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ABSTRACT. Let f be a non-negative function onRn, which is radially monotone(0 < f ↓ r).
For1 < p < ∞, g ≥ 0 andv a weight function, an equivalent expression for

sup
f↓r

∫
Rn fg(∫

Rn fpv
) 1

p

is proved as a generalization of the usual Sawyer duality principle. Some applications involving
boundedness of certain integral operators are also given.
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1. I NTRODUCTION

An explicit duality principle for positive decreasing functions of one variable was proved by
E. Sawyer in [8], and also some applications are well-known. Here we also refer to the useful
proof and ideas concerning this principle presented by V. Stepanov in [9]. See also [6] and the
proof and comments given there. Moreover, it is natural to look for extensions to functions of
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2 SORINA BARZA , MARIA JOHANSSON, AND LARS-ERIK PERSSON

several variables. Such generalizations were recently obtained in [1], [2] and [3]. To be able to
describe some of these generalizations we require some notations: We write

Rn = {(x1, x2, . . . , xn) : i = 1, 2, . . . , n}
andR1 = R. If f : Rn → R is decreasing (increasing) separately in each variable we write
0 ≤ f ↓ (0 ≤ f ↑). A set D ⊂ Rn is said to be decreasing if its characteristic functionχD

is decreasing, and clearly if0 ≤ h ↓ and t > 0, then the setDh,t = {x ∈ Rn : h (x) > t} is
decreasing. For0 < q < p < ∞, 1

r
= 1

q
− 1

p
, it was shown in [3] that

(1.1) sup
0≤f↓

(∫
Rn f qu

) 1
q(∫

Rn fpv
) 1

p

≈
(∫

Rn u
) 1

q(∫
Rn v

) 1
p

+ sup
0≤h↓

∫ ∞

0

(∫
Dh,t

u

) r
q

d

(∫
Dh,t

v

)− r
p

 1
p

,

whereu andv are weights, i.e. positive and locally integrable functions onRn. For the case
0 < p ≤ q < ∞ c.f. [2].

If q = 1 < p < ∞ andu = g ≥ 0, then (1.1) withn = 1 is a variant of the duality theorem
given in [8] (c.f. also [9]).

An explicit form of (1.1) forn ∈ Z+ was given in [1] forg = u, but only whenv is of product
type, that is weights of the formv (x) = v (x1, x2, . . . , xn) = v1 (x1) v2 (x2) · · · vn (xn), vi ≥ 0,
i = 1, 2, . . . , n.

We say thatf : Rn → R is a radially decreasing (increasing) function iff (x) = f (y) when
|x| = |y| andf (x) ≥ f (y) (f (x) ≤ f (y)) when |x| < |y| and we writef ↓ r andf ↑ r ,
respectively (see also [7] for further explanations and applications of these notions).

In this paper we prove a duality formula of the type (1.1) for radially decreasing functions
and with general weights (see Theorem 2.1). We also state the corresponding result for ra-
dially increasing functions (see Theorem 3.1). In particular, these results imply that we can
describe mapping properties of operators defined on the cone of such monotone functions be-
tween weighted Lebesgue spaces. Moreover, we point out that these results can also be used to
describe mapping properties between some corresponding general weighted multidimensional
Lebesgue spaces (see Theorem 3.5 and c.f. also [9] for the casen = 1). We illustrate this useful
technique for the identity operator (see Corollary 4.3) and for the Hardy integral operator over
then-dimensional sphere (see Corollary 4.8).

The paper is organized as follows: In Section 2 we present some known and easily derived
results required in the proofs of our statements. The announced duality theorems are stated and
proved in Section 3. Finally, in Section 4 the afore mentioned applications are given and also
some further results and remarks.

Notations and conventions: Throughout this paper all functions are assumed to be measur-
able. Constants, denoteda, b, c, are always positive and may be different at different places.
Moreovern ∈ Z+, 1 ≤ p < ∞, p′ = p

p−1
(p′ = ∞ if p = 1), v (x) andu (x) are weights

(positive and measurable functions onRn) and

Lp
v = Lp

v (Rn)

=

{
f : Rn → R, measurable s.t.

