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Abstract

Inequalities for the transformation operator kernel A(z, ) in terms of F-function
are given, and vice versa. These inequalities are applied to inverse scattering
on the half-line. Characterization of the scattering data corresponding to the
usual scattering class Ly ; of the potentials, to the class of compactly supported
potentials, and to the class of square integrable potentials is given. Invertibility
of each of the steps in the inversion procedure is proved. The novel points in this

paper include: a) inequalities for the transformation operators in terms of the InegpEllies e ins
. . . Transformation Operators and
function F, constructed from the scattering data, b) a considerably shorter way Applications

to study the inverse scattering problem on the half-axis and to get necessary

and sufficient conditions on the scattering data for the potential to belong to A6 Ramm
some class of potentials, for example, to the class L, 1, to its subclass Lf
of potentials vanishing for z > a, and for the class of potentials belonging to Title Page |
L*(Ry), |
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Consider the half-line scattering problem data:

(11) S:{S(lf),k],S],lSjSJ},

where S(k) = f;(*'? is the S-matrix, f(k) is the Jost functionf(ik;) = 0,

fliky) = k) £ 0, k; > 0,5, > 0, J is a positive integer, it is equal
to the number of negatlve eigenvalues of the Dirichlet operator= —u"” +

Inequalities for the

q(z)u on the half-line. The potentiaf is real-valued throughout, € L, ; := Transformation Operators and
{q: [;7 z|glde < oo}. In[4] the classLy; = {q: [; (1 +z)|qldz < oo} Applications
was defined in the way, which is convenient for the usage in the problems on A.G. Ramm
the whole line. The definition of,; in this paper allows for a larger class
of potentials on the half-line: these potentials may have singularities:a_m Title Page
which are not integrable. Fare L, ; the scattering dat& have the following
properties: Contents
A) ks, > 0, S(—k) = S(k) = S—1(k), k € R, S(c0) = 4 dd
| >
B) x :=indS(k) := 5~ [._dlog S(k) is a nonpositive integer,
Go Back
C) FelLP,p=1andp =o0,zF" € L', L? := L?(0, 00).
Close
Here Quit
1 [o° N J . Page 3 of 22
(1.2) F(x) = - /00[1 — S(k)]e"™ dk + Z_:sje i

J. Ineq. Pure and Appl. Math. 4(4) Art. 69, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:A.G. Ramm
http://jipam.vu.edu.au/

and
k=—2J if f(0)#0, k= —2J—1if f(0)=0.

The Marchenko inversion method is described in the following manner:
(1.3) S = F(x) = Az, y) = q(z),

where the steg = F(x) is done by formulaX.2), the stepl'(z) = A(x,y) is
done by solving the Marchenko equation:

(1.4) (I +F,)A = Ax,y) + / Az, t)F(t +y)dt Inequalities for the
z Transformation Operators and
_ —F(:C X y) y > >0 Applications
’ B 7 A.G. Ramm
and the stepA(z, y) = ¢(x) is done by the formula:
(1.5) q(z) = —2A(z,2) := _Z%x,x). Title Page
L . x. . . Contents
Our aim is to study the estimates fdr and F’, which give a simple way of
finding necessary and sufficient conditions for the datd) to correspond to a <44 44
g from some functional class. We consider, as examples, the following classes: < >
the usual scattering clads, ;, for which the result was obtained earlief)([
and [3]) by a more complicated argument, the class of compactly supported Go Back
potentials which are locally i, ;, and the class of square integrable potentials. Close
We also prove that each step in the schefn®) (s invertible. In Sectior? the _
estimates forF’ and A are obtained. These estimates and their applications Quit
are the main results of the paper. In SectiBnrs6 applications to the inverse Page 4 of 22
scattering problem are given. Ir][one finds a review of the author’s results on
one-dimensional inverse scattering problems and applications. 3. Ineg. Pure and Appl. Math. 4(4) Art. 69, 2003
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If one wants to study the characteristic properties of the scattering déja (

that is, a necessary and sufficient condition on these data to guarantee that the
corresponding potential belongs to a prescribed functional class, then conditions
A) and B) are always necessary for a real-valgetb be in L, ;, the usual

class in the scattering theory, or other class for which the scattering theory is
constructed, and a condition of the type C) determines actually the class of
potentialsq. Conditions A) and B) are consequences of the unitarity of the inequalities for the
selfadjointness of the Hamiltonian, finiteness of its negative spectrum, and the Transformation Operators and

