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ABSTRACT. In this paper, itis shown that jf is a non-constant entire functiofiand f(*) share

the small function(# 0,00) CM and4(0, f) > 2, thenf = f*). Furthermore, iff is non-
constant meromorphig, anda do not have any common pole a#é(0, f)+2(8+k)O(co, f) >

19 + 2k, then the same conclusion can be obtained. Finally, some open questions are posed for
the reader.
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1. INTRODUCTION AND THE MAIN RESULTS

Given two non-constant meromorphic functiofisand ¢, it is said that they share a finite
valuea IM (ignoring multiplicities) if f — a andg — a have the same zeros. ff— a and
g — a have the same zeros with the same multiplicity, then we sayftaatlg share the value
CM (counting multiplicity). In this paper, we assume that the reader is familiar with the basic
concepts of Nevanlinna value distribution theory and the notatiefis f), N(r, f), N(r, f),

T(r, f), S(r, f) and etc., see e.d.l[5].

L.A. Rubel and C.C. Yang [8], E. Mues and N. Steinméiz [7], G.G. Gundersen [3] and L.Z.
Yang [9] have completed work on the uniqueness problem of entire functions with their first or
k-th derivatives involving twaCM or IM values. J.H. Zheng and S.P. Wang![12] considered
the uniqueness problem of entire functions that share two small funec@iehdn the aspect of
only oneCM value, R. Brickl[1] posed the following question:

What results can be obtained if one assumes fhad /' share only one value
CM plus some growth condition?

In fact, he presented the following conjecture.
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2 KIT-WING YU

Conjecture 1.1. Let f be a non-constant entire function. Suppose fhaf) < oo, p1(f) is not
a positive integer ang and f’ share one finite value CM. Then

['—a

f-a

for some non-zero constantHerep, (f) denotes the first iterated order ¢f

Jf/
Furthermore in 1998, G.G. Gundersen and L.Z. Yamg [4] showed that the conjecture isftrue if
is of finite order. Therefore, it is natural to consider whether there exist any similar results for
infinite order entire, or even meromorphic, functighand small functior of f if we keep the

condition N (r, fl) = S(r, f) or replaceN (7", fi> by N (r, %) (or 6(0, f)). In this paper, we

answer this question and actually show that the following results hold.

Theorem 1.2.Letk > 1. Let f be a non-constant entire function an¢:) be a meromorphic
function such thati(z) # 0, cc andT(r,a) = o(T(r, f)) asr — +oc. If f —a and f*) —q
share the valu®@ CM and§(0, f) > 2, thenf = f¥.

Corollary 1.3. Let f be a non-constant entire function aikde any positive integer. Suppose
that f and f*) share the valué CM and thats(0, f) > 2. Thenf = f(*).

For non-entire meromorphic functions, we have

Theorem 1.4.Letk > 1. Let f be a non-constant, non-entire meromorphic function afd
be a meromorphic function such thatz) # 0, co, f and a do not have any common pole
andT(r,a) = o(T(r,f)) asr — +oo. If f —a and f® — q share the valu® CM and
46(0, f) +2(8 + k)O(o0, f) > 19 + 2k, thenf = f*),
Corollary 1.5. Let f be a non-constant, non-entire meromorphic function abe any positive
integer. Suppose thatand f*) share the valug¢ CM and that46(0, f) + 2(8 + k)© (oo, f) >
19 + 2k. Thenf = f®).

If we compare our results with the conjecture, it can be seen that we do not assume any
restriction on the growth of. In fact, our results show that under the condition

3

5(07f>>1

He also showed in the same paper that the conjecture is tiue if and NV (r i) = S(r, f).

or
40(0, f) +2(8 + k)O(o0, f) > 19 + 2k,

we can prove the conjecture is true even for small function§ even or meromorphi¢ and

the constant is 1.

2. SOME LEMMAS

In this section, we have the following lemmas which will be needed in the proofs of the main
results. In the following/ is a set of infinite linear measure and may not be the same each time
it occurs.

Lemma 2.1. Let f be a meromorphic function in the complex plane. For any positive integer
we have

N (7", %) <N (7“, %) +EkN(r, f) 4+ S(r, f).