(∫
Rn

|f (x)|p v (x) dx

) 1
p

< ∞

}
.

Inequalities such as (2.1) are interpreted to mean that if the right hand side is finite, then so
is the left hand side and the inequality holds. The symbol≈ (c.f. (1.1)) means that the quotient
of the right and left hand sides is bounded from above and below by positive constants, while
expressions such as0 · ∞ = ∞ · 0 are taken as zero. Other notations will be introduced when
required.
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2. PRELIMINARY RESULTS

Consider the Hardy integral operatorH of the form

(Hf) (x) =

∫
B(x)

f(y)dy,

whereB (x) is the ball inRn centered at the origin and with radius|x|. We need the following
well-knownn-dimensional form of Hardy’s inequality (see [5]):

Theorem 2.1.LetW andU be weights onRn and1 < p ≤ q < ∞.

(i) The inequality

(2.1)

(∫
Rn

W (x)

(∫
B(x)

f(y)dy

)q

dx

) 1
q

≤ c

(∫
Rn

U(x)fp(x)dx

) 1
p

holds forf ≥ 0 if and only if

a := sup
α>0

(∫
|x|≥α

W (x)dx

) 1
q
(∫

|x|≤α

U1−p′(x)dx

) 1
p′

< ∞ .

Moreover, ifc is the smallest constant for which (2.1) holds, then

a ≤ c ≤ ap
′ 1
p′ p

1
q .

(ii) The inequality

(2.2)

(∫
Rn

W (x)

(∫
Rn\B(x)

f(y)dy

)q

dx

) 1
q

≤ c

(∫
Rn

U(x)fp(x)dx

) 1
p

holds if and only if

b := sup
α>0

(∫
|x|≤α

W (x)dx

) 1
q
(∫

|x|≥α

U1−p′(x)dx

) 1
p′

< ∞ .

Moreover, ifc is the smallest constant for which (2.2) holds, then

b ≤ c ≤ bp
′ 1
p′ p

1
q .

In particular we need the following special case of Theorem 2.1 (ii):

Lemma 2.2. Letv be a weight function,V (x) =
∫

B(x)
v(y)dy and1 < p < ∞. Then forf ≥ 0

(2.3)
∫

Rn

v(x)

(∫
Rn\B(x)

f(y)dy

)p

dx ≤ p

∫
Rn

fp(x)V p (x) v1−p(x)dx

is satisfied.

Proof. Apply Theorem 2.1 (ii) withW (x) = v(x), U(x) = v1−p(x)
(∫

B(x)
v(y)dy

)p

and
q = p. Denote

(2.4) vn(s) =

∫
Σn−1

sn−1v(sσ)dσ,
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whereΣn−1 as usual denotes the unit sphere inRn, s ∈ R. We note that

b = sup
α>0

(∫
|x|≤α

v(x)dx

) 1
p

(∫
|x|≥α

(∫
B(x)

v(y)dy

)−p′

v(x)dx

) 1
p′

= sup
α>0

V
1
p (α)

∫
|x|≥α

(∫ |x|

0

vn (s) ds

)−p′

v (x) dx

 1
p′

= sup
α>0

V
1
p (α)

(∫ ∞

α

∫
Σn−1

tn−1

(∫ t

0

vn (s) ds

)−p′

v (tδ) dtdδ

) 1
p′

= sup
α>0

V
1
p (α)

(∫ ∞

α

(∫ t

0

vn (s) ds

)−p′ (∫
Σn−1

tn−1v (tσ) dσ

)
dt

) 1
p′

= sup
α>0

V
1
p (α)

(∫ ∞

α

(∫ t

0

vn (s) ds

)−p′

vn (t) dt

) 1
p′

= sup
α>0

V
1
p (α)

(∫ ∞

α

(
d

dt

(∫ t

0

vn (s) ds

)−p′+1
)

1

1− p′
dt

) 1
p′

≤ sup
α>0

1

(p′ − 1)
1
p′

V
1
p (α)

(∫ α

0

vn (t) dt

)−p′+1
p′

= sup
α>0

1

(p′ − 1)
1
p′

V
1
p (α) V

1
p′−1

(α) =
1

(p′ − 1)
1
p′

< ∞.