unitarity of theS—matrix. Our aim is to derive from equatiofi.f)) inequalities AERlcatorS
for F and A. This allows one to describe the setgtefined by {.5). A.G. Ramm
Let us assume:
(2.1) sup |F(y)| :==or(z) € L', F' € Ly,. Title Page
y>x Contents
The functionor is monotone decreasingy(z)| < or(x). Equation {.4) is of <4< >
Fredholm type in? := LP(z,00) Y2 > 0 andp = 1. The norm of the operator p >
in (1.4) can be estimated:
- - Go Back
(22) ||F.] < / or(z +y)dy < o1p(2z), o1r(z) = / or(y)dy. Close
Quit
Therefore {.4) is uniquely solvable i} for anyz > x if
Page 5 of 22

(23) O'1F<2330) < 1.
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This conclusion is valid for any’ satisfying ¢.3), and conditions A), B), and
C) are not used. Assuming@.@) and @.1) and takingxz > =z, let us derive
inequalities forA = A(z,y). Define

oa(x) :=sup |A(z,y)| == [[A]l.

y=>

From (L.4) one gets:

oa(z) < op(22) + oa(x) sup /OO or(s+y)ds < op(22) + oa(x)o1p(22).

y>z

Thus, if (2.3) holds, then
(2.4) oa(z) < cop(2x), x> ).

By ¢ > 0 different constants depending op are denoted. Let

suale) == 1Al = [ AG9)lds.

Then (L.4) yieldso4(z) < 01p(22) + 014(2)01r(22). SO
(2.5) o1a(x) < co1p(22), > 0.
Differentiate (L.4) with respect tar andy to obtain:

(2.6) (I+F)A(z,y)=A(z,2)F(z+y)—F(z+y), y>z>0,

Inequalities for the
Transformation Operators and
Applications

A.G. Ramm
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and

2.7  Ay(z,y)+ /OO Alx,s)F'(s+y)ds = —F'(x+y), y>x>0.

Denote

28) (o) = [Py, 0wl € L

Then, using?.7) and @.4), one gets

@9 A= [Pl s [P+l

é UQF(2.CE)[1 + CO’lF(Q.Q?)]
< coop(21),
and using 2.6) one gets:
[All; < Az, 2)o1r(22) + 027 (22) + || Asll, 017 (22),
SO

(2.10) Azl < cloer(2x) + o1p(2x)0p(22)].
Lety = z in (1.4), then differentiateX.4) with respect tar and get:

(2.11) A(z,z) = —2F'(2z) + A(z,z)F(2z) — /00 Ay(z,s)F(xz + s)ds

_ / " A, $)F'(s + 2)ds.

Inequalities for the
Transformation Operators and
Applications

A.G. Ramm
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From @2.4), (2.5), (2.10 and @.11) one gets:

(2.12) |A(z,z)| < 2|F'(22)| + con(2x)
+ cop(2x)[o2r (22) + 017 (22)0p (22)] + cop(22)0ar (21).

Thus,
(2.13) x| Az, )| € LY,

. Inequalities for the
prowded thatrF/(ZlL‘) S Ll, :L’UIQ;(QZE) € Ll, andlL’UF(Qx)UQF(Q:E) € L'. As- Transformation Operators and
sumption R.1) implies zF’(2z) € L'. If op(2z) € L', andop(2z) > 0 Applications
decreases monotonically, thear(z) — 0 asz — oo. Thuszo%(2z) € L, A.G. Ramm
ando,r(2z) € L' because

o0 00 o0 Title Page

/ o /

| [T 1Py = [P < e, S—
due to @.1). Thus, @.1) implies ©.4), (2.5), (2.9), (2.9), and .12, while (2.12) b dd
and (L.5) imply ¢ € Ly, whereL,, = {q Lq=7, [ xlq(z)|dr < oo}, and < >

xo > 0 satisfies 2.3). Go Back

Let us assume now tha?.¢), (2.5, (2.9, and ¢.10 hold, wheresy. € L! o
ose

ando,r € L' are some positive monotone decaying functions (which have
nothing to do now with the functiof’, solving equation.4)), and derive esti- Quit

mates for this functiorf'. Let us rewrite {.4) as: Page 8 of 22

(2-14) F(x + y) + / A(x, S)F(S + y)ds = _A(337 y)a y>x > 0. 3. Ineq. Pure and Appl. Math. 4(4) Art. 69, 2003
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Letx +y =2, s+y=wv. Then,

(2.15) F(z)+ /OO Alz,v+x — 2)F(v)dv = —A(z, z — x), z > 2.

