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ABSTRACT. In this paper, a class of inequalities for products of positive numbers are general-
ized.
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1. INTRODUCTION AND MAIN RESULTS
In 1987, H.-Sh. Huang [2] proved the following algebraic inequality for products:
(1.2) ﬁ l—|—:U- > n—I—l '
. =1 \Ti A n)

wherezy, zo, ..., z,, are positive real numbers with" |, z; = 1.
In 2002, X.-Y. Yang[[4] considered an analogous form of inequdlity] (1.1) and posed an inter-
esting open problem as follows.

Open Problem. Assumery, zo, ..., x,, are positive real numbers WitE?:1 x; = 1forn > 3.
Then
1 1\"
1.2 ——z | > m—_—
a2 ()= (o)
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In [1], Ch.-H. Dai and B.-H. Liu gave an affirmative answer to the above open problem.
In this article, by using the arithmetic-geometric mean inequality, inequalitigs (1.1) apd (1.2)
are refined and generalized as follows.

Theorem 1.1.Letzq, o, ..., z, be positive real numbers Wil?‘E?:1 x; = kandk < n, where
k andn are natural numbers. Then we have farc N

m(k2m_n2m)

13 1 m) = nm kN (Leona | T - n™  km\"
@y ()= () (15 > (G o )

=1 ¢ i=1

Theorem 1.2. Letzq, w9, ..., z, be positive real numbers WitE?:1 r; = kfork < 1and
n > 3. Then form € N we have

m_m
n 3

eo [(G-)=(F-) (%) = (55)

i=1 v i=1
Remark 1.3. Choosingm = 1 andk = 1 in Theoren] 1.l and Theorem 1.2, we can obtain
inequalities|(1.]1) and (1.2) respectively.

2. LEMMAS

To prove Theorerp 111 and Theorém|1.2, we will use following lemmas.
Lemma 2.1. Letzy, 2o, .. ., z,, be positive real numbers with;” | z; = 1 andn > 3. Then

1_1
2.1 ——z | > - : )

2.1) H(x w) 2 (n-2) [H(mz)]

Proof. From the conditions of Lemnja 2.1 and by using the arithmetic-geometric mean inequal-
ity, we have forl < p,q <nandp # ¢

(1 —2p)(1 —2y) =1 —2p — 34 + 1,7,

= E Tk + TpZy

k#p,q
Tk
= E + + — | +xpxy
k#p,q
1
(22) l’k n n(n—2)+1
> — or
n(n—2)+1] H (n> TpT,
k#p,q
1 n(n—2) n ﬁ
— (n - 1)2 (ﬁ) H Tk Tpy
k#p,q
n(n—2) n 57
1\ -2 (n=1) 1
=(n—1)? (ﬁ) (H xz) (@pzq) =7,
k=1
then

n2 —2n+2

n n2n=2) /oy )2
(2.3) T[(1-2)> (-1 (%) o (m) o

i=1
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By the arithmetic-geometric mean inequality, we obtain

n

H(1+Ii):H %+"'+%+$i

i=1 I=1 | N e
UCHONN

(2.5) ﬁ <xi - x) - [ﬁ (1 - )

i=1 v

7n3+3n272n+2
n ] 2(n+1)(n—1)2

=1

From the arithmetic-geometric mean inequality @ndl , z; = 1 for n > 3, we have

(2.6) 0< ﬁ (nx;) < (i xz> = 1.

Sincen > 3, it follows that

n(n—3)(n*>+2n+8)+10n+6

—n3+3n2—2n—|—2_ 1
B 3 6n(n+1)(n—1)2
1
3

2(n+1)(n —1)2

Therefore, by the monotonicity of the exponential function, we obtain

—n3+3n2 —2n+42

n 2(n+1)(n—1)2 n

3=
W=

i=1 i=1
Combining inequalitie§ (25) and (2.7) leads to inequality|(2.1). O
Lemma 2.2. Letzy, xo, . .., z, be positive real numbers with,)" , z; = 1 forn > 3 andm a

natural number. Then

(2.8) ﬁ (xim - xi”) > (nm - nimy [ﬁ (n:cl-)]

m__m
n 3
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Proof. Using the arithmetic-geometric mean inequality, we obtain

m_l m—2 L2 42
2 , ; B
x;) = ! T i 4 g2m=2
A n2(m—j-1) n2(m—j—1)
Jj=0 j=0 ~ P
n2(m*3*1>
X m—1 _2j
il n—1
(29) m—1 m—2 :L,Qj n2(m—j—1) zj_o
i 2(m—1 -
> n2i xi(m ) I I _
n2(m—j-1)
Jj=0 j=0

Hence

I 2= =)

2m
(2.10) R N T e N
= T pame (p2 — 1) () 0

—1 j —1,, j
(m—1) ZT:O n2J 72:;,77’:1 2]712]

1 n2m - 1 m—1_24
fry _—— . - . > i—o ™ J
(331‘ xl) nm=1(n? — 1) (nz:) ’ ’

and then

(2.11) ﬁ (xim - :@“)

—1_2j —1.. 2j
(m—l)zgn’zo nQJ_Z;,nzl 2jn2J

:1 <xi B x)] llj(nx)] DR

In the following, we prove that fon > 3

A%

(2.12) (= D)oo mV Z 2y AT (1 1) .