Therefore, by Theorem 2.1 (ii), (2.3) holds with a constantc ≤ 1

(p′−1)
1
p′

(p′)
1
p′ p

1
p = p and the

proof is complete. �

3. THE DUALITY PRINCIPLE FOR RADIALLY MONOTONE FUNCTIONS

In the sequel we sometimes delete the integration variable and write e.g.
∫

Rn fg instead of∫
Rn f (x) g (x) dx when it cannot be misinterpreted. Moreover, as usual,‖g‖1 = ‖g‖L1

=∫
Rn |g (x)| dx. Our main result in this section reads:

Theorem 3.1. Suppose thatv is a weight onRn and1 < p < ∞. If f is a positive radially
decreasing function onRn andg a positive measurable function onRn, then

(3.1) C (g) := sup
f↓r

∫
Rn fg(∫

Rn fpv
) 1

p

≈ I1 + I2,

where

I1 = ‖v‖
−1
p

1 ‖g‖1

and

I2 =

(∫
Rn

G (t)p′ V (t)−p′ v (t) dt

) 1
p′

with V (t) =
∫

B(t)
v (x) dx andG (t) =

∫
B(t)

g (x) dx.
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Remark 3.2. Theorem 2.1 for the casen = 1 is simply Theorem 1 in [8]. However, our proof
below is based on the technique in [9] and our investigation in Section 3.

Proof. If f ≡ c > 0, then

C (g) ≥ sup
f=c

∫
Rn

+
fg(∫

Rn
+

fpv
) 1

p

=
‖g‖1

‖v‖
1
p

1

= I1.

Moreover, we use the test functionf (x) =
∫
|t|>|x| h(t)dt, whereh (t) ≥ 0 (note thatf is

radially decreasing), Lemma 2.2 and the usual duality inLp
v-spaces to find that

C (g) = sup
0≤f↓

∫
Rn f (x) g (x) dx(∫

Rn fp (x) v (x) dx
) 1

p

≥ sup
h≥0

∫
Rn

(∫
|x|<|t| h (t) dt

)
g (x) dx(∫

Rn

(∫
|x|<|t| h (t) dt

)p

v (x) dx
) 1

p

= sup
h≥0

∫
Rn h (t)

∫
|x|<|t| g (x) dxdt(∫

Rn

(∫
|x|<|t| h (t) dt

)p

v (x) dx
) 1

p

≥ 1

p
sup
h≥0

∫
Rn h

∫
|x|<|t| g(∫

Rn hpV pv1−p
) 1

p

=
1

p
sup
h≥0

∫
Rn

(
hV
v

)
G
V

v(∫
Rn

(
hV
v

)p
v
) 1

p

=
1

p

(∫
Rn

(
G

V

)p′

v

) 1
p′

= I2.

To prove the upper bound ofC (g) we use the monotonicity off . Sincef is radially decreasing
we have ∫

Rn

gf =

∫
Rn

gfV
1

V

=

∫ ∞

0

∫
Σn−1

f (x) g (x)
1

V (x)

(∫
B(x)

v(t)dt

)
dx

=

∫
Rn

v (t)

(∫
|x|>|t|

f (x) g (x)
1

V (x)
dx

)
dt

≤
∫

Rn

v (t) f (t)

(∫
|x|>|t|

g (x)
1

V (x)
dx

)
dt.(3.2)

To estimate the inner integral we definegn (s) andvn (s) analogously to (2.4), note thatV (x) =
V (|x|) and find that∫

|x|>|t|
g (x)

