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Abstract

We propose to extend Talenti's estimates on the L? norm of the second order
derivatives of the solutions of a uniformly elliptic PDE with measurable coeffi-
cients satisfying the Cordes condition to the non-uniformly elliptic case.
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The Cordes conditions first were used by H. O. Corddsahd later by G.
Talenti [5] to prove C®, C1® and W?? estimates for the solutions of second
order linear and elliptic partial differential equations in non-divergence form

n

Au == Z aij(x)DZ-ju,

ij=1

whereA = (a;;) € L>®(Q2,R™") is a symmetric matrix function. As an in-
troductory remark about the Cordes condition we can say that by using the

normalization (seef)

=1
or strictly positive lower and upper bounds (sep [

0<p< Zaii(ﬂf) <P
i=1

we get a condition equivalent to the uniform ellipticity condition®3 and
stronger than it ilR™, n > 3. At the same time it seems to be the weakest
condition which implies tha# is an isomorphism between the spatiés® ()

and L%(Q2) and implicitly gives existence and uniqueness for boundary value
problems with measurable coefficientd.[ As an application it was used to
prove the second order differentiability pfharmonic functionsd].
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If we assume that the Cordes condition is satisfied, then it is possible to give
an optimal upper bound of the?> norm of the second order derivatives to the
solutionu € W;*(Q) of the problem

Au=f, feL*Q)

in terms of a constant times the norm of f. An interesting method, that
connects linear algebra to PDE’s, has been developed.ifr this paper we
will extend this method to not necessarily uniformly elliptic problems and as o _

. . . . . W#:< Estimates for Solutions to
an application we will also show a change in Talenti’s constant. More exactly,  non-niformly Elliptic PDE’S
estimate {.2) below holds in the case of operators with constant coefficients,  with Measurable Coefficients
but needs a change to cover the general case. Andras Domokos

Let us consider the bounded domd&mn e R™ with a sufficiently regular
boundary and the Sobolev space

Title Page
W22(Q) = {u € LX(Q): Dyju € L¥(Q), Vi, j € {1,... ,n}} Contents
: . 4« 44
endowed with the inner-product p R
(u, V)22 = / <u(x)v(x) + Z Djju(x) - Dijv(x)> dx. Cio e
Q@ i,j=1 Close
Let W.*(Q) be the closure o€5°(Q) in W22(Q2) and denote byD?u the Quit
matrix of the second order derivatives. Page 4 of 16

We state now Talenti’s result using our setting.
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Theorem 1.1 ([]). Let us suppose that for a fix@d< « < 1 and almost every
x € () the following conditions hold:

ij=1

Then, for allu € W;*(2) we have

(1.2) ||D%ul]L2 Q) W22 Estimates for Solutions to

Non-Uniformly Elliptic PDE’S
/n—1 + € with Measurable Coefficients
< — <\/n —l+e+/A—e)(n— 1))\|AuHL2(Q) .
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Consider the matrix valued mapping: Q@ — M, (R), whereA(z) = (a;;(2))
with a;; € L>(2), and let

ij=1
We use the nOtatIOd@H = \/ a,% ‘I— ttt + a% fOI’ a = (CLl, ce ,a/n) S Rn and W 2:2 Estimates for Solutions to
trace A = )" | a;; for the trace of am x n matrix A = (a;;). Also, we denote Non-Uniformly Elliptic PDE’S

with Measurable Coefficients
by (A, B) = >_',_, ai;bi; the inner product and byfA|| = /37", a; the

Euclidean norm ilR™»*™,

Andras Domokos

Definition 2.1 (Cordes conditionk.,). We say thatd satisfies the Cordes con- Title Page
dition K. if there existg € (0, 1] such that .
ontents
1 2
2.2) 0 < ||A(@)|? < —(traceA(m)) 7 “ »
n—14¢
< | 2
for almost every: € (2 and
Go Back
1
12 (O). Close
trace A € Liocl ) _
Quit
Remark 1. We observe that inequality () implies that for
Page 6 of 16
NZD
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we have

(2.3) 0< U%@) < ||A@@)|]* < ﬁ(tracefl(x))?

with o(-) € L% _(Q). Therefore without a strictly positive lower bound for

loc

trace A(x), the Cordes conditiorf(. does not imply uniform ellipticity. As an
example we can mention

defined on

Q:{(x,y)ER2zx>0,y>0,0<:1:2+y2<1,1<g<2}.
X

In this case inequality4.2) looks like

2 2 2
< :
¥ Hay+y 1+8($+y)
Considering the lineg = maz we see that
m 2
=infq ———:1l<m<2; ==
- {m2+m+1 " } 7
and
V2
o(x) = )
r+y
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Remark 2. In the case when we want to have a strictly positive lower bound
for trace A we should use a Cordes conditiéf ., that asks for the existence of

a numbery > 0 such that

1 1 ) 1 2
24) 0<-< < ||A@)|P? < —<traceA(x))

v~ o?(x) “n—1+¢

for almost every: € Q. In this way the normalized conditiof.(l) corresponds
to the K. ,, since} ", a; = 1 implies thaty = n.