S n%

Form = 1, the equality in[(2.7]2) holds. Fer > 2, we have

(m = DT ¥ = S g n
(2.13) R Do L (“g)
Do M n
_ (m—1) (5 3) X ¥ - S 20
Z;nzol n?
= 1) (4 ) S — S — m 1) (4
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Sy
= D[ (= et = (4 teh] - S g
2?202 n?I
(m = 1) (~ = )t S a
2?;02 n%
< 0.

Hence inequality[ (2.12) holds.
Considering inequality (216) and the monotonicity of the exponential function and combining

inequality [2.11) with[(2.1]2) reveals

e 1) (5 1] o]

Substituting inequality (2]1) int¢ (2.114) produces

215 ] (xim — x;n)

=1 ¢

The proof is complete. O

Lemma 2.3. Lety, o, ..., x, be positive real numbers with’" , z; = k < 1forn > 3.
Then for any natural numbern, we have

1 L\ "™ E™\" oy (kT a2l
e ()= () (Fw) L)
i=1 g i=1 ¢

Proof. It is easy to see that

1 m - k™ xzm - nm - 1- xzm
(2.17) H <x—m — ) H (x—m —~ k—m> =k H ey
Define

(2.18) @) =n

k2m _ 42m
for x € (0,k), m > 1 andk < 1. Direct calculation shows that

om(1 — k2m)g2m!

(2.19) f/(ZE) = (1 — QO)(ka _ x2m)’
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2mx2(m—1)(1 . k2m)
(1 _ x2m)2(k2m _ x2m)2

+ 2ma? (k2™ — ¥+ 1 — 2®™)]

(2200  f'(x) = [(2m — 1)(1 = &®™) (k" — 2*™)

> 0.
This means thaf is convex in the interval0, k). Using Jensen’s inequality![3], we obtain

1 n 1_— zm 1 11 7}_ i 2m
(221) — In : Ly — Z In [n Zz—l Z ] -
0 2 2

=11

forany0 < z; < k < landi € N. Using>_" , z; = kin (2.21), it follows that

L1 —a?m 1— 5 \"
2.22 ! > n=
therefore
a 1 — :L’ 1\ " /nm™  E™\"
2.2 nm " — — - —
Substituting[(2.1]7) |ntd_(2723) leads @2].16). The proof is complete. O

3. PROOFS OF THEOREMS

Proof of Theorer 1]1Using the arithmetic-geometric mean inequality, we obtain

1 m_ " i
ﬁ—i_xi T p2gm +"'+n2mx;n+k2m T L2m
n‘2’m k?m
(3.1) 1 n2m xm k2m W
2m 2m 7
= R (nmxm> (krm)
1
— (an + k?m) <k.—kaZmn—an2mx;nk’2m—mn2m) k21 - 2m :
therefore
m(anL*nz'”)
n 1 n n TRZmagm
2m 2m 2m_ n,2m
(32) H (_m + ZL’;m) Z (’I’LQm + k?m)n (k_ka n—an )k + sz ’
im1 \ i i=1
that is

m(k:mean)

- 1 m nm k" (e T

=1 ¢ =1

From) " | z; = k and the arithmetic-geometric mean inequality, it follows that

o iz (52) -

=1 =1

and then, considering < n, we have

m(ka _n2m)

nm kN (e T n™  Em\"
. L > (0o

=1
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Inequality [1.3) is then deduced by combinifg [3.3) gnd|(3.5). This completes the proof of
Theoren1.1. O

Proof of Theorerfi I|2Applying 7", 5 = 1 to Lemmg 2.2, we have

m_m
3

N 1\ [ nai | "
. ) > m_ v
(3.6) E (33;” km> > (n nm) (E p )
Substituting inequality (3]6) into Lemma 2.3 gives

1 . W LN B\ (™ al
()= 0a) () TG -5)

=1

(3.7) m_m

Since

(3.8) 0< ﬁngz < (Z%) —1

and® — 2 < (, we have

n 3 —

nm kN [ na - n™  Em\"
. - >(— -2 .
(3.9) (k:m nm) (}_[1 k ) - (km nm)

Combining [3.7) and (3]9), we immediately obtain inequality](1.4). This completes the proof

of Theoreni 1R. O
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