Lemma 2.2. [10] Let f;, fo be non-constant meromorphic functions anddgtc, and c;3 be
non-zero constants. i 1 + ¢, fo = c3 holds, then
— 1 — 1 —
T(Tu fl) < N (Tv _) + N (Tu f_> + N(T7f1) + S(T, f1)7
2

1
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rel.
Lemma 2.3.[2] Let f; (j = 1,2,...,n) ben linearly independent meromorphic functions. If

they satisfy
Z fj = 17
j=1

then forl < j < n, we have

T(r, f ZN<rfi)+N( fj) + N(r,D) — kzn:N (r,%)+5(r),

whereD is the Wronskian determinablt’ (f1, f2, ..., fa), S(r) = o(T(r)), asr — +oo,r € I
andT'(r) = maxy<g<, T'(r, fi).
The following lemma was proven by H.X. Yiin[11].
Lemma 2.4. Let f; (j = 1,2, 3) be meromorphic ang; be non-constant. Suppose that
3

(2.1) Y fi=1

j=1
and

(2.2) >N (7‘, i) +2) N(r, f;) < (A +0(1)T(r),

asr — 4oo,7 € I, A <landT'(r) = maxi<j<3 T'(r, f;). Thenfy =1 or f3 = 1.
Lemma 2.5. [6] Let f be a transcendental meromorphic function akid> 1, then there exists
a setM (K) of upper logarithmic density at most

§(K) = min { (27" — 1)1, (1 + e(K — 1))t ~5)}
such that for every positive integgy
lim sup M
r—toorghi(k) (1, f))
If fis entire, therBe X' can be replaced bge K in the above inequality.

< 3eK.

3. PROOFS OF THEOREM [1.ZAND THEOREM [1.4

Proof of Theorer I]2First of all, we write
f) —q

f—a
Now a pole ofF" must be a zero of — a or a pole off¥) —a. Sincef —a andf*) — ¢ share the
value0 CM, poles of ' cannot be zeros of — a. Furthermoref is assumed to be entire, the
poles of f*) — q are the poles of. It follows that if z; is a pole ofa, thenF(z,) = 1. Hence,
F has no pole in the complex plane. By similar reasoning, we can showtbdates not have

any zero.
Therefore, we deduce fror (3.1) that

(3.1) F=

fk) —q
3.2 —_—
(32) Tk
whereg is an entire function. Lef; = ﬁ  fa = % and f3 = e9. Thus from ), we have
(3.3) f1+f2+f3=1-
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By Lemm, we see thdt = % IS non-constant. Hence, by Lem@zl,
3 1 3
ZN (r,—) +22N(7’,f]~)
=1 fi =1

a a 1
= (g~ (i) + ()

< 2N (r, %) + S(r, f).

asr — +oo, r € 1. On the other hand, since
T(r,f)=T ( a—f?)
e
S T(T, f2) + T(T7 a) + T(T, f3)
< 2T(r) + S(r, f),
WhereT(T) = maXxj<;<3 T(T, fj)! it follows from 5(0, f) > % that

1 T
ON (7’, —> < (o) ES)
f 2
< (A +oW)T(r)
asr — +oo,r € I and\ < 1. So by Lemm4{% =_lored =1.
Case 1.If ¢9 = 1, then we havef = £ by (3.2).

Case 2.If fe9 = —a, then

(3.4) f=—ae™’.
By 3.2).

(3.5) ff® = a2

By differentiating both sides of (3.4) times, we obtain
(3.6) = Q(g)e,

whereQ(g) is a differential polynomial of with small functions with respect tf, and hence to

e’ by (3.4). Therefore, by (3/4), (3.5) arjd (B.6), we get a contradictiorfthatf) = o(T'(r, f))

asr — +oo,r € I inthis case.
]

Proof of Theorerh 1]4To prove Theorem1]4, we first need to reconsifler (3.1). Sirisenon-
entire meromorphic, we can use the same argument to show that the fuRcitiog8.1) does
not have any zero. Hencg, has the forme?, whereg is an entire function andél is a non-zero
meromorphic function. Now it is clear that the polesho€ome from the poles of or a and
furthermore, we have the following

