J Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

\olume 6, Issue 2, Article 44, 2005

A SAWYER DUALITY PRINCIPLE FOR RADIALLY MONOTONE FUNCTIONS
IN R"

SORINA BARZA, MARIA JOHANSSON, AND LARS-ERIK PERSSON

DEPARTMENT OFENGINEERING SCIENCESPHYSICS AND MATHEMATICS
KARLSTAD UNIVERSITY
SE - 651 88 KARLSTAD
SWEDEN
sorina.barza@kau.se

DEPARTMENT OFMATHEMATICS
LULEA UNIVERSITY OF TECHNOLOGY
SE -971 87 WLEA
SWEDEN

marjoh@sm.luth.se

larserik@sm.luth.se

Received 09 February, 2004; accepted 14 February, 2005
Communicated by C. Niculescu

ABSTRACT. Let f be a non-negative function d&", which is radially monotoné0 < f | r).
Forl < p < o0, g > 0 andv a weight function, an equivalent expression for

Jon 19

sup T

I (fgn fro)?
is proved as a generalization of the usual Sawyer duality principle. Some applications involving
boundedness of certain integral operators are also given.
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1. INTRODUCTION

An explicit duality principle for positive decreasing functions of one variable was proved by
E. Sawyer in[[8], and also some applications are well-known. Here we also refer to the useful
proof and ideas concerning this principle presented by V. Stepanpv in [9]. Setlalso [6] and the
proof and comments given there. Moreover, it is natural to look for extensions to functions of
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2 SORINA BARZA, MARIA JOHANSSON AND LARS-ERIK PERSSON

several variables. Such generalizations were recently obtained inl[1], [2]land [3]. To be able to
describe some of these generalizations we require some notations: We write

Rn:{(‘rhx%'--axn):i:1,2,...,’n}

andR! = R. If f : R® — R is decreasing (increasing) separately in each variable we write
0< f1l((O<Z<fT). Aset D C R"is said to be decreasing if its characteristic functign
is decreasing, and clearly(f < » | and ¢ > 0, then the seD;,;, = {x € R" : h(z) >t} is

1 1

decreasing. FOb < ¢ < p < o0, 1 = ¢ — , it was shown in[[3] that

1
a9y 7 ¢ 00 a T\ 7
(1.1) sup U f u)l A (e u>1 + sup / </ u) d (/ v) :
0<FL (fen fP0)? (fgnv)? Okl \Jo Dh.¢ D
whereu andv are weights, i.e. positive and locally integrable functionskdn For the case
0<p<gqg<ooc.t [2]

If g =1<p < ooandu =g > 0, then[1.1) withn = 1 is a variant of the duality theorem
given in [E] (c.f. alsol[9]).

An explicit form of (1.1) forn € Z, was given in[[1] forg = u, but only wherv is of product
type, that is weights of the form(x) = v (1, 22, ..., x,) = vy (z1) v2 (z2) - - - v, (), v; > 0,
1=1,2,...,n.

We say thatf : R" — R is a radially decreasing (increasing) functiorfifz) = f (y) when
2| = [yland f (z) > f(y) (f (z) < f(y)) when|z| < |y| and we writef | randf T,
respectively (see alsd![7] for further explanations and applications of these notions).

In this paper we prove a duality formula of the type [1.1) for radially decreasing functions
and with general weights (see Theorem| 2.1). We also state the corresponding result for ra-
dially increasing functions (see Theorém|3.1). In particular, these results imply that we can
describe mapping properties of operators defined on the cone of such monotone functions be-
tween weighted Lebesgue spaces. Moreover, we point out that these results can also be used to
describe mapping properties between some corresponding general weighted multidimensional
Lebesgue spaces (see Theofem 3.5 and c.f.[glso [9] for the.cadg. We illustrate this useful
technique for the identity operator (see Corolfary 4.3) and for the Hardy integral operator over
then-dimensional sphere (see Corollary|4.8).

The paper is organized as follows: In Secfign 2 we present some known and easily derived
results required in the proofs of our statements. The announced duality theorems are stated and
proved in Section]3. Finally, in Sectipf 4 the afore mentioned applications are given and also
some further results and remarks.