. W22 Estimates for Solutions t
We recall the following lemma front]. Non-Uniformty Ellptc PDE'S.

with Measurable Coefficients
Lemma 2.1. Leta = (ay,...,a,) € R". Suppose that

Andras Domokos

(2.5) (a1+ - +a,)? > (n—1)lal >
If for « > 1 and3 > 0 the condition Title Page
1 1 1 Contents
(2.6) (a1+~-.—i—an)22<n—1+a>||a||2+5(n—1+a>(a—1), > N
holds, then we have < >
(2.7) 1EI® + 20 ) " kiky < Blarky + -+ + ankn)’ Go Back
i<y Close
forall k = (ky,...,k,) € R Quit
The next lemma is the nonsymmetric version of the original one in Talenti’'s Page 8 of 16

paper p]. By nonsymmetric version we mean that we drop the assumption that
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A'is symmetric. On the other hand, it is easy to see that Letghibelow will

not hold for arbitrary nonsymmetric matricé3 even in the case wheA is
diagonal. For the completeness of our paper we include the proof, which can be
considered as a natural extension of the original one.

Lemma 2.2. Let A = (a;;) be ann x n real matrix. Suppose that
(2.8) (trace A)? > (n — 1)||A]]%.

If for « > 1 and > 0 the condition

(2.9) (trace A)? > (n—l—l— ) [|A|? + ; (n—1+l) (v —1)
Q@
holds, then we have

Pii  Dij

< B(A,P)?
Pi;  Djj < )

(2.10) |P||? + o Z

3,j=1

for all real and symmetria: x n matricesP = (p;;).

Proof. Consider an arbitrary but fixed real and symmetric maktixt follows
that there exists a real orthogonal matrixand a diagonal matrix

ky 0

0 kn
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such thatP = C~!DC. Observe that

1 n
_52

ij=1

DPii  Dij
Dij  Pjj

is the coefficient of\"~2 in the characteristic polynomial @?, therefore

1 ¢ Dii  Dij Z
> = kik;.
2 2,7=1 pij pjj 1<j
W2:2 Estimates for Solutions to
Moreover, Non-UniIforme EIIipticuPIDE’S
with Measurable Coefficients
2 2
(2'11) Z Pij = trace P Z k Andras Domokos
,5=1
Hence, inequality4.10 can be rewritten as 2 Title Page
- Content
(212) |]€’2 + 2a Z kzk] S B <Z a,-jpij> . ontents
i<j ij=1 « 33
Let B = CAC~!. Thentrace B = trace A and < >
(2.13) (A, P) = trace(AP) Go Back
= trace(CAPC™) —
= trace(CAC~'CPC™) ,
= trace(BD) £E

Page 10 of 16
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Also, becausé3 and A are unitary equivalent, we have

izn;b <Zb Z

i,7=1

Thereforep = (b4, . ..
2.1, and hence

I e andﬁ satisfy the condition4.6) from Lemma

Z KE+200)  kiky < B(buki + - + bunkn)? = B(A, P)?.
1<J
Using (2.1])—(2.13) we get .10). O

Theorem 2.3. Suppose thatl satisfies the Cordes conditidi,. Then for all
u € C§°(92) we have

(2.14) ||D%u| () < - <\/_n “Tte+v/0-9)(n— 1)) o Aul| 2
Proof. Fix x € Q2 such that2.3) holds and consider an arbitraty> 1/¢. Then

(Z()) > (n—1+ )HA( I

In order to choos&(xz) > 0 such that
n 2
i=1

> (n- 1 L) I@IP + s (-1 1) @)
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observe that conditio’, is equivalent to

(Z au<x>>2 > <n —1+ é) | A()]]* + <£ — é) I|A(z)| 2.

=1

Therefore we have to askz) to satisfy

(- )14 = 5 (=142 ) @),

and hence
(n—1)a*+(2—-n)a—1
ca— 1 '

(2.16) B(z) = o*(z)

Considering the functiorf : (1/¢,4+00) — R defined by

_ (n=1a*+(2-n)a—1

we get that its minimum point is
n—14+/(n-1)(1-e)(n—1+¢)
B (n—1)e

Therefore, the minimum value of*(z) f(«), which is coincidentally the best
choice of3(z), is

)

2 —en+2n—2++/(n—1)(1—¢)(n—1+¢)

(Vi—THe+vVI-e)n- 1))2.

