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Abstract

Improved inclusion-exclusion inequalities for unions of sets are available wherein
terms usually included in the alternating sum formula can be left out. This is
the case when a key abstract tubecondition, can be shown to hold. Since the
abstract tube concept was introduced and refined by the authors, several exam-
ples have been identified, and key properties of abstract tubes have been de-
scribed. In particular, associated with an abstract tube is an inclusion-exclusion
identity which can be truncated to give an inequality that is guaranteed to be at
least as sharp as the inequality obtained by truncating the classical inclusion-
exclusion identity.

We present an abstract tube corresponding to an orthant arrangement where
the inclusion-exclusion formula terms are obtained from the incidence structure
of the boundary of the union of orthants. Thus, the construction of the abstract
tube is similar to a construction for Euclidean balls using a Voronoi diagram.
However, the proof of the abstract tube property is a bit more subtle and in-
volves consideration of abstract tubes for arrangements of simplicies, and intri-
cate geometric arguments based on their Voronoi diagrams.
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This paper continues work by the authors on a special class of indicator func-
tion and probability bounds of the inclusion-exclusion tygeq]. These are

are based on thabstract tubeconcept and give improvements over bounds pro-
duced by truncating the classical inclusion-exclusion identity.

Definition 1.1. An abstract tubas a finite collection of set§A;,..., A,} and
a finite simplicial complexS with the following properties: Improved Inclusion-Exclusion
Inequalities for Simplex and
(i) every vertex ofS corresponds to an index {1,...,n}, so thatS can be orthant Arrangements
viewed as a collection of subsets{df,...,n}, and D.Q. Naiman and H.P. Wynn
(i) wheneverr € |J;_, 4; the subsimplicial comple$(z) ={J €S : z € _
N, Ai} is contractible. Tide Page
- . . . Contents
Definition 1.1is slightly more general than the one i |n that we do not
require a one-to-one correspondence between vertices in the simplicial complex <« 44
S and the index sefl,...,n}. That is, the index set can be a superset of the < >
set of vertices. All of the properties of abstract tubes givervjmgmain valid
for this more general notion of abstract tube. In particular, associated with an Go Back
abstract tube is an inclusion-exclusion identity fof. 4, based on the terms Close

in S, which can be truncated to give an upper or lower bound. Furthermore, _
abstract tubes with smaller simplicial complexes leade to sharper truncation Quit
inequalities. Page 4 of 37

Since abstract tubes were introduced, there has been much interest by the
authors and others in uncovering new examples of them, while at the same> mm-{;;;;;;ﬁpvpﬁ Z;ﬁ-;fwt- 18, 2001
time, there has been reason to suspect that the interesting abstract tubes from -
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a geometricpoint of view always arise from convex polyhedra. Certainly, for
the key examples appearing if] [(see also []) where the sets4; involved

are Euclidean balls or unions of half-spaces, a convex polyhedron is present, or
lurking, and plays a fundamental role in that it's face incidence structure defines
the simplicial complex. Furthermore, the construction of these abstract tubes
always involves the nerve of a Voronoi diagram associated with the arrangement
of sets.

Dohmen 7, 3, 4, 5] has discovered some new classes of abstract tubes and  improved Inclusion-Exclusion
has demonstrated the utility of the abstract tube concept to network reliability. 'S0 o = TPeand
While these classes of tubes provide many elegant examples with far-reaching
applications, the constructions tend to be graph-theoretic and the tubes are de-
fined incombinatorialrather than geometric terms. Thus, they do not appear to
shed light on the question as to the generality of the Voronoi construction since Title Page
they apparently correspond to a different class of abstract tubes than the ones

D.Q. Naiman and H.P. Wynn

considered in{]. In fact, the authors have not been able to show that the ab- Contents

stract tube formed using balls and the associated Delauney simplicial complex <44 44

can be realized as one Dohmen'’s class of abstract tubes. < >
In this paper, we address the above-mentioned question by describing a pair

of new and related examples of abstract tubes, associated with simplex arrange- Go Back

ments and orthant arrangements, based on the Voronoi-type construction. The Close

abstract tube property for simplex arrangements is used to derive the abstract Quit

tube property for orthant arrangments. While these examples are geometric, the
connection with polyhedra is considerably more complex, and the proof of the Page 5 of 37
abstract tube property uses a somewhat more intricate geometric argument than

in [9]. There remains the open question as to whether this more general proof . inea. pure and Appl. Math. 2(2) Art. 18, 2001
technique can be used to verify the abstract tube property for other examples, °//Pamvi.eduad
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In Section2, we develop the tools needed to give the abstract tube associated
with arrangements of simplices. The results of this section are key ingredients
in Section3 where we treat abstract tubes based on orthant arrangements.
Aside from being of intrinsic geometric interest the abstract tube for orthants
can be used to derive improved reliability bounds for coherent systems. This