1

V (x)
dx =

∫ ∞

|t|
sn−1

∫
Σn−1

g (sσ)
1

V (sσ)
dsdσ

=

∫ ∞

|t|

(∫
Σn−1

sn−1g (sσ) dσ

)
1

V (s)
ds
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=

∫ ∞

|t|
gn (s)

1

V (s)
ds

=

[
1

V (s)

∫ s

0

gn (z) dz

]∞
|t|

+

∫ ∞

|t|

1

V 2 (s)

(∫
Σn−1

sn−1v (sσ) dσ

)(∫ s

0

gn (z) dz

)
ds

≤ 1

V (∞)

∫ ∞

0

gn (z) dz︸ ︷︷ ︸
K1

+

∫ ∞

|t|

1

V 2 (s)
vn (s)

(∫ s

0

gn (z) dz

)
ds︸ ︷︷ ︸

K2

.

Hence the inner integral can be estimated byK1 + K2 and by substituting this into (3.2) and
applying Hölder’s and Minkowski’s inequalities we get∫

Rn

fg ≤
∫

Rn

fv (K1 + K2)

≤
(∫

Rn

fpv

) 1
p
(∫

Rn

(K1 + K2)
p′ v

) 1
p′

≤
(∫

Rn

fpv

) 1
p

((∫
Rn

Kp′

1 v

) 1
p′

+

(∫
Rn

Kp′

2 v

) 1
p′
)

.

Moreover,(∫
Rn

Kp′

1 v

) 1
p′

=

(∫
Rn

(
1

V (∞)

∫ ∞

0

gn (z) dz

)p′

v (x) dx

) 1
p′

=
1

V (∞)

(∫ ∞

0

∫
Σn−1

sn−1g (sσ) dσds

)(∫
Rn

v (x) dx

) 1
p′

= ‖v‖
−1+ 1

p′
1 ‖g‖1 = ‖v‖

− 1
p

1 ‖g‖1 = I1,

and, according to Lemma 2.2,(∫
Rn

Kp′

2 v

) 1
p′

=

(∫
Rn

(∫ ∞

|t|

1

V 2 (s)
vn (s)

(∫ s

0

gn (z) dz

)
ds

)p′

v (t) dt

) 1
p′

=

(∫
Rn

(∫ ∞

|t|

∫
Σn−1

sn−1v (sσ)

V 2 (s)

(∫ s

0

∫
Σn−1

zn−1g (zδ) dzdδ

)
dσds

)p′

v

) 1
p′

=

(∫
Rn

(∫
Rn\B(t)

v (x)

V 2 (x)

∫
B(x)

g (y) dy

)p′

v (t) dt

) 1
p′

≤ p′
(∫

Rn

V (t)−p′
(∫

B(|x|)
g

)
v (t) dt

) 1
p′

= p′I2.

The upper bound ofC (g) follows by combining the last estimates and the proof is complete.
�
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Remark 3.3. According to our proof we see that the duality constantC (g) in (3.1) can in fact
be estimated in the following more precise way:

max (I1, I2) ≤ C (g) ≤ I1 + p′I2.

In particular we have the following useful information:

Corollary 3.4. Let the assumptions in Theorem 3.1 be satisfied and
∫

Rn v = ∞. Then

(3.3) I2 ≤ sup
f↓r

∫
Rn fg(∫

Rn fpv
) 1

p

≤ p′I2.

The proof above is self-contained and does not depend directly on the one-dimensional result
(only on our investigations in Section 2 and similar arguments as V.D. Stepanov used when he
proved the casen = 1). Here we give another shorter proof where we directly use the (Sawyer)
one-dimensional result.