Notations and conventiong hroughout this paper all functions are assumed to be measur-
able. Constants, denotedb, ¢, are always positive and may be different at different places.
Moreovern € Z,, 1 < p < oo, p' = 25 (¢ = oo if p = 1), v(z) andu (z) are weights
(positive and measurable functions&f) and

Ly = Ly (R")

— {f : R" — R, measurable s.t( |f ()P v (2) dx) ’ < oo} :
R

Inequalities such a$ (2.1) are interpreted to mean that if the right hand side is finite, then so
is the left hand side and the inequality holds. The symb@t.f. (1.1)) means that the quotient
of the right and left hand sides is bounded from above and below by positive constants, while
expressions such @&s co = oo - 0 are taken as zero. Other notations will be introduced when
required.
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2. PRELIMINARY RESULTS

Consider the Hardy integral operatérof the form
) (@) = [ sy
B(x)

whereB () is the ball inR™ centered at the origin and with radilz§. We need the following
well-knownn-dimensional form of Hardy’s inequality (se€ [5]):

Theorem 2.1.LetW andU be weights oiR™ and1 < p < ¢ < oo.
(i) The inequality

(2.1) ([we ([ ) f(y)dy>qd:c>é ([ U(x)fp(x)dx);

holds forf > 0 if and only if

L

a := sup ( W(x)d:z:) ' (/ Ul_p/(a:)d:v> T <0,
>0 \Jjz>a 2] <a

Moreover, ifc is the smallest constant for whidh (R.1) holds, then
;L1
a<c<aprps.

(i) The inequality

e ([wo(/ . f(y)c@)qdac)‘i <e( [ v

holds if and only if

Sl

N

b := sup < W(:L‘)dx> ' (/ Ulp/(az)daz) " <.
a>0 lz|<a lz|>a

Moreover, ifc is the smallest constant for whidh (R.2) holds, then
b<c< bp'Fl’p%.
In particular we need the following special case of Thedrer 2.1 (ii):

Lemma 2.2. Letv be a weight functionl/ (z) = fB(x) v(y)dy andl < p < oo. Thenforf >0

@y [ ([ o) de<p [ PV
is satisfied.

Proof. Apply Theore (i) withiV (z) = v(z), U(z) = v'P(x) (fB(x)v(y)dy>p and

q = p. Denote

(2.4) vn(s) = /2 s"1v(so)do,
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whereX,,_; as usual denotes the unit spher&ih s € R. We note that

1
v

sy ([ soras) ([ ([, vtom) " o)

1
/ =

= sup Vi () . v, (8) ds B v (z)dx p
a>0 /x|2a /0

= sup V¥ (a) /a h /E e ( /O o (8) ds) 7 o) dtd(S) '
= sup V¥ (a) /:O (/Otvn(s)(h’)_p/ (/E K (ta)da) dt)pl/
—sup V¥ (a) /a h ( /0 o (5) ds) o dt) ’

1 o0 d t _pl+1 1 ﬁ
= Vo — n(s)d dt
sup V7 (@) l ﬁ(l“<@8) Iy

—p'+1

< sup %vi (@) ( /0 S on (1) dt) Y

>0 (pf = 1)
1 1 1 1 1
= sup—VP (@) V7 (o) = ——— < o0.
>0 (pf = 1) (—1)7
Therefore, by Theoreﬂ.l (ii 2.3) holds with a constant — (p )i’ pr = p and the
w—1)7"
proof is complete. g O

3. THE DUALITY PRINCIPLE FOR RADIALLY MONOTONE FUNCTIONS

In the sequel we sometimes delete the integration variable and writgg.gy instead of
Jan [ ( x) dz when it cannot be misinterpreted. Moreover, as usj@l, = |lgl/,, =
Jan |g | d:zc Our main result in this section reads:

Theorem 3.1. Suppose that is a weight onR™ and1 < p < oo. If f is a positive radially
decreasing function oR™ and g a positive measurable function @&t, then

Jan 19

(3.1) C (g) :=sup -~ I + 1y,
flr (f]Rn fpv)l’
where )
I = vl gl
and
I = ( GHY V) ot )dt)
Rn
with V' (t) = [, v (z)dz andG (t) = [, g (z) dz.
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Remark 3.2. Theorenj 2.]1 for the case= 1 is simply Theorem 1 in[8]. However, our proof
below is based on the techniquelin [9] and our investigation in Section 3.

Proof. If f =¢ > 0, then

Clg) > sup 219 Dol

= (fg o) Il
Moreover, we use the test functigh(z) = flt\>\wl h(t)dt, whereh (t) > 0 (note thatf is

radially decreasing), Lemnjia 2.2 and the usual dualit¢irspaces to find that
d
C o) — sup e D9 @) s
0=/ ([ f2 (z) v (2) dz)
S fR” (f|x|<|t| h (t) dt) g (z)dz
> sup

- <fR” <f|36|<|t| h(t) dt>p v () dm)é
= sup Joo B (1) f|a:\<|t\ g (z) dxdt

,, :
" (for (e h @ at) v (@) do)
2 h
> lsup Je f|x|<|t\ g :
P r>0 (fRn hpvpvl—p)ﬁ
Wy G
zlsup Jrn (BF) TV

PO (fen (5)"0)?