idea is developed in'[]] and used there, in particular, to give a new inclusion-
exclusion identity for & out of n system.
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The results of this section concern arrangements consisting of copies of a reg-
ular simplex inR?, that is, translates of dilations of a simplex, and a certain
related Voronoi-type diagram. Simplex arrangements are closely related to ar-
rangements consisting of translates of a single orthaRt'il. In fact, the for-

mer is obtained by slicing the latter, and this point of view is very important  Improved Inclusion-Exclusion
for what follows. It is also the case that, analogous to a certain CONStruction for  "“ormant Anagemente
balls (see §]) properties of the Voronoi diagram are obtained by projecting the
boundary of the orthant arrangement onto the slicing subspace.

For convenience, because of the connection with orthant arrangements, we

D.Q. Naiman and H.P. Wynn

identify R? with the hyperplane Title Page
n Contents
H:{xeRd“ : Z%ZO}, < >
=1
< >
and we letry; : R — H denote the linear projection onto this hyperplane,
h _ = h = _ 1 d+1 did h Go Back
so thatry(y) = y — Y1, wherey = 55> 1", v, and 1 denotes the vec-
tor whose coordinates are all equal to 1. kBt ..., e+ denote the usual Close
orthonormal basis fo]Rd+1 In order to simplify the notation below, we let Quit
d+1 i = 7 _
= d+1 St el = d+1 1, and letw; =[| & — el ||= \/ d+1 Let Page 7 of 37
(z) —TH (e(z)) f J. Ineq. Pure and Appl. Math. 2(2) Art. 18, 2001
U = e = Wy (6 — el ) ori=1,...,d+1, http:/jipam.vu.edu.au

I (e) |
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so that i
N (i —1/d ifi#j
(@) G\ —
w, u) {1 if i = j.
Having established a coordinate systemR&ér! we can introduce the nota-
tionz < x* for pointsz, z* € R4 tomeanthat; < z;foralli =1,...,d+1,
and we use: < z* to mean that all of the inequalities are strict. We also use the
notationz > z* andx > z* with the obvious reverse interpretation.
Each pointy € R4*! defines a closed orthant

Improved Inclusion-Exclusion
Inequalities for Simplex and
Orthant Arrangements

O, ={z R . x>~
) { € — y} D.Q. Naiman and H.P. Wynn

which is a translationy + O, of the usual nonnegative orthant. Foe H and

r > 0 define theregular d-simplex in H, Title Page
d+1 Contents
_ : @y < (b, @
Ay, Q{xEH :{z,u™) < (b, u) + 1} «“ 5)
. : , : < >
Itis easy to see that,,, is the convex hull of the points—rdu®, i = 1,... d+
1. This simplex has barycentér the Euclidean distance fromto any of the Go Back
bounding hyperplanes o, . is r, and the Euclidean distance frolnto any Close
vertex isrd. Quit
More generally, we allow: < 0 and still refer to thesimplexA4,, corre-
sponding to the ordered pdir, ). This level of generality, where we allow for Page 8 of 37

virtual simplicesjs very important for the main result of the next section. Thus,

the notation4,,. has a dual meaning as it can represent a set (possibly empty) 2 ineq. Pure and Appl. Math. 2(2) Art. 18, 2001
o . . . . http://jipam.vu.edu.au

or an ordered pair. It will be clear from the context below which interpretation
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is appropriate. Generally speaking, when we 4ge to define a distance, we
use the pairb, ). On the other hand, when we consider Boolean operations
involving simplices, then we use the notion4f, as a set.

We will use the termarrangement of orthant; R?*! to mean a finite col-
lection {0, @ = 1,...,n}, wherey® are distinct elements dk‘*! (Fig-
ure 2) and the termarrangement of simpliceis R? to mean a finite collection
{Ay 0,7 =1,...,n}, whereb® € H andr® € R and the pairgb®, r®)
are distinct. Note that simplices in an arrangement are allowed to be empty improved Inclusion-Exclusion

; : Inequalities for Simplex and
when viewed as sets. Figufeshows an orthant arrangement. Orthant Arrangements

We introduce thelistanceto a simplex inR? (H) by defining D.Q. Naiman and H.P. Wynn

dAb,T(fﬂ) = max (x—0b, u(i)> —r, forx e H.

i=1,...,d+1 Title Page
Observe that the simplex distanég () is negative, zero, or positive depend- Contents
ing on whetherr lies in the interior, the boundary or the complement of the <« NS
simplex 4, ... If » < 0 then the distance is always negative, which is consistent
with the fact that as a set;,, is empty. 4 >
We use this simplex distance to associa¥enoi-typediagram inH with e
any arrangement of simplices fil. Given an arrangemestd; = A,u) .o, 1 = o
1,...,n} of simplices inH, (we allow forr® < 0) we define 0se
Quit
S(ilj)=qx € H : da(x) <da.(x)t,
(il7) = { () < day(2)} E———
and .
Vi = S(ilj) = {x €H : dy(z) = min dy (:c)} . 21 Pl ana o M 20 A 16,200
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Go Back
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Figure 1: An orthant arrangement. The vertices of the orthants are the points _
where dotted line segments meet, and the solid line segments show where the QUi
orthants share common boundaries. Page 10 of 37
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An important tool for constructing a simplicial complex from a collection of
sets is thenerveconstruction.