W22 Estimates for Solutions to
Non-Uniformly Elliptic PDE’S
with Measurable Coefficients

Andras Domokos

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 12 of 16

J. Ineq. Pure and Appl. Math. 6(3) Art. 69, 2005

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:domokos@csus.edu
http://jipam.vu.edu.au/

Applying Lemma2.2in the case ofi € C§°(Q2) andp;; = D;;u(x), we get

@ [ Soporaceal [| Pt B o
i,j=1 i#j
< / B() (Au())2da
But, integrating by parts two times we get
(2.18) /Q Disu(z) Dssu(x)de = /Q Disula) Dyyu(z)dz,
and hence

Diju(z)  Dij(z)

(2.19) Diju(x) Djju(x)

’dx:().

Therefore, for all. € C§°($2) we have

< é (x/n —1+e++y/(1—-¢)(n-— 1)) |loAul|L2(q)

| D%ul| 20

Theorem2.3clearly implies the following result.

Corollary 2.4. Suppose that! satisfies Cordes conditiofi. ,. Then for all
u € WZ*(Q) we have

220) D%z < 2 (Vi T2+ V-2 1) ullze
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Remark 3. In the case ofrace A = 1 we get that

n
(2.21) ||D?ul|p2) < % <\/n —l+e+V/A—e)(n— 1)) [ Aul| 2.
If we compare estimaté. (2) with ours from £.21) we realize that our constant
on the right hand side is larger. The interesting fact is that the two constants in
(1.2 and @.21) coincide in the case wheA = 17 ande = 1, and give (see

[“])

|’D2u”L2(Q) < ||Au||L2(Q)7 forall v e W02’2(Q) ) W22 Estimates for Solutions to
Non-Uniformly Elliptic PDE’S
Looking at Talenti’'s paper] we realize that the way in which the constdnt uithiMeasurakiciCosticients
is chosen on page 303 leads to Andrés Domokos
2.22 A 2> 1
(2.22) [A(z)]|* > T Title Page
Comparing this inequality tol( 1) which gives Contents
44 44
1 1
~ <A@ < —
s <A@ < o= < 5
and therefore Go Back
1
A S Close
IA@IP = ——. .
we conclude thatA.22) (and hencel.2)) holds for constant matriced but may Qo
fail for a nonconstantd(z) on a subset of2 with positive Lebesgue measure. Page 14 of 16
Therefore, the estimat@ 1) is the right one for nonconstant matrix functions
A(a:) satisfying Q.l) J. Ineq. Pure and Appl. Math. 6(3) Art. 69, 2005
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Remark 4. Another interesting fact is found when applying our method to the
case of convex functions In this case we can further generalize the Cordes

condition in the following way: We say thdtsatisfies the conditiom(z) if
1

— eI’ (D

trace A toc(€2)

and there exists a measurable function? — R such that) < (z) < 1 for
a.e.x € Qand: € L*(Q), and the following inequalities hold:

(tmceA(x))2 <A@ < (trace A(yc))2

(2.23) m.

1
0< 2

Inequality @.17) in this case looks like

D u(a ) da alz) | D) Digu(z) |,
/ YDy do+ 3 oty | prae) D) |a
< | Bla)(Au(z))’dx.
Q

Observe that the convexity ofimplies thatD?u(x) is positive definite, which
makes the determinants
’ D;u(z) Dju(x) ‘
Diju(z) Djju(z)
positive. We conclude in this way that under the Cordes condkigp, for all
convex functions € W?22(Q) we still have

| D?ul|12(0) < H% (\/n— T+e+ /(1 —e)(n— 1)) o Au

L2(Q)

W22 Estimates for Solutions to
Non-Uniformly Elliptic PDE’S
with Measurable Coefficients

Andras Domokos

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 15 of 16

J. Ineq. Pure and Appl. Math. 6(3) Art. 69, 2005

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:domokos@csus.edu
http://jipam.vu.edu.au/

[1] H.O. CORDES, Zero order a priori estimates for solutions of elliptic differ-
ential equationsProceedings of Symposia in Pure Mathematigs(1961),
157-166.

[2] D. GILBARG AND N.S. TRUDINGER Elliptic Partial Differential Equa-
tions of Second OrdeBpringer-Verlag, 1983.

[3] J.J. MANFREDI AND A. WEITSMAN, On the Fatou Theorem for W22 Est .
. . . K A . % Estimates for Solutions to
p—Harmonic Functions,Comm. Partial Differential Equationsl3(6) Non-Uniformly Elliptic PDE’S
(1988) 651—668 with Measurable Coefficients

Andras Domokos

[4] C. PUCCIAND G. TALENTI, Elliptic (second-order) partial differential
equations with measurable coefficients and approximating integral equa-

tions,Adv. Math.,19(1976), 48-105. Title Page
[5] G. TALENTI, Sopra una classe di equazioni ellitiche a coeficienti misura- COnEEs
bili, Ann. Mat. Pura. Appl.69 (1965), 285-304. <«
4
Go Back
Close
Quit

Page 16 of 16

J. Ineq. Pure and Appl. Math. 6(3) Art. 69, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:domokos@csus.edu
http://jipam.vu.edu.au/

	Introduction
	Main Result