From .15 one gets:

7r(20) < 9a(2) + op(20) sup /OO A, v+ & — 2)|dv
< 0a(@) + oe(20) | A
Thus, using 2.5) and @.3), one obtains:
(2.16) o0 (22) < coa().

Also from (2.15) it follows that:

o0

217)  oup(20) = ||F|]) = / F()|dv

2z
§/ |A(z, z — x)|dz
2z
+/ / |A(z,v + x — 2)||F(v)|dvdz
2z z
< 1Al + 1F[ 1AL,

SO
o1r(22) < coya(T).

Inequalities for the
Transformation Operators and
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From .6) one gets:

(2.18) /OO |F'(x + y)|dy = o9p(22)

< coa(@)ora(z) + [[Aull + ¢ || Aully o14(2).

Let us summarize the results:

Theorem 2.1.1f x > zy and 2.1) holds, then one has:

Inequalities for the

(2.19) O'A(x) < CUF(QJJ), 01,4(:1:) < CO’1F(2JJ), Transform:;i&?cg)ti[;erztorsand
1Ayllr < 02p (22)(1 + corp(21)), -
|All, < cloar(22) + o1p(22)op(22)).

Conversely, if: > z, and Title Page

Contents

(2.20) oa(z) + o1a(@) + [[All; + [|Ay[[1 < o0,

<44 44
then < >

(2.21) or(2z) < coa(x), o1p(22) < copa(z), Go Back

oor (1) < cloa(z)ora(z) + || Azl (1 +o1a(2))]. Close
In Section3 we replace the assumption> x, > 0 by x > 0. The argument ot

in this case is based on the Fredholm alternative5)@aihd [6] a characteriza- Page 10 of 22

tion of the class of bounded and unbounded Fredholm operators of index zero

is given. J. Ineq. Pure and Appl. Math. 4(4) Art. 69, 2003
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First, let us givenecessary and sufficient conditions®rfior ¢ to belong to the
classL, ; of potentials These conditions are know#|[ [3] and [/], but we give

a short new argument using some ideas fréin We assume throughout that
conditions A), B), and C) hold. These conditions are known to be necessary
for ¢ € L,;. Indeed, conditions A) and B) are obvious, and C) is proved in
Theorem2.1and3.3. Conditions A), B), and C) are also sufficient fpe L, ;.
Indeed if they hold, then we prove that equatiard) has a unique solution in

Inequalities for the

L! for all z > 0. This is a known fact{], but we give a (new) proof because it Transformation Operators and
is short. This proof combines some ideas fraiphgnd []. AERlcatorS
A.G. Ramm

Theorem 3.1.1f A), B), and C) hold, theni(4) has a solution inL! for any
x > 0 and this solution is unique.

Title Page

Proof. SinceF, is compact inL!, Vo > 0, by the Fredholm alternative it is
sufficient to prove that CaiEs

44 44
(3.1) (I+F,)h=0, helLl

| >
impliesh = 0. Let us prove it forr = 0. The proof is similar forr > 0. If ——
h € L', thenh € L™ becausé|h||. < ||h]/,.0r(0). If h € L' N L, then
h € L? becausélh||?, < ||hll .~ |hll.. Thus, ifh € L' and solvesg.1), then Close
h e L?*NL'NL>. Quit

Denoteh = [;° h(z)e**dz, h € L2. Then, Page 11 of 22

[e.e]
=9 B
(32) / h’ dk - 0 J. Ineq. Pure and Appl. Math. 4(4) Art. 69, 2003
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SinceF'(z) is real-valued, one can assur¢o be real-valued. One has, using
Parseval’s equation:

0= ((I +Fo)h,h)

1, 1 >
S — 1—
s+ 5= [
h; ::/ e FiTh(z)dx.
0

Thus, using 8.2), one gets

J
2(k)dk + ) sh3,
j=1

h;=0,1<j<.J, (hh)=(S(k)h, h(=F)),
where we have used the real-valuedness, @e. h(—k) = h(k), Vk € R.
Thus,(h, h) = (h, S(—=k)h(—Fk)), where A) was used. Sindes(—k)|| = 1,
one hag|h|* = ‘(h, S(—k)h(—k:))‘ < ||h|)?, so the equality sign is attained in

the Cauchy inequality. Therefork(k) = S(—k)h(—k).
By condition B), the theory of Riemann problem (s€é) [guarantees ex-
istence and uniqueness of an analyticGn := {k : Sk > 0} function

f(k) = fo(R), flik;) = 0, f(ik;) # 0,1 < j < J, f(o0) = 1, such that
(3.3) f+(k) = S(=k)f-(k), keR,

and f_(k) = f(—k) is analytic inC_ := {k : Imk < 0}, f ( ) =11in
C_, f_(—ik;) = 0, f_(—ik;) # 0. Here the property(—k) = S~ (k), Vk €
R is used.