Definition 2.1. The nerve corresponding to a collection of §atsi = 1,...,n}

is the simplicial complex consisting of all index setsC {1, ..., n} for which
Nies Vi 7 0.

The following theorem, due to Borsuk][ gives a topological connection
betweer J!" , V; and the nerve of the collectigfV;,i = 1,...,n}. Improved Inclusion-Exclusion

- Inequalities for Simplex and

Theorem 2.1. Given a collection of polyhedr&V;,i = 1,...,n} in R* with Orthant Arrangements
the property that the intersectiqhy,_ , V; is either empty or contractible for all D.Q. Naiman and H.P. Wynn
J C {1,...,n}, the setJ_, V; and a geometric realization of the nerve of
{Vi,i=1,...,n} have the same homotopy type. Title Page

Now we can state the main result of this section. Contents
Theorem 2.2. Given a simplex arrangemeRftd,. ,.,i = 1,...,n} letS be <« >
the nerve of the corresponding Voronoi sets. Then the @ai,) ., i = P >
1,...,n},S) forms an abstract tube.

. . . . ) Go Back

The proof of this theorem requires several preliminary geometric proposi-
tions and lemmas, which we present first. The proofs of these may be found Close
in Section4. For the remainder of this section we fix a simplex arrangement Quit

{Ayi) @, =1,...,n} with Voronoi setsl, . .., V,, as described above.
' Page 11 of 37

Proposition 2.3. Given a pointy € R withy < 0, we haveO, N H = A,

whereb = Yy — gl andr = —y/wd. J. Ineq. Pure and Appl. Math. 2(2) Art. 18, 2001
http://jipam.vu.edu.au
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We refer to the simplex in Propositich3 as thesimplex corresponding to
the orthanO,,. More generally, we allow fog > 0 and we can still refer to the
simplex A4, ,, as the simplex corresponding to the orth@ptif b = y — 71 and
r = —y/wy. Also, we can invert this operation and find a unique orth@nt
corresponding tany given simplex4, . by takingy = b — rw,1. This orthant
has the property that,, = O, N H, if » > 0. This construction also allows us
to associate an orthant arrangemeriRii! with any arrangement of simplices
in R, and vice versa. Figur2gives the simplex arrangement obtained by slic-
ing the orthant arrangement in Figutevith the hyperplané’.

In addition, a ball (with respect to this distance) about a simplex is a simplex.
In fact, it is easy to see that

{x € H : dy,, (v)< s} = Apris
as subsets aofi.

Proposition 2.4. If (", Ay .o # 0 then("_, Ayw 0 = Ay, Whereb =
—wy(c —2l), r = —¢, and wherec € R**! has coordinates

cp = ,E?ink<b(i),u(p)> +7r@ forp=1,...,d+ 1.

In addition, max;—1 dAbm’T(i) =da,,.
Observe that for a given poihte H, the polyhedral cones

oM = {b— > Al x> o} CH,

qF#k

Improved Inclusion-Exclusion
Inequalities for Simplex and
Orthant Arrangements
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Figure 2: Simplex arrangement obtained by slicing the orthant arrangement in Quit
Figure2 with the hyperplanédd. Page 13 of 37
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(with vertexb) cover H and meet only on their (relative) boundaries, which we
denote bﬁlek), so that a point: € H\ |Ji*] 80,5’“) lies in the interior ofle’“)

for a unique choice of indek. We express the simplex distance for a point in
one of these cones in the following.

Proposition 2.5. Givenb € H andr > 0 and a pointz = b — Y, Aul? €
Cék), we havely,  (z) = ézq# Ay — T

.. . Improved Inclusion-Exclusion
Proposition 2.6. The set{s eR:z+sl¢€ Obfmdl} forms an interval Inequalities for Simplex and

Orthant Arrangements
wada, (), +00), forall r € Randb, z € H. ?
' D.Q. Naiman and H.P. Wynn

Lety® = b —rw,1 so that the orthar®; = O, corresponds tal;. As
an immediate consequence of Proposifof) we see that