Proof. Make the following changes of variables

(3.4) t = sσ andx = yτ,

wheres, y ∈ (0,∞) andσ, τ ∈
∑

n−1 . By using the fact thatf (sσ) = f (s) sincef is radial,
we get: ∫

Rn fg(∫
Rn fpv

) 1
p

=

∫∞
0

∫∑
n−1

f (sσ) g (sσ) sn−1dσds(∫∞
0

∫∑
n−1

fp (sσ) v (sσ) sn−1dσds
) 1

p

=

∫∞
0

f (s) G̃ (s) ds(∫∞
0

fp (s) Ṽ (s) ds
) 1

p

,

and hence, by using the (Sawyer) one-dimensional result we find that

(3.5)

∫
Rn fg(∫

Rn fpv
) 1

p

≈
(∫ ∞

0

Ṽ (s) ds

)− 1
p
(∫ ∞

0

G̃ (s) ds

)

+

∫ ∞

0

(∫ s

0
G̃ (y) dy

)p′

(∫ s

0
Ṽ (y) dy

)p′
Ṽ (s) ds


1
p′

:= I.

Moreover,

I =

(∫ ∞

0

∫
∑

n−1

v (sσ) sn−1dσ ds

)− 1
p
(∫ ∞

0

∫
∑

n−1

g (sσ) sn−1dσds

)

+

∫ ∞

0

(∫ s

0

∫∑
n−1

g (yτ) yn−1dτdy
)p′

(∫ s

0

∫∑
n−1

v (yτ) yn−1dτdy
)p′

∫
∑

n−1

v (sσ) sn−1dσds


1
p′

=

(∫
Rn

v (t) dt

)− 1
p
(∫

Rn

g (t) dt

)
+

∫
Rn

(∫
B(t)

g (x) dx
)p′

(∫
B(t)

v (x) dx
)p′

v (t) dt


1
p′

.(3.6)

The proof follows by combining (3.5) and (3.6). �
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For completeness and later use in our applications we also state the corresponding result for
radially increasing functions inRn:

Theorem 3.5. Suppose thatv is a weight onRn and1 < p < ∞. If f is a positive radially
increasing function onRn andg a positive measurable function onRn, then

D (g) := sup
f↑r

∫
Rn fg(∫

Rn fpv
) 1

p

≈ I1 + I3,

where

I1 = ‖v‖
−1
p

1 ‖g‖1 ,

and

I3 =

(∫
Rn

G1 (t)p′ V1 (t)−p′ v (t) dt

) 1
p′

,

with G1 (t) =
∫

Rn\B(t)
g (x) dx andV1 (t) =

∫
Rn\B(t)

v (x) dx.

Proof. We now use Theorem 2.1 (i) (instead of (ii) as in the proof of Lemma 2.2) and obtain as
in the proof of (2.3):∫

Rn

v(x)

(∫
B(x)

f(y)dy

)p

dx ≤ p

∫
Rn

fp(x)V p
1 (x) v1−p(x)dx.

By using this estimate the proof follows similarly as the proof of Theorem 3.1 so we leave out
the details. �

Remark 3.6. In fact, similar to Remark 3.3 and Corollary 3.4, we find that

max (I1, I3) ≤ D (g) ≤ I1 + p′I3

and if, in addition to the assumptions in Theorem 3.5,
∫

Rn v = ∞, then

I3 ≤ sup
f↑r

∫
Rn fg(∫

Rn fpv
) 1

p

≤ p′I3.

4. FURTHER RESULTS AND APPLICATIONS

Let T be an integral operator defined on the cone of functionsf : Rn → R, which are radially
decreasing(0 < f ↓ r) and letT ∗ be the adjoint operator. Then our results imply the following
useful duality result:

Theorem 4.1. Let 1 < p, q < ∞, u, v be weights onRn with
∫

Rn v (x) dx = ∞. Then the
inequality

(4.1)

(∫
Rn

(Tf(x))q u (x) dx

) 1
q

≤ c

(∫
Rn

fp(x)v (x) dx

) 1
p

holds for allf ↓ r if and only if

(4.2)

(∫
Rn

(∫
B(x)

T ∗g (y) dy

)p′

V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′(x)u1−q′ (x) dx

) 1
q′

holds for every positive measurable functiong.
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Proof. Assume first that (4.1) holds for all0 < f ↓ r. Then, by using Corollary 3.4, duality and
Hölder’s inequality, we find that∫

