− log log ts,n

)
= 0.

Now, since

(3.5) lim
n→∞

log (ts,n)
1
s

log n
= 1,

we obtain

lim
n→∞

(ts,n)
1
s

n log (ts,n)
1
s

= 1

if and only if

lim
n→∞

(ts,n)
1
s

n log n
= 1.

We also derive

lim
n→∞

ts,n
ns logs n

= 1.

From (3.5) we find that

(3.6) lim
n→∞

(− log s + log log ts,n − log log n) = 0.

(3.4) and (3.6) give

(3.7) log (ts,n)
1
s = log n + log log n + o(1).
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Equation (2.1) gives (m = 2)

πs(x) =
x

1
s

log x
1
s

+
x

1
s

log2
(
x

1
s

) + o

 x
1
s

log2
(
x

1
s

)
 ,

so

x
1
s = πs(x) log x

1
s − x

1
s

log x
1
s

+ o

(
x

1
s

log x
1
s

)
.

If we putx = ts,n, we get

(3.8) (ts,n)
1
s = n log (ts,n)

1
s − (ts,n)

1
s

log (ts,n)
1
s

+ o

(
(ts,n)

1
s

log (ts,n)
1
s

)
.

Finally, from (3.8), (3.3) and (3.7) we find that

(3.9) (ts,n)
1
s = n log n + n log log n− n + o (n) .

Therefore, forr = 0 the theorem is true because of (1.2) and (3.9).
Let r ≥ 0 be given, and assume that the theorem holds forr, we will prove it is also true for

r + 1.
From the inductive hypothesis we have (in view of (1.1))

(3.10) pn = n log n + n log log n− n +
r∑

j=1

(−1)j−1nPj(log log n)

logj n
+ o

(
n

logr n

)
,

and

(3.11) (ts,n)
1
s = n log n + n log log n− n +

r∑
j=1

(−1)j−1nPj(log log n)

logj n
+ o

(
n

logr n

)
.

From (3.10) we find that

(3.12) log pn = log n + log log n

+ log

[
1 +

log log n− 1

log n
+

r∑
j=1

(−1)j−1Pj(log log n)

logj+1 n
+ o

(
1

logr+1 n

)]
.

Let us write (1.3) in the form

(3.13) π(x) =

(
r+3∑
i=1

(i− 1)!x

logi x

)
+ o

(
x

logr+3 x

)
.

If we putx = pn and use the prime number theorem, we get

(3.14)
n

pn

=

(
r+3∑
i=1

(i− 1)!

logi pn

)
+ o

(
1

logr+3 n

)
.

Similarly, from (3.11) we find that

(3.15) log (ts,n)
1
s = log n + log log n

+ log

[
1 +

log log n− 1

log n
+

r∑
j=1

(−1)j−1Pj(log log n)

logj+1 n
+ o

(
1

logr+1 n

)]
.
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Let us write (2.1) in the form

(3.16) πs(x) =

 r+3∑
i=1

(i− 1)!x
1
s

logi
(
x

1
s

)
+ o

 x
1
s

logr+3
(
x

1
s

)
 .

If we putx = ts,n and use (3.5), we get

(3.17)
n

(ts,n)
1
s

=

 r+3∑
i=1

(i− 1)!

logi
(
(ts,n)

1
s

)
+ o

(
1

logr+3 n

)
.

If x ≥ 1 andy ≥ 1, Lagrange’s theorem gives us the inequality

|log y − log x| ≤ |y − x|

with (3.12) and (3.15), it leads to

(3.18) log (ts,n)
1
s − log pn = o

(
1

logr+1 n

)
.

From (3.18) we find that

(3.19)
1

logk pn

− 1

logk (ts,n)
1
s

= o

(
1

logr+k+2 n

)
= o

(
1

logr+3 n

)
(k = 1, . . . , r + 3).

(3.14), (3.17) and (3.19) give

n

pn

− n

(ts,n)
1
s

= o

(
1

logr+3 n

)
,

that is

(3.20) (ts,n)
1
s − pn = (ts,n)

1
s

1

logr+2 n
o (1) .

If we write

(3.21) (ts,n)
1
s = pn + f(n)

substituting (3.21) into (3.20) we find that

f(n) =
pn

logr+2 n + o(1)
o(1),

so

(3.22) f(n) = o

(
n

logr+1 n

)
(3.21) and (3.22) give

(ts,n)
1
s = pn + o

(
n

logr+1 n

)
.