Title Page
{s eER:z+sl€ UOZ} = U[wddAi(:E),—Foo) = [wa '_rﬁlin da,(x), +00). Contents
=1 = “ >
for any pointz € H. Thus, the mapl : H — 9{{J;_, O;} taking = to < >
T+wgmin;; _, da,(z)1 gives ahomeomorphism betweBnando {|J;_, O;}
whose inverse is the restriction of the projection magto 0 {|J;_, O;} . Using Go Back
Proposition2.6, it follows that Close
n int Quit
U(Vi) = O:\ (U Oj) Page 14 of 37
j=1

The following two Lemmas form a crucial step in establishing the abstract ? nea. Pure and Appl. Math. 2(2) Art. 18, 2001
, . http://jipam.vu.edu.au
tube property below. It ensures that Borsuk’s Theotefincan be applied to
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4« 44
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Go Back
Close

Figure 3: The Voronoi diagram associated with the simplex arrangement in Quit
Figure2. Observe that the boundaries of the Voronoi sets correspond to the

: - . - Page 15 of 37
dashed line segments in Figut@nd the solid lines in Figurg. 2998 220
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equate the homotopy type of the union of a collection of Voronoi sets with the
nerve of the collection of Voronoi sets. These same results were essential in
proving the abstact tube property for balls appearin@gjn [

Lemma 2.7. For everyJ C {1,...,n} the intersectiorf),_, V; is either empty
or contractible.

Lemma2.8.1f J C {1,...,n} then

Improved Inclusion-Exclusion
e 10 Inequalities for Simplex and
U Vi U ﬂ S(le)' Orthant Arrangements
icJ ieJ jgJ
D.Q. Naiman and H.P. Wynn
The following result, which is specific to simplex arrangements and their

Voronoi diagrams, gives a crucial geometric observation leading to the proof of

Theorem?2.2. MRS PEEE
Lemma 2.9.1f z* € U], A;andJ = {i : z* € A;} then(,., S(i|j) is Contents
nonempty and star-shaped with respect to the baryceéntéi,_, A;, for all 44 >
I'CJandj ¢ J. p >
Figure4 illustrates the star-shaped property in Lemin@ Go Back
Proof of Theoren®.2. Fix z* € J;_, A;. We must show the subsimplicial Close
complexS(z*) ={I € S : z* € ),; A} is contractible. Let/ = {i : 2* Quit

A;} so thatS(z*) is the nerve of the collectiofV;,i € J}. By LemmaZ2.7
and Borsuk’s Theorer.1, S(z*) has the same homotopy typelds. ; V;. By

Lemma2.8, we can write
V o T J. Ineq. Pure and Appl. Math. 2(2) Art. 18, 2001
U i U i) http://jipam.vu.edu.au

icJ e

Page 16 of 37
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Contents
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< >
Go Back
Figure 4: lllustration of the star-shaped property in Lemi@ There are 4 Close
triangles with centers labeled, . . . , z4. The triangles centered at, z, andz; Quit
intersect to form another trianglg, and the sef),_, , ; S(i|4), is star-shaped
. =02 . i i Page 17 of 37
with respect to the barycenter @f The boundaries of the regiongi|4), i =
1,2, 3 are drawn using dotted lines.
J. Ineq. Pure and Appl. Math. 2(2) Art. 18, 2001
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where
T, = ﬂ S(ilj), fori e J.
JEJ
If I C J and we writg"),.; A; = A, as in Propositior?.4, then Lemm&.9

guarantees th@l},_, S(i|7) is star-shaped with respect to the barycenfer all
J ¢ J. It follows that

- A — 15 Improved Inclusion-Exclusion
ﬂ T = ﬂ ﬂ S<Z|j) o m m S<Z|j) Ineql\J/aIities chjJrISimp)I(exualnd
i€l i€l j¢J j¢Jiel Orthant Arrangements
is also star-shaped with respecbt&ince every such intersection is star-shaped, D.Q. Naiman and H.P. Wynn
and hence contractible, Borsuk’s Theor2mallows us to conclude thay, _; 7;
has the same homotopy type as the nerve of the colle¢fiprj € J}. But ev- Title Page
ery intersectior(,.; 7; is nonempty, so the nerve forms a simplex, which is p—
contractible. O ontents
Remark2.1 It is of interest to compare the proof of the abstract tube property 4« 4
with the proof appearing inf] for the case of balls of equal radius, when the < >

nerve of the usual Voronoi diagram is used to form the simplicial complex.
There, contractibility of the subsimplicial compléXz*) follows from the fact

that the union of Voronoi setg),_, V; is star-shaped with respect 1¢. In the Close
present case, we do not in general have star-shapedness of this set, but we are Quit
able to prove contractibility by representing this union as a union of pieces
which always intersect in nonempty star-shaped pieces. Page 18 of 37

Remark2.2 Since the distance to a simplé . satisfiesl,, . (v) = da,, (z)+
. . .y § L § . J. Ineq. Pure and Appl. Math. 2(2) Art. 18, 2001
c, it follows that the Voronoi decomposition af (and hence the associated http:/fjipam.vu.edu.au