Rn

(∫
B(x)

T ∗g (y) dy

)p′

V −p′ (x) v (x) dx

≤ sup
f↓r

∫
Rn f (x) T ∗g (x) dx(∫
Rn fp (x) v (x) dx

) 1
p

= sup
f↓r

∫
Rn Tf (x) g (x) dx(∫
Rn fp (x) v (x) dx

) 1
p

≤ sup
f↓r

(∫
Rn (Tf (x))q u (x) dx

) 1
q

(∫
Rn gq′ (x) u

−q′
q (x) dx

) 1
q′

(∫
Rn fp (x) v (x) dx

) 1
p

= c

(∫
Rn

gq′ (x) u1−q′ (x) dx

) 1
q′

.

On the contrary assume that (4.2) holds for allg ≥ 0. Then, by using Corollary 3.4 again, we
have

p′c

(∫
Rn

(g (x))q′ (u (x))1−q′ dx

) 1
p′

≥ p′

(∫
Rn

(∫
B(x)

T ∗g (t) dt

)p′

V −p′ (x) v (x) dx

) 1
p′

≥
∫

Rn f (x) T ∗g (x) dx(∫
Rn fp (x) v (x) dx

) 1
p

=

∫
Rn Tf (x) g (x) dx(∫
Rn fp (x) v (x) dx

) 1
p

for each fixed0 < f ↓ r. Therefore we have

(4.3)
∫

Rn

h (x) Tf (x) u
1
q (x) dx ≤ p′c

(∫
Rn

fp (x) v (x) dx

) 1
p

,

where

h (x) =
g (x) u−

1
q (x)(∫

Rn

(
g (x) u−

1
q (x)

)q′

dx

) 1
q′

.

Since‖h‖Lq′ = 1 we obtain (4.1) by taking the supremum in (4.3) and usual duality inLp-
spaces. �

Remark 4.2. By modifying the proof above we see that a similar duality result also holds
for positive radially increasing functions. In fact, in this case we just need to replace

∫
B(x)

by∫
Rn\B(x)

andV (x) by V1 (x) =
∫

Rn\B(x)
v (x) dx in (4.2).

For example whenT is the identity operator we obtain the following:

Corollary 4.3. Let 1 < p ≤ q < ∞ and suppose thatu, v are weights onRn with
∫

Rn v = ∞
andV (x) =

∫
B(x)

v (y) dy.

a) The following conditions are equivalent:
i) The inequality

(4.4)

(∫
Rn

f qu

) 1
q

≤ c

(∫
Rn

fpv

) 1
p
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is satisfied for all0 ≤ f ↓ r.
ii) The inequality

(4.5)

(∫
Rn

(∫
B(x)

g (y) dy

)p′

V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′(x)u1−q′ (x) dx

) 1
q′

holds for allg ≥ 0.
iii)

sup
α>0

(∫
B(α)

v(x)dx

)− 1
p
(∫

B(α)

u(x)dx

) 1
q

< ∞ .

b) If V1 (x) =
∫

Rn\B(x)
v (t) dt, then for0 ≤ f ↑ r (4.4) is equivalent to(∫

Rn

(∫
Rn\B(x)

g (y) dy

)p′

V −p′

1 (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′(x)u1−q′ (x) dx

) 1
q′

which in turn is equivalent to

sup
α>0

(∫
Rn\B(α)

v(x)dx

)− 1
p
(∫

Rn\B(α)

u(x)dx

) 1
q

< ∞.

Proof. a) The equivalence of i) and ii) is just a special case of Theorem 4.1. Moreover, the fact
that ii) and iii) are equivalent follows from Theorem 2.1 (i) withf replaced byg, q by p′, p by q′,
W by vV −p′ andU by u1−q′. In fact, then (4.5) is equivalent to (note that(1− q) (1− q′) = 1)

sup
α>0

(∫
|x|>α

vV −p′
) 1

p′
(∫

|x|<α

u

) 1
q

= sup
α>0

(∫
|x|<α

v
)− 1

p

(p′ − 1)
1
p′

(∫
|x|<α

u

) 1
q

< ∞.