Inequalities for the
Transformation Operators and
Applications

A.G. Ramm
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One has

keR, h;=h(ik)=0, 1<j<.J

The functiony (k) is analytic inC . andy(—k) is analytic inC_, they agree on
R, soy (k) is analytic inC. Sincef(co) = 1 andh(occ) = 0, it follows that
P = 0.

Thus,h = 0 and, consequently;(z) = 0, as claimed. Theorerf.1 is

Inequalities for the

prOVGd- O Transformation Operators and
Applications

The unique solution to equation.f)) satisfies the estimates given in Theo-
rem2.1. In the proof of Theoren2.1the estimate:|A(x, z)| € L*(x(, c0) was A6 Ramm
established. So, byL(5), zq € L' (zg, o).

The method developed in Secti@ngives accurate information about the Title Page
behavior ofg near infinity. An immediate consequence of Theoréhisand Contents
3.1is:

<44 >»
Theorem 3.2.If A), B), and C) hold, theny, obtained by the schemé&.g), P >
belongs tal; ; (xo, 00).
L . . . Go Back

Investigation of the behavior @f =) on (0, z,) requires additional argument.

Instead of using the contraction mapping principle and inequalities, as in Sec- Close
tion 2, one has to use the Fredholm theorem, which sayd|tiiat F,)~!|| < ¢ Quit

for any z > 0, where the operator norm is fdf, acting inL?, p = 1 and
p = oo, and the constantdoes not depend an> 0.
Such an analysis yields:

Page 13 of 22
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Theorem 3.3.1f and only if A), B), and C) hold, thepe L, ;.

Proof. It is sufficient to check that Theoreth1 holds withx > 0 replacing
x > xo. TO get @.4) with =, = 0, one usesl(.4) and the estimate:

(3.4) [AGz, y)|| < ||(1+Fo) [ F(z + )l
<cor(2z), ||=supl|, x>0,
y>x

where the constanrt> 0 does not depend on Similarly:

(3.5) |A(z, )], < csgp/ |F(s+y)|dy < corp(2z), = >0.

From .6) one gets:

(3.6) 1 Aa(z,y)[l < | F'(z + gl + Alz, 2)[|F(z + y) 1]
< cogp(22) + cop(2x)op(22), x> 0.

From @2.7) one gets:
@7 Ay, Yl < cloar(20) + 017 (20)02p (22)] < 02r(22).

Similarly, from (2.11) and @.3) — (3.6) one gets%.12). Then one check(13
as in the proof of Theorera.1. Consequently Theoreth1 holds withzy = 0.
Theorem3.3is proved. O]

Inequalities for the
Transformation Operators and
Applications

A.G. Ramm
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In this sectionnecessary and sufficient conditions are givengfoo belong to
the class

Li, = {q:q:q,q:Oif x> a, /Oax|q|dx<oo}.
Recall that the Jost solution is:
(4.1) flz, k) =™ + / N Az, y)e™dy,  £(0,k) = f(k).
Lemma 4.1.1f ¢ € L{,, then f(z, k) = ¢* for x > a, A(z,y) = 0 for

y>x>a,Flx+y)=0fory >z > a(cf. (1.4),andF(x) = 0for z > 2a.

Thus, (.4) with x = 0 yields A(0,y) := A(y) = 0 for x > 2a. The Jost
function

4.2) k) =1+ / CAW)etdy,  Ay) € WH(0, a),

is an entire function of exponential type 2a, that is,|f (k)| < ce?¥, k € C,
andS(k) = f(—k)/f(k) is a meromorphic function i. In (4.2) W'? is the
Sobolev space, and the inclusighd) follows from Theoren®.1.

Let us formulate the assumption D):

D) the Jost functiory (k) is an entire function of exponential type2a.

Theorem 4.2. Assume A),B), C) and D). There L{,. Conversely, iff € L,
then A),B), C) and D) hold.

Inequalities for the
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Proof. Necessitylf ¢ € L, ;, then A), B) and C) hold by Theorefh3, and D)
is proved in Lemmal.1. The necessity is proved.
Sufficiencylf A), B) and C) hold, thery € L, ;. One has to prove that= 0 for
x > a. If D) holds, then from the proof of Lemmé&1it follows that A(y) = 0
fory > 2a.