Go Back
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simplicial complexS) corresponding to a simplex arrangemeént,) ., 7 =

1,...,n} is unaffected if we add the same constant to ed¢h

Improved Inclusion-Exclusion
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Now we apply the results of the previous section to give an analogous result
for arrangements consisting of translates of the orthants. To keep the notation
consistent with that of the last section, we consider translates of the negative | : :

. K . . i mproved Inclusion-Exclusion
orthant inR4*!. We first introduce arorthant distancewhich measures the Inequalities for Simplex and
distance to an orthard,. Let Orthant Arrangements

D.Q. Naiman and H.P. Wynn

do,(r) = j:flf}%ﬂ{yj — ;).
- ] ] Title Page
Observe thatlp, () is less than, equal to, or greater than 0 respectively, de- Content
ontents

pending on whether lies in the interior, boundary or exterior of,.
A collection of orthants{Oym ,i=1,...,n,} where they® are distinct, will <4 >
be referred to as aorthant arrangemenin R?+!. Given such an arrangement,

the orthant distance is used to define a Voronoi decompositif ‘dfby letting ¢ >
. Go Back
Vi = ﬂ g(lfj) Close
Jj=1 Quit
where Page 20 of 37

S(ilj) = {x eR™ 1 dp , (2) <do (x)} .
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Theorem 3.1.1f {O,»,i = 1,...,n} is an orthant arrangement iR then
the pair ({O,w,i = 1,...,n},S) forms an abstract tube, whetedenotes the
nerve of the corresponding Voronoi decompositjdfi = 1,...,n} of R,

Some preliminary Propositions will play a key role in the proof of Theo-
rem 3.1 Proofs of the results presented in this section, except for the proof of
the main result, Theore® 1, appear in Sectioh.

Proposition 3.2. Given an orthant arrangemetO,),i = 1,...,n}, the nerve

of the corresponding Voronoi decompositip¥i,i = 1,...,n} coincides with
the nerve of V,NH,i=1,...,n}.

The Voronoi decomposition for orthants is closely related to the one in the
last section, and exploiting this connection is the key to proving the main result
of this section. The basic idea is to introducg@mplex arrangement associated
with a given orthant arrangemexis in the remark following Propositéh3)

{0,0,i=1,...,n},

by taking
{Ab(i)7r(i),i =1,...,n},
whereb® =y — 501 andr® = 5@ /u),.

Proposition 3.3. Given any orthant arrangemef@,,7 = 1,...,n},in R+

let {V;,: = 1,...,n} be the Voronoi decomposition for the associated simplex
arrangement. Then the Voronoi decomposition for the orthant and simplex ar-
rangements are related in that

VinH =V,

Improved Inclusion-Exclusion
Inequalities for Simplex and
Orthant Arrangements

D.Q. Naiman and H.P. Wynn

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 21 of 37

J. Ineq. Pure and Appl. Math. 2(2) Art. 18, 2001
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:daniel.naiman@jhu.edu
mailto:hpw@stats.warwick.ac.uk
http://jipam.vu.edu.au/

and consequently the nerves of the decompositions coincide.
Finally, we will need the following.

Proposition 3.4. Givenz,y € R*"! we haver € O, if and only ifz — 71 €
Ay 51,@-5)/00

Proof of Theoren8.1 Fix z € |J._, O, and letJ = {i © 2€0,0} We
need to show that the subsimplicial complex defined by

Sa)={Ie8S:2e(\Ow}={IeS: IC.J}

el

is contractible.

Consider the simplex arrangement obtained by applying the same construc-
tion in Proposition3.4to each of the orthant®, ), that is, take{ Ay ), =
1,...,n}, whereb® = 4@ — 701 andr® = (7 — 79)/w,. Let {V}, i =
1,...,n} be the Voronoi decomposition for this simplex arrangment, and let
denote the corresponding nerve. This Voronoi decomposition is unchanged if
we subtract the same constamf{,) from all of ther(®, but this modification
leads to the simplex arrangement associated with the original orthant arrange-
ment. We conclude thdtV;,i = 1,...,n} is also the Voronoi diagram for this
simplex arrangement. By Propositi6rBwe conclude thaf = S.