The theorem is thus proved. �
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4. THE ASYMPTOTIC BEHAVIOUR OF ts,n

Theorem 4.1. There exists a unique sequencePs,j(X) (j ≥ 1) of polynomials with rational
coefficients such that, for every nonnegative integerm

(4.1) ts,n =
∑

cifi(n) +
m∑

j=1

(−1)j−1nsPs,j(log log n)

logj n
+ o

(
ns

logm n

)
.

The polynomialsPs,j(X) have degreej + s− 1 and leading coefficient 1

( j+s−1
s )

.

Thefi(n) are sequences of the formns logr n (log log n)u and theci are constants.f1(n) =
ns logs n andc1 = 1, if i 6= 1 thenfi(n) = o(f1(n)).

If m = 0 equation (4.1) is

(4.2) ts,n =
∑

cifi(n) + o(ns).

Proof. From (1.1) and (3.1) we obtain (4.1)

ts,n =

[
n log n + n log log n− n +

m+s−1∑
j=1

(−1)j−1nPj(log log n)

logj n
+ o

(
n

logm+s−1 n

)]s

=
∑

cifi(n) +
m∑

j=1

(−1)j−1nsPs,j(log log n)

logj n
+ o

(
ns

logm n

)
if we write

(4.3) Ps,j(X) =
∑
(r,k)

∑
j1+.....+jt=j+r

(−1)r−t+1
(s

r

)(s− r

k

)
(X − 1)kPj1(X) · · ·Pjt(X),

wherer + k + t = s.
The first sum runs through the vectors(r, k) (r ≥ 0, k ≥ 0, r + k ∈ {0, 1, . . . , s − 1}),

such that the set of vectors(j1, j2, . . . , jt) whose coordinates are positive integers which satisfy
j1 + j2 + · · ·+ jt = j + r is nonempty. The second sum runs through the former nonempty set
of vectors(j1, j2, . . . , jt) (this set depends on the vector(r, k)).

If m = 0 we obtain (4.2).
Let us consider a vector(r, k). The degree of each polynomial

(−1)r−t+1
(s

r

)(s− r

k

)
(X − 1)kPj1(X) · Pj2(X) · · ·Pjt(X)

is j + r + k. Hence the degree of the polynomial

(4.4)
∑

j1+j2+···+jt=j+r

(−1)r−t+1
(s

r

)(s− r

k

)
(X − 1)kPj1(X) · Pj2(X) · · ·Pjt(X)

does not exceedj+r+k. Sincer+k ∈ {0, 1, . . . , s−1}, the greatest degree of the polynomials
(4.4) does not exceedj + s − 1. On the other hand, in (4.3) there ares polynomials (4.4) of
degreej + s− 1. Since in this caset = 1, theses polynomials are

(−1)r
(s

r

)(s− r

k

)
(X − 1)kPj+r(X) (r + k = s− 1)
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and their sum is

(4.5)
s−1∑
r=0

(−1)r
(s

r

)( s− r

s− r − 1

)
(X − 1)s−r−1Pj+r(X)

=
s−1∑
r=0

(−1)r
(s

r

)
(s− r)(X − 1)s−r−1Pj+r(X).

Since the leading coefficient of the polynomialPj+r(X) is 1
j+r

, the leading coefficient of the
polynomial (4.5) will be

s−1∑
r=0

(−1)r
(s

r

) s− r

j + r
=

1(
j+s−1

s

) .
Hence the degree of the polynomial (4.3) isj + s− 1 and its leading coefficient is 1

( j+s−1
s )

. The

theorem is thus proved. �

Examples.

t1,n = n log n + n log log n− n +
m∑

j=1

(−1)j−1nPj(log log n)

logj n
+ o

(
n

logm n

)
,

t2,n = n2 log2 n + 2n2 log n log log n− 2n2 log n + n2(log log n)2

− 3n2 +
m∑

j=1

(−1)j−1n2P2,j(log log n)

logj n
+ o

(
n2

logm n

)
.

Corollary 4.2. The sequencests,n andps
n (s ≥ 1) have the same asymptotic expansion, namely

(4.1).

Note. G. Mincu [2] proved Theorem 3.1 and Theorem 4.1 whens = 2.
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