We claim thatt'(z) = 0 for z > 2a.

If this is proved, thenX.4) yields A(z,y) = 0fory > = > a,and sog = 0
forz > a by (1.5).

Let us prove the claim.

Takez > 2ain (1.2). The functionl — S(k) is analytic inC,. except for.J
simple poles at the poinis;. If 2 > 2a then one can use the Jordan lemma and
residue theorem to obtain:

“RT g > 2.

(4.3) Fs(x) = % /_OO [1— S(k)]e*dk =

o0 —

Sincef (k) is entire, the Wronskian formula
f0,k) f(=k) = f'(0, k) f (k) = 2ik
is valid onC, and atk = ik; it yields:
F1(0,ik;) f (—ik;) = —2k;;,
becausef(ik;) = 0. This and 4.3) yield

Fy(z) = e M = — Zsje_kf“’ = —Fy(z), x> 2a.

J QZkfj
; £1(0,ik;) f (ik;)

Inequalities for the
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Thus,F(x) = Fs(z) + Fy(xz) = 0 for z > 2a. The sufficiency is proved.
Theorem4.2is proved. O

In [2] a condition onS, which guarantees thagt = 0 for x > aq, is given
under the assumption that there is no discrete spectrum, thatig’.
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Let us introduce condition$(1) — (5.3):

‘ Q 5 72 N
51) 2k {f(k:) g m} € IX(R,) = I2, Q ._/0 ¢ds,
(5.2) k [1 — S(k) + %] €L’
(5.3) K[LF(R)2 —1] € L2

Theorem 5.1. If A), B), C), and any one of the conditions.1) — (5.3) hold,
thenq € L2

Proof. We refer to ] for the proof. O
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We assume A), B), and C) and prove:
Theorem 6.1. The steps in1.3) are invertible:
(6.1) S« F+— A<=q.

Proof.

1. StepS = F' is done by formulal.2). StepF = S is done by tak-
ing x — —oo in (1.2). The asymptotics of'(z), asz — —oo, yields
J,sj ki, 1 <j<.J, thatis,Fy(z). ThenF, = F'— F, is calculated, and
1 — S(k) is calculated by taking the inverse Fourier transformfofz).
Thus,

2. StepF’ = Ais done by solvingX.4), which has one and only one solution
in LL for anyz > 0 by Theorem3.1 StepA = F is done by solving
equation (.4) for F. Letz +y = z ands + y = v. Write (1.4) as

(6.2) (I+B)F :=F(z)+ /OO A(z,v+x — 2)F(v)dv
= —A(:z:,z—zx), z>2x > 0.

The norm of the integral operatét in L) is estimated as follows:

(6.3) || B|| §sup/ |A(z, v+ 2 — 2)|dz
0

v>0
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v v—2z
< csup/ o (JE + > dz
v>0 Jo 2
< 2/ oz +w)dw = 2/ o(t)dt,
0 x

where the known estimaté][was used{A(z, y)| < co (%32), o(z) :=
[ |qldt. It follows from (6.3) that||B|| < 1if = > z,, wherexz, is large
enough. IndeedfgcOO o(s)ds — 0asz — oo if ¢ € Ly,. Therefore,

for z > xq equation 6.2) is uniquely solvable im%m by the contraction
mapping principle.

3. StepA = ¢ is done by formulaX.5). Stepg = A is done by solving the
known Volterra equation (se€&][or [3]):

e}

64) Alwy) =5 [

z+y
2

q(t)dt+/ ds/2 diq(s— 1) A(s— 1,5+ 1).
zty 0

Thus, Theoren®.1is proved.

O]

Note that Theorend.1implies that if one starts with @ € L, ;, computes
the scattering datdl (1) corresponding to thig, and uses the inversion scheme
(1.39), then the potential obtained by the formula4) is equal to the original
potentialg.

If F'(z) is known forz > 2z, then 6.2) can be written as a \Volterra equation
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with a finite region of integration.

(6.5) F(z)+ / " A(z,v+x — 2)F(v)dv

=—Alz,z —x) — / A(z, v+ x — 2)F(v)dv,
2x0

where the right-hand side ir6.65) is known. This Volterra integral equation

on the intervalz: € (0,2x,) is uniquely solvable by iterations. ThuBjz) is

uniquely determined of?, 2z, ), and, consequently, i, co).
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