By Theorem2.2 ({Ayw ,@,i = 1,...,n},S) forms an abstract tube so if we
letJ ={i : 2 —71 € Ay» .} then the subsimplicial complex defined by

S(I—Tl):{IES : I—TlEﬂAb(i)yr(i)}I{IES : IQJ}

il

Improved Inclusion-Exclusion
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is contractible. But Propositio.4 guarantees that = J so using the fact that

S = S we can conclude that

S(z) = S(z —71)

soS(x) is contractible. O

The Voronoi decompositio{ﬂZ, i=1,...,n} corresponding to a given orthant
arrangemenfO,,i = 1,...,n} has a simple description in terms of the de-
composition of the boundary of the union of the orthants. This description helps

us in calculating the simplicial comple

Let -
B; = 00,0\ (U Oym)
i=1

so that theB; define a decomposition of the boundary

B=9 <U Oym) =JB.
i=1

i=1

Proposition 3.5. For a nonempty index set we haveJ € S if and only if
Nics Bi # 0. In other words, the nerve of the Voronoi decompositidh i =
1,...,n} coincides with the nerve of the decomposit{dsy,i = 1,...,n} of
B.
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Definition 3.1. An orthantO,; in an orthant arrangemefO,),i = 1,...,n}
is exposedf O, £ U;_, O

y)-

Observe thaO,; C UJ L Ol ifand only if y© € (J7_, O, and this is
in turn is equivalent ta,®) y(J for somej # i. Thus, the exposed orthants
correspond to those indiceéor whichy® £ 40 for all 5.

We use the notatiomax;c; y) to mean the coordinatewise maximum of

theyY) for j € J. As consequence of PropositiGns we have the following improved Inclusion-Exclusion

description of the faces of the nerve of the Voronoi decomposition. Inequalities for Simplex and
Orthant Arrangements

Corollary 3.6. The faces of correspond to the (nonempty) index sdtsor
which max;c; y® 3 3 for all j. In particular, the vertices of (the single
element faces) correspond to the exposed orthants.

D.Q. Naiman and H.P. Wynn

Following Corollary3.6 we can say equivalently that the index debr the Title Page
pointy = max,c;y¥, or the orthant), is covered Contents
<44 >»
< >
For a generic orthant arrangemeii, ), = 1,...,n} in R*"! the simplicial o Back
complex defining the tube above, that is, the nevef the Voronoi decompo- o=ac
sition, has dimensiod + 1. As a consequence, the inclusion-exclusion identity Close
has depthl + 2 instead ofn, which can lead to a dramatic improvement. We Quit

make this rigorous as follows.
Page 24 of 37

Definition 3.2. An orthant arrangemerO,),7 = 1,... ,n} in R isin gen-

eral positionif for every coordinate index the valueszy Dy =1,...,n are 3. Ineq. Pure and Appl. Math. 2(2) Art. 18, 2001
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The orthant arrangements that fail to be in general position define a set of
Lebesgue measure zero in the set of orthant arrangements. Under the general
position assumption the dimension of the simplicial complex defining the tube
has theright dimension.

Proposition 3.7. If an orthant arrangement is in general position then the sim-
plicial complexS defining the abstract tube in Theoréiril has dimension at
mostd + 1.

) ] o o ) ] Improved Inclusion-Exclusion
When an orthant arrangement fails to be in general position, itis still possible  Inequalities for Simplex and

to perturb it slightly to attain general position, and use the modified arrangement 0" Arrangements

to obtain improved inclusion-exclusion identities and inequalities that are valid D.Q. Naiman and H.P. Wynn
almost everywhere. This idea is explored i} for abstract tubes related to
polyhedra, and an analogous result can be used in the present contexd, In [

. .- . Title Page
abstract tubes based on orthant arrangements are used to derive new reliability
bounds for coherent systems, and in that context, perturbation is used to give Contents
even further improved inclusion-exclusion indicator identities and inequalities. <« b
< >
Go Back
Close

Using Theorem 4 in{] the abstract tube property leads immediately to the _
following. Quit

Theorem 3.8. Given a finite collection of distinct pointg?,i = 1,...,n in Page 25 of 57

R?, define
) ) J. Ineq. Purg_ and Appl. Math. 2(2) Art. 18, 2001
S={JC{l,...,n} : m%xy(z) #yY) forall j=1,... ,n}. http:/fjipam.vu.edu.au
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Then the following indicator function inequalities hold

m+1
(_1) IU?:l O;

m

<D DR YT Iy o, ¢y form=1,2,..., D,
k=1 JeS : |J|=m
whereO; denotesD,;, and D = max{|J| : J € S}. In addition, equality Improved Inclusion-Exclusion

holds form = D. Each inequality is at least as sharp as the corresponding "G Ao 0P ok
classical inclusion-exclusion inequality

D.Q. Naiman and H.P. Wynn

(_1)m+1]U?:1 0 = (_1)m+1 Z(_l)kﬂ Z [ﬂjeJoj ) Title Page
k=1 JCA{1,...,n} : |J|=m
Contents
corresponding to the abstract tube using a simplicial complex composed of all « >
nonempty index sets.
< >
The theorem also holds if we use negative orthants instead of positive ones,
that is, if we use as the definition 6f Go Back
4 - Close
R : z <y"
{z e x 2y p—
and if we redefines to be Page 26 of 37
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2