(L)

To prove the upper bound 6f (¢) we use the monotonicity of. Sincef is radially decreasing

:[1.

3=

we have
/n 9f = /nng%
L powersts ([, e
:/nv(t) (/xbtlf(x)g(x) Vtx)dx> dt
(3.2) < /nv(t)f(t) <A>It|g(x) Vtx)dx) dt.

To estimate the inner integral we defing(s) andv, (s) analogously td (2]4), note that(z) =
V (|z|) and find that

/|:c|>|t 9(z) V%x)dm - /moo s /an g (s0) v (180) dsdo

_/M (/Z o 1g(50)d0> Vl(s)ds
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+ : v%(s) (/E s" v (s0) da> (/0 gn (2) dz) ds
g@/ﬂm%(z)dzﬁ/: v21(8)vn(8) (/0 (2 )dz) ds.

J/

~~ ~~

K, Ko

Hence the inner integral can be estimatediy+ K, and by substituting this int¢ (3.2) and
applying Holder’s and Minkowski’s inequalities we get

| to< [ pomi

(L) (Lo

1

<(Lore) (L)« (L))

Y e

Moreover,

'E\‘ -

( / /n watempaon) ([ o)

= ol gl = ol lgll, = 1o
and, according to Lemnja 2.2,

1 :
I’y
1

(oree) = (L (L s ([ meo) ) o)
_ /ﬂ{(ﬁ / 5" v(so) (/ / g (6) dzdé)dods)p,v>p/

1

B /n (/R"\B(t) ‘;}2(8) /B(;p) < )dy> v () dt) pl
<t ([vor(/f y )0 dt)’}/ A

The upper bound of’ (¢) follows by combining the last estimates and the proof is complete.
0
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Remark 3.3. According to our proof we see that the duality constarty) in (3.1) can in fact
be estimated in the following more precise way:

max (Il, Ig) < C (g) < Il +p/12.
In particular we have the following useful information:
Corollary 3.4. Let the assumptions in Theor3 1 be satisfied fand = co. Then

(3.3) I, <sup ———F— fR 19
I (fn fp”)

The proof above is self-contained and does not depend directly on the one-dimensional result
(only on our investigations in Sectiph 2 and similar arguments as V.D. Stepanov used when he
proved the case = 1). Here we give another shorter proof where we directly use the (Sawyer)
one-dimensional result.

<p[2

Proof. Make the following changes of variables
(3.4) t = so andz = yr,

wheres,y € (0,00) ando, 7 € ), . By using the fact thaf (so) = f (s) sincef is radial,
we get:

fRn I _ fo on . f(s0) g(so)s" tdods
(fRn fpv) ’ (fooo fz fp (so)v(s0) 8”_1d0d8> g
_ fo s)ds
(f @V ds) :

and hence, by using the (Sawyer) one-dimensional result we find that

00 et ([T 7). ([ ewa)

Moreover,
(/ / s" Yo ds) (/ / s 1dad5>
(fo J Y- 1d7dy) . ’
/0 <f0 fi . ldey> /Z:nlv(sa)s dods
(36) = (/nv(t)dt)_; </ng(t)dt>+ /R Ei:iizzg:u(wdt p
The proof follows by combining (35) and (3.6). O
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For completeness and later use in our applications we also state the corresponding result for
radially increasing functions iR":

Theorem 3.5. Suppose that is a weight onR” and1 < p < oco. If f is a positive radially
increasing function ofR™ and g a positive measurable function @f, then

Jon f9

D (g) := sup -~ I + I3,
fir (fRn fp”)p
where
-1
L=l gl
and

=

P

I; = ( / Gy O Vi ()7 v (t) dt) ,
With G (t) = [gu\ ey 9 () dz andVi (t) = [gu gy v (2) do.

Proof. We now use Theorefn 2.1 (i) (instead of (ii) as in the proof of Lernmja 2.2) and obtain as
in the proof of [2.B):

[ v ( 5 f(y)dy)p tr<p [ POV @)

By using this estimate the proof follows similarly as the proof of Thedrem 3.1 so we leave out
the details. O
Remark 3.6. In fact, similar to Remark 3|3 and Corollgry B.4, we find that

max (I1,13) < D(g) < I + p'I3
and if, in addition to the assumptions in Theo@ 32.v = oo, then

Iy < sup gz TSI
I (f]R" f‘%)

4. FURTHER RESULTS AND APPLICATIONS

<p'L.