The proof of b) follows similarly by just using Remark 4.2 and Theorem 2.1 (ii). �

Remark 4.4. The equivalence of i) and iii) can also be proved using the technique from [2].
For the caseq < p cf. also [3].

The next result concerns the multidimensional Hardy operator, defined on the cone of radially
decreasing functions inRn.

Proposition 4.5. Let 1 < p ≤ q < ∞ and suppose thatu and v are weights onRn with∫
Rn v = ∞ andV (x) =

∫
B(x)

v (x) dx. If 0 ≤ f is a radially decreasing function inRn, then

(4.6)

(∫
Rn

(∫
B(x)

f (y) dy

)q

u (x) dx

) 1
q

≤ c

(∫
Rn

fp(x)v (x) dx

) 1
p

is satisfied if and only if the following conditions hold:

(4.7) sup
α>0

(∫
B(α)

v(x)dx

)− 1
p
(∫

B(α)

u(x) |B (x)|q dx

) 1
q

< ∞

and

(4.8) sup
α>0

(∫
B(α)

|B (x)|p
′
V −p′ (x) v (x) dx

) 1
p′
(∫

Rn\B(α)

u(x)dx

) 1
q

< ∞.

Here, as usual,|B (x)| denotes the Lebesgue measure of the ball with center at0 and with
radius|x|.
Remark 4.6. For the casen = 1 this result is due to V. Stepanov (see [9], Theorem 2).
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Proposition 4.5 can be proved by using the method of reduction to the one-dimensional case
but here we present an independent proof:

Proof. SinceTf (x) =
∫

B(x)
f (t) dt its conjugateT ∗ is defined byT ∗g (x) =

∫
Rn\B(x)

g (t) dt.
Assume first that (4.7) and (4.8) hold. We note that, according to Theorem 4.1, (4.6) for0 <
f ↓ r is equivalent to (4.2) for arbitraryg ≥ 0. Moreover, to be able to characterize weights for
which (4.2) is satisfied, we first compute:∫

B(x)

T ∗g =

∫
B(x)

(∫
|y|>|z|

g (y) dy

)
dz

=

∫
B(x)

(∫ ∞

|z|

∫
Σn−1

tn−1g (tδ) dδdt

)
dz

=

∫
B(x)

(∫ ∞

|z|
gn (t) dt

)
dz

=

∫ |x|

0

∫
Σn−1

sn−1

(∫ ∞

s

gn (t) dt

)
dσds

= |Σn−1|

(∫ |x|

0

sn−1

(∫ |x|

s

gn (t) dt

)
ds +

∫ |x|

0

∫ ∞

|x|
gn (t) dtds

)

= |Σn−1|
∫ |x|

0

(∫ t

0

sn−1ds

)
gn (t) dt + |Σn−1|

∫ |x|

0

ds

∫ ∞

|x|
gn (t) dt

=

∫ |x|

0

(∫
Σn−1

dσ

∫ t

0

sn−1ds

∫
Σn−1

tn−1g (tδ) dδ

)
dt

+

(∫ |x|

0

∫
Σn−1

dσds

)∫ ∞

|x|

∫
Σn−1

tn−1g (tδ) dδdt

=

∫
B(x)

|B (y)| g (y) dy︸ ︷︷ ︸
I1

+ |B (x)|
∫

Rn\|B(x)|
g (y) dy︸ ︷︷ ︸

I2

= I1 (x) + I2 (x) .

This means that (4.6) holds if and only if

(4.9)

(∫
Rn

(I1 (x) + I2 (x))p′ V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′ (x) U1−q′ (x) dx

) 1
q′

.