(3.7) N(r,h) < N(r, f) + S(r, f).
Therefore, instead of (3.2), we have
(k) _
/ ¢_ he?
f—a
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and thus
it o+ fz=1,
Wherefl = #7 f2 = % andfg = he’.
By Lemmd 2.1 and (3]7), we have

a a 1
N(T,W)‘FN(T,W)‘FN(T,@)
e I

)+kN< -
x (-

1 —
=92N (r,?) + @+ k)N(r, f) +S(r, f)

asr — +4oo, r € I. On the other hand, it follows from the conditian (0, /) + 2(8 +
k)O (oo, f) > 19 + 2k that

a a 1
¥ (i) + 3 (v )+ ()

N (r, hegj (k)) + N(r, heg)l

) 2 [2N(r, f) + 2N(r, )] + S, f)

MI»—‘ \I'—

) +EN(r,f)+ N (r, ) +8N(r, f) + S(r, f)

\)

< (A4o(1)T(r)

asr — +o0, r € I and\ < 1. Therefore, as in the proof of Theor1.2, we hé{fé = —1
or hed = 1.

Case 1.If he? = 1, thene? = ; which is a contradiction becauaés a non-entire meromorphic
function.

Case 2.If theg = —1, thenf = —2 5) in this case. Sinté non-entire
meromorphic, we let, be a pole off. Then we see thagt anda havez, as their common pole
which is a contradiction.

O

Remark 3.1. It is easily seen that Corollari¢s 1.3 and]1.5 are true if we tgk¢ = 1 in
Theorem$ 1]2 ar]d 1.4 respectively.

4. FINAL REMARKS

Remark 4.1. By the remark pertaining to Theorem 2 in [12], we have the following example
which shows that the conditiortsIM and (0, f) > 2 are not sufficient for meromorphic
functions in the above theorems and corollaries.

Example 4.1.

2A 4Ae=?*

1 —e 2%’

f(z) =
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whereA # 0, then

fy—a=2EED  py a= -

1 —e 2

Al + e 2%)2
(1 —e2?

Here, it is easily seen that is anIM shared value of and f’, 0 is a Picard value of and
f'(i.e.5(0, f) = 1), butf # f.
Remark 4.2. Next, we extend our results to th€M” shared value. Let us recall the definition
first. Let f(z) andg(z) be non-constant meromorphic functionsis any complex number.

We denoteNg(r, a) to be the reduced counting function of the common zero (with the same
multiplicity) of f — a andg — a. If

5 (T, ﬁ) — Np(r,a) = S(r, f)

and

N (r o) - Nelra) = ().

thena is said to be aCM” shared value off andg. The case for small functions gfandg is
similar. In this case, the functiol, mentioned in Sectign| 3, will be allowed to have zero with
N (r,+) = S(r, f). Therefore, it is easily seen that the results are also valid if we replace the
CM shared value by theCM” shared value. That is

Theorem 4.3.Letk > 1. Let f be a non-constant entire function an¢:) be a meromorphic
function such that(z) # 0, oo, andT'(r,a) = o(T(r, f)) asr — +oo. If f —aand f*¥ —q
share the valu@ “ CM” and 4(0, f) > 3, thenf = .

Theorem 4.4.Letk > 1. Let f be a non-constant meromorphic function anc) be a
meromorphic function such that(z) # 0, oo, f and a do not have any common pole and
T(r,a) = o(T(r,f)) asr — +4oo. If f —a and f*) — q share the value&) “CM” and
46(0, f) +2(8 + k)O(o0, f) > 19 + 2k, thenf = f*),

The proofs are similar to the ones of Theofen) 1.2 and Thepregm 1.4.

Remark 4.5. One may ask what we can obtainfifanda are allowed to have a common pole
in Theoren 1.]4. In fact, by (3.5) we have the following.

Theorem 4.6.Suppose that is an odd integer. Then Theorém|1.4 is valid for all small functions
a.

5. FOUR OPEN QUESTIONS

Finally, we pose the following natural questions for the reader.

Question 1. Can aCM shared value be replaced by B shared value in Theorem 1.2 and
Corollary[1.3?

Question 2. Is the conditions(0, f) > 2 sharp in Theorern 1.2 and Corollgry [1.3?

Question 3. Is the conditiontd (0, f) + 2(8 + k)O(co, f) > 19 + 2k sharp in Theorein 1.4 and
Corollary[1.5?

Question 4. Can the condition f anda do not have any common pole” be deleted in Theorem
[1.4 and Theoreiin 4.4?
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