3=

LetT be an integral operator defined on the cone of functjon®™ — R, which are radially
decreasing0 < f | r) and letT™* be the adjoint operator. Then our results imply the following
useful duality result:

Theorem 4.1.Let1 < p,q < oo, u,v be weights orR" with [, v (z)dz = oco. Then the
inequality

@.1) ([ @rruwa) <o [ pepwa)
n RTL
holds for all f | r if and only if

/

(4.2) ( /. ( /B T dy)p/ Vv (2) o (2) dx) "o ( [ @ @ dw) ’

holds for every positive measurable functipn
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Proof. Assume first thaf (4]1) holds for @ll< f | r. Then, by using Corollary 3.4, duality and
Holder’s inequality, we find that

/ . (/Bm T5) dy) "V @) e da

< sup Jen f (v) dx
flr (S fp )d:z:)
= sup S Tf ( ) dx
flr (Jon f7 (2 )d:z:)
(feo (T (@))" w (2) da) (fRn (@) dx) q,
< sup i
flr (fRn (x ) ) I

:c(/ngq’(x)u ()m).

On the contrary assume that (4.2) holds forgalt 0. Then, by using Corollary 3.4 again, we
have

1 v

ve( [ oy ey )" =y ( I ( /B L Ta) dt)p' v (2 () dx) p

s S f@Tg@)de_ Je Tf ( do
(fRn ) dx) (fRn dx)
for each fixed) < f | r. Therefore we have
(4.3) / h(z)Tf (z)us (z)dx < ple ( 2 (z)v (2) d:p) v ’
n o
where 1
h(z) = g(@)u 9 (z)

T -
7

(oo (g0t @) )’

Since||h||,» = 1 we obtain [(4.]) by taking the supremum [n {4.3) and usual dualiti*in
spaces. O

Remark 4.2. By modifying the proof above we see that a similar duality result also holds
for positive radially increasing functions. In fact, in this case we just need to reﬂ%@y

fR”\B(z) andV’ (z) by V1 (z fR"\B v (x)dzin )
For example wheff’ is the identity operator we obtain the following:

Corollary 4.3. Letl < p < ¢ < oo and suppose that, v are weights oR™ with [, v = co
andV (z) = [,

a) The foIIowmg condrtions are equivalent:
i) The inequality

() ()

J. Inequal. Pure and Appl. Math6(2) Art. 44, 2005 http://jipam.vu.edu.au/
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Is satisfied foralb < f | r.
i) The inequality

1

45) ( [ ow W) VI @) dx) ([ oot dw)"l'

holds for allg > 0.

([ i) ([ wwir) <o,

b) If Vi () = [qu gy v () dt, thenfor0 < f 7 v ) is equivalent to

(/” (/R”\B(a:) 5 ) dy)pl W @)@ dw) pfl/ = (/n g7 (x)u'~7 (z) dw> q

which in turn is equivalent to

ii)

1 1
sup (/ v(x)d:v) ’ (/ u(x)dx) ' <
>0 \Jr"\B(a) R\ B(a)

Proof. a) The equivalence of i) and ii) is just a special case of Theprem 4.1. Moreover, the fact
that ii) and iii) are equivalent follows from Theor¢m .1 (i) witlreplaced by, ¢ by p/, p by ¢/,
W by vV ~* andU by u'~7. In fact, then|(4.5) is equivalent to (note tffat— q) (1 — ¢') = 1)

1

oy ﬁ é <f\ac|<a U) ’ %
sup vV P u| =sup ———— ul < oo.
a>0 |z|>a x| <o a>0 (p/ — 1)? |z|<a
The proof of b) follows similarly by just using Remégrk #.2 and Thedfrem 2.1 (ii). O

Remark 4.4. The equivalence of i) and iii) can also be proved using the technique from [2].
For the case < p cf. also [3].

The next result concerns the multidimensional Hardy operator, defined on the cone of radially
decreasing functions iR".

Proposition 4.5. Let1 < p < ¢ < oo and suppose that and v are weights onR™ with
Janv=00andV (z) = [, v(z)dz.If 0 < fis aradially decreasing function iR", then

(4.6) ( [ ( [ 1) dy)qu (x) d:c); <o ( [ Pep@ dx);’

is satisfied if and only if the following conditions hold:

(4.7) sup (/B(a) @<x)dx)_'l’ (/B(a) u(z)|B (x)]qu> " <0

and

@8 s < /B L @) V7 (2)v () dx) ’ ( /R - u(x)dx>‘1’ < .