Proof of Propositior2.3Here, we are viewing a simplex aset.For anyz € H
we haver > y if and only if

(x,—eDy < (y,—eD), fori=1,...,d+1.
Since(z,€) = 0 for z € H, this is equivalent to
(ze—e)y <(y—7l,e—eD) — (g1, e fori=1,...,d+ 1,
which, upon dividing by, =|| ¢ — € || leads to the equivalent condition
(z,uD) < (y —71,uD) —5(1,eD) Jwy fori=1,...,d+1.
O

Proof of Propositior2.4. For the first claim, we can use the comment following
Proposition2.3to write Ay ) = Oy N H, wherey® = v — (1. Then
we have

k k

ﬂ Ab(i)ﬂ,(i) = m Oy(i) NH=0,NH

1=1 =1
wherez = max;—; _; 3y, the maximum being coordinatewise. A straightfor-
ward calculation gives

zp = —wag min {{y® u®)+rO},

Improved Inclusion-Exclusion
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so the result follows from the application of Propsitibf For the second claim,
we have

max, dA o~ () = max max (z,u?)) — (b(i),u(p)> —r®

i=1,. i=1,..kp=1,...,d+1
— (P)y _ (p) (@)
p;}}ﬁ};ﬂ@, u'P)) l_rr11’1n7 { ,ulPly 401
— (p)
= max (z,u®)— {{b,u® )+
P:17~--’d+1< > { < } Improved Inclusion-Exclusion
=d ( ) Inequalities for Simplex and
— U4, Orthant Arrangements
O D.Q. Naiman and H.P. Wynn
Proof of Propositior2.5. We have Title Page
Contents
da,, () max{ Z)\u }—r——mln{Z)\ } T.
a#k 0tk <4< >
The result then follows from the fact that S %
. Go Back
1 _
Z >‘q<u(q)> ul) = { K Zq#k A !f Pk Close
gk ~a lappi Nt X P AR
Quit
O
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Proof of Proposition2.6. Sincez + s1 € O, 1 if and only if z + s1 =
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that is closed on the left and extends to infinity on the right. The minimum value

of s in this interval is given by

~max  —(x; — b;) —rwg = _ mnax —(x — b, V) — rwy

Proof of Lemma&.7. SinceV is a homeomorphism, and
n int
v - - (o) (Uo)
ieJ ieJ JjeJ =1

it suffices to show that if the set

- (o) ()

is nonempty, then it is contractible.

Suppose: € W so thatz > 49 forall j € Jandz £ 49, fori=1,...,n.
If we definev = max;c,y") then observe that € ., 0;, andz = v.

Furthermore, if it were the case that O for some index, so thaty > y(*)

Improved Inclusion-Exclusion
Inequalities for Simplex and
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then we would have = y® and this is a contradiction. We conclude that
veW.

We proceed to showl’ is star-shaped with respect to Supposev € W
and\ € [0,1] thenwy = (1 — N)w + Xv € O; for all j € J by convexity.
We proceed to show,, ¢ O fori = 1,...,n. Sincew € N,cs O; We have
w = v, and it follows thatw = w, = v. Consequently, ifvy € O we obtain
w € O™ which is a contradiction. O

Proof of Lemm&.8. On the one hand

Uvi-UN st < UN st

ied icJ j=1 ied j¢J

On the other hand, supposec |J,.; ;. S(i[j) so that for some* € J we
haved,,.(z) < du,, forall j ¢ J. Let:™ € J minimizedy,.. (). It follows
thatdy,.. (z) < da,(z)forall j =1,... n,thatisz € U, N, S(ilj). O

Proof of Lemm&.9. We can use Propositich4to write (,.; A; = Ay, since
N;e; Ai # 0, b being the barycenter of the simplel .. Using the second part
of Proposition2.4, we see that

mS(iU) = m{l’ toda,(z) < dy,(2)}
={z : maXdA (z) < da, ()}

= {J; : dAb,r< )S dAj(x)}'
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To prove the claim of star-shapednes$ pf, S(ij) it suffices to show that the
intersection of any ray emanating from the barycebteith the se{,_, S(i|j)
forms a line segment containitbigSo fix a ray, say{b — 1 >, Au® : 7>
0}, for some index: and nonnegative constantgfor ¢ # k, and define

f(77) = dAb,r(b -n Z )‘qu(Q))v
q#k
and
g(n) =da,(b—nY_ Aul?).
a#k
The proof will be complete once we have demonstrated that