Moreover, by Theorem 2.1 (i) withq replaced byp′ andp replaced byq′, we have(∫
Rn

(I1 (x))p′ V −p′ (x) v (x) dx

) 1
p′

(4.10)

=

(∫
Rn

(∫
B(x)

|B (y)| g (y) dy

)p′

V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

(|B (x)| g (x))q′ u (x)1−q′

|B (x)|q′
dx

) 1
q

= c

(∫
Rn

g (x)q′ u (x)1−q′ dx

) 1
q′

,
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which holds because, according to (4.7),

sup
α>0

(∫
Rn\B(α)

v (x)

(∫
B(x)

v (y) dy

)−p′

dx

) 1
p′

·

∫
B(α)

(
u (y)1−q′

|B (y)|q′

)1−q

dy

 1
q

≤ sup
α>0

(∫
B(α)

v (y) dy
)− 1

p

(p′ − 1)
1
p′

(∫
B(α)

u (y) |B (y)|q dy

) 1
q

< ∞.

Similarly, according to Theorem 2.1 (ii),(∫
Rn

(I2 (x))p′ V −p′ (x) v (x) dx

) 1
p′

(4.11)

=

(∫
Rn\B(α)

(
|B (x)|

∫
Rn\B(x)

g (y) dy

)−p′

V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′ (x) u1−q′ (x) dx

) 1
q′

because

sup
α>0

(∫
B(α)

|B (x)|p
′
V −p′ (x) v (x) dx

) 1
p′
(∫

Rn\B(α)

u (x) dx

) 1
q

< ∞

which holds by (4.8). Thus by using (4.9), Minkowski’s inequality and (4.10) – (4.11) we see
that (4.6) holds.

Now assume that (4.6) holds, i.e., that (4.9) holds. Then, in particular,

(4.12)

(∫
Rn

(I1 (x))p′ V −p′ (x) v (x) dx

) 1
p′

≤ c

(∫
Rn

gq′ (x) u1−q′ (x) dx

) 1
q′

and by using Theorem 2.1 (i) and arguing as above, we find that (4.7) holds. Moreover, (4.12)
holds also withI1 replaced byI2 so that, by using Theorem 2.1 (ii) and again arguing as in the
sufficiency part, we see that (4.8) holds. The proof is complete. �

Remark 4.7. For the case when the weights are also radially decreasing or increasing some of
our results can be written in a more suitable form. Here we only state the following consequence
of Proposition 4.5:

Corollary 4.8. Let 1 < p ≤ q < ∞ and letf (x) be positive and radially decreasing inRn.
Then the Hardy inequality(∫

Rn

(
1

|B (x)|

∫
B(x)

f (y) dy

)q

|B (x)|b dx

) 1
q

≤ c

(∫
Rn

fp(x) |B (x)|a dx

) 1
p

holds if and only if−1 < a < p− 1,−1 < b < q − 1 and

(4.13)
a + 1

p
=

b + 1

q
.

Proof. Apply Proposition 4.5 withv (x) = |B (x)|a andu (x) = |B (x)|b. We note that some
straightforward calculations give

(4.14)

(∫
B(α)

v (x) dx

)− 1
p
(∫

B(α)

u (x) dx

) 1
q

≈ α
−(a+1)n

p
+

(b+1)n
q
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whenevera > −1, b > −1 and

(4.15)

(∫
B(α)

|B (x)|p
′
V −p′ (x) v (x) dx

) 1
p′
(∫

Rn\B(α)

u(x)dx

) 1
q

≈ α
an−anp′+n

p′ + bn−nq+n
q = αn(−a+1

p
+ b+1

q )

whenevera < p− 1 andb < q − 1.
Moreover, according to the estimates (4.14) and (4.15) the condition (4.13) (and only this)

gives a finite supremum. The proof is complete. �

Remark 4.9. It is easy to see that Theorem 2.1 also holds ifRn is replaced byRn
+ or even some

more general cone inRn. Therefore, by modifying our proofs, we see that all our results in this
chapter indeed hold also whenRn is replaced byRn

+ or even general cones inRn as defined in
[4].
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