Here, as usual.B (z)| denotes the Lebesgue measure of the ball with centerat with
radius|z|.

Remark 4.6. For the case. = 1 this result is due to V. Stepanov (séé [9], Theorem 2).
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Propositiorj 4.6 can be proved by using the method of reduction to the one-dimensional case
but here we present an independent proof:

Proof. SinceT f (z fB t) dt its conjugatel™ is defined byl™g (

Assume first thal[@]?) anﬂ} 8) hold. We note that, according to Th@nﬁ]l (4(B)<for
f | ris equivalent to[(4]2) for arbitrary > 0. Moreover, to be able to characterize weights for
which (4.2) is satisfied, we first compute:

/B(m) T _/ </|y|> 2| o )dy) dz

/B@)< ’ /n 1t” g (t0) dadt)d
:/B<x)</|z n()dt)dz
_ /0 . /E o ( / o () dt) dods
= |, 1] (/om st (/:I gn (1) dt> ds + /0:DI /|:O gn (1) dtds)
=|3,_4] /Owl (/Ot 5"1d5> Gn (t) dt + |21 /Om ds /:lo gn (1) dt
:/OI| (/E ) da/ots”_lds/z ) g (t5) dé) dt

- </O|$| /E“dads) /: /Enlt”—lg (t0) dédt

:/ B (9)) g (y)dy + B () g (y)dy
B(z) PN R™\|B(z)]| ,

Il 12

This means thaf (4,.6) holds if and only if

S
Py

Y e

(4.9) ( / (L@ + B @YV (@) ) dx) §c< / @U@ )d:c)

Moreover, by Theoremn 2.1 (i) with replaced by’ andp replaced by;’, we have

1
Y

1

@) ([ (w@y v o)

- ( [ ([ i) v @ dar)p
<e ( | @@ T;E;lj dl‘) e (o),
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which holds because, accordingto (4.7),

ili% (/Rn\B(a) v () (/B(m) v (y) dy) - :1:) ( e (Tgy(zj i ) 3/)

Joy v @) dy)
< sup <B( (/ y) |B (y |qdy) < o0.
B(a

a>0 (p — 1
Similarly, according to Theorem 2.1 (ii),

@iy ([ @y v @)

Qe

'c\‘ -

1
7

because

sup ( /B n @) V7 (2)v () d;z:) ’ < /R o @ dx)é < o0

which holds by[(4.B). Thus by using (4.9), Minkowski's inequality and (4.10) — [4.11) we see
that (4.6) holds.
Now assume thaf (4.6) holds, i.e., tHat {4.9) holds. Then, in particular,

(4.12) ( /R L@V (@)@ dx) > c( / o @ )da:)

and by using Theorein 2.1 (i) and arguing as above, we find[that (4.7) holds. Morgover, (4.12)
holds also with/; replaced byl, so that, by using Theorejm 2.1 (ii) and again arguing as in the
sufficiency part, we see that (4.8) holds. The proof is complete. O

1
Py

Remark 4.7. For the case when the weights are also radially decreasing or increasing some of
our results can be written in a more suitable form. Here we only state the following consequence

of Propositior} 4.5:

Corollary 4.8. Let1l < p < ¢ < oo and letf (z) be positive and radially decreasing R".
Then the Hardy inequality

</R" GBL)‘ /B(fc) /) dy>q 1B (x)|bd$); < c( . f7(z)|B (m)\“da:);

holdsifandonlyit-1 <a<p—1,-1<b<q¢—1and
a+1l b+1
P q
Proof. Apply Propositior] 4.5 withy () = |B (z)|* andu (z) = |B (z)|". We note that some
straightforward calculations give

1 1
(4.14) (/ v (x) dx) ’ (/ u () da:) T N
B(a) B(«a)
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whenever > —1,b > —1 and

Y e
Q =

(4.15) ( /B e @V (2) v (2) da:)

( /R - u(a:)da:)

/
an—anp +n , bn—ng+n (
n(—
~ ' + q =« P q

whenever < p—1andb < g — 1.

Moreover, according to the estimatés (4.14) dnd (4.15) the condition] (4.13) (and only this)
gives a finite supremum. The proof is complete. O

Remark 4.9. Itis easy to see that Theor¢m[2.1 also hold®ifis replaced bR’} or even some
more general cone IR". Therefore, by modifying our proofs, we see that all our results in this
chapter indeed hold also wh&* is replaced byR’;, or even general cones K" as defined in

[4].
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