V={n=z=0: fn)<gn}
is an interval containing O.
Using Propositior?.5, we obtainf(n) = (é > ath )\q> n — r. Thus, we see
that
(i) f is linear, withf(0) = —r and slope]; 3 ., -
On the other hand, from the definition of simplex distance
g9(n) = max,—1 411 gp(n), where

gp(n) = <b —n Z )\qu(q) _ b(j)’ u(l’)> _ T(j).
qF#k

Since
d+1

Apr = ﬂ{aj € H : <x7u(7’)> < (b, u(?)) + 7}
p=1
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and
d+1

A = ﬂ{x e H : (z,u®) < (Y 4P 40}
p=1
andA,, Z A, it must be the case that

(b, u®y + 7 > (b9 y @)y 4 70

. . . | d Inclusion-Exclusi
for some index. This leads to the conclusion that Inequalites for Simplex and

(ii) g<()) = max,—1, i1 <b _ b(j)7 u(P)> — ) > —p = f(O) Orthant Arrangements
Finally, each functiomy, is linearg is piecewise linear and convex. D.Q. Naiman and H.P. Wynn
In addition, the slope o, is given by —(3"__, \,ul?, u”), so the same

calculation as in the proof of Propositiéh5 shows that the maximum slope

occurs forg,, and this function has the same slope fadVe have therefore Title Page
shown that Contents
(ii) g is piecewise linear and convex (and continuous), and the maximum slope <« >
of g, wherey is differentiable, is the same as the slopef of

Using properties (i), (ii) and (iii), it is easy to see tltaE V, and either the \ d
graphs off and g do not cross, or they cross at a single point, or they meet Go Back
in an interval of the formn*, +o0). In each case, the sé&t forms an interval p—
containing0. O

Quit
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8

Proof of PropositiorB8.2 The orthant distance satisfies

do,(x + 1) = do, (z) +c,

and consequently

do ., (x+cl) < do ;) (@ +cl)
Yy Yy

if and only if . )
do ., (2) < do i, ().

Thus, eacij- is the union of the set of lines of the forfr + c1 : ¢ € R}
wherer € V;NH. Itfollows immediately thatthe nerve of tHé’;,i = 1,...,n}
coincides with the nerve of thg/; N H}. O

Proof of Propositior3.3Forx € H a straightforward calculation shows that

(x) = max {(x,u(l’)> — (b 4 P)y — ,,,(i)}

dAbm () p

= In;lX {yp - xp} Jwa
= doy(i) () /wa.

Thus

if and only if

Improved Inclusion-Exclusion
Inequalities for Simplex and
Orthant Arrangements

D.Q. Naiman and H.P. Wynn

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 33 of 37

J. Ineq. Pure and Appl. Math. 2(2) Art. 18, 2001

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:daniel.naiman@jhu.edu
mailto:hpw@stats.warwick.ac.uk
http://jipam.vu.edu.au/

for x € H. The second claim follows from PropositiGn2. O

Proof of Proposition3.4 We havezp € O, if and only if z — 71 € O, .1,
which is equivalent to

d
Oy—?]_

Sincexr — 71 € H we can use the calculation in the proof of PropositioBito
conclude that an equivalent condition is

(r—71) <0.

d (x —71) <0,

A
v-71,@—9)/wg

and this gives the desired result. O

Proof of Proposition3.5 If N,_,V; # 0, fix 2 € o, Vi Let d&* =
minj—y_ ,do (), sothatdo  (x) = d* fori € Janddo , (z) > d* for
i ¢ J.If ¥ =z +d"1thenwe havelp  (z*) = 0fori € Janddo , (z*) >0

fori ¢ J, thusz* € 90, fori € J, andz* ¢ {J, Oy@-)}mt = UL Oy
We conclude that* € (., B;. Conversely, itz € (., B; then fori € J we

havez € 90, sodo « (z) = 0. Furthermore, for alf we haver ¢ ;’(‘f) SO
v ~

do « (z) > 0. We conclude therefore, thate (), V. O

Proof of Corollary3.6 We use the characterization of faces in Proposifici
Fix a nonempty index set and letm = max;c; y®.

Suppose )., B; # 0, and letz € (,., B;. Thenz € O, fori € J and
x ¢ Onf for all . It follows thatz - y® and hence: » m. Furthermore, we
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cannot haven > y%) for some; since this would giver > 3. This proves
thatm satisfies the stated condition.
Conversely, ifn # y forall j, thenfori € Jwe haven € O\ U, O

= B;,50(,c; Bi # 0. O

Proof of Proposition3.7 Suppose an index seft defines a face i, and let

m = max;c; y*. By the general position assumption, for each coordinate index
j there is a unique index € J such thatn; = yj(.i"). If |J| > d + 2 then since Improved Inclusion-Exclusion
{i;,j =1,...,d + 1} consists of at most + 1 elements, there must be some '”egfﬂiﬁsgﬁgﬁgﬁﬂzé”"
indexk € J\{i;,j =1,...,d+ 1}. It follows thatm > y*), which contradicts

the characterization in Corollaf/6. O
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