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Abstract

Inequalities for the transformation operator kernel A(x, y) in terms of F -function
are given, and vice versa. These inequalities are applied to inverse scattering
on the half-line. Characterization of the scattering data corresponding to the
usual scattering class L1,1 of the potentials, to the class of compactly supported
potentials, and to the class of square integrable potentials is given. Invertibility
of each of the steps in the inversion procedure is proved. The novel points in this
paper include: a) inequalities for the transformation operators in terms of the
function F , constructed from the scattering data, b) a considerably shorter way
to study the inverse scattering problem on the half-axis and to get necessary
and sufficient conditions on the scattering data for the potential to belong to
some class of potentials, for example, to the class L1,1, to its subclass La

1,1

of potentials vanishing for x > a, and for the class of potentials belonging to
L2(R+).

2000 Mathematics Subject Classification: 34B25, 35R30, 73D25, 81F05, 81F15.
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1. Introduction
Consider the half-line scattering problem data:

(1.1) S = {S(k), kj, sj, 1 ≤ j ≤ J},

whereS(k) = f(−k)
f(k)

is theS-matrix, f(k) is the Jost function,f(ikj) = 0,

ḟ(ikj) :=
df(ikj)

dk
6= 0, kj > 0, sj > 0, J is a positive integer, it is equal

to the number of negative eigenvalues of the Dirichlet operator`u := −u′′ +
q(x)u on the half-line. The potentialq is real-valued throughout,q ∈ L1,1 :={
q :

∫∞
0
x|q|dx <∞

}
. In [4] the classL1,1 :=

{
q :

∫∞
0

(1 + x)|q|dx <∞
}

was defined in the way, which is convenient for the usage in the problems on
the whole line. The definition ofL1,1 in this paper allows for a larger class
of potentials on the half-line: these potentials may have singularities atx = 0
which are not integrable. Forq ∈ L1,1 the scattering dataS have the following
properties:

A) kj, sj > 0, S(−k) = S(k) = S−1(k), k ∈ R, S(∞) = 1,

B) κ := indS(k) := 1
2π

∫∞
−∞ d logS(k) is a nonpositive integer,

C) F ∈ Lp, p = 1 andp = ∞, xF ′ ∈ L1, Lp := Lp(0,∞).

Here

(1.2) F (x) :=
1

2π

∫ ∞

−∞
[1− S(k)]eikxdk +

J∑
j=1

sje
−kjx,
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and
κ = −2J if f(0) 6= 0, κ = −2J − 1 if f(0) = 0.

The Marchenko inversion method is described in the following manner:

(1.3) S ⇒ F (x) ⇒ A(x, y) ⇒ q(x),

where the stepS ⇒ F (x) is done by formula (1.2), the stepF (x) ⇒ A(x, y) is
done by solving the Marchenko equation:

(I + Fx)A := A(x, y) +

∫ ∞

x

A(x, t)F (t+ y) dt(1.4)

= −F (x+ y), y ≥ x ≥ 0,

and the stepA(x, y) ⇒ q(x) is done by the formula:

(1.5) q(x) = −2Ȧ(x, x) := −2
dA(x, x)

dx
.

Our aim is to study the estimates forA andF , which give a simple way of
finding necessary and sufficient conditions for the data (1.1) to correspond to a
q from some functional class. We consider, as examples, the following classes:
the usual scattering classL1,1, for which the result was obtained earlier ([2]
and [3]) by a more complicated argument, the class of compactly supported
potentials which are locally inL1,1, and the class of square integrable potentials.
We also prove that each step in the scheme (1.3) is invertible. In Section2 the
estimates forF andA are obtained. These estimates and their applications
are the main results of the paper. In Sections3 – 6 applications to the inverse
scattering problem are given. In [7] one finds a review of the author’s results on
one-dimensional inverse scattering problems and applications.
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2. Inequalities for A and F
If one wants to study the characteristic properties of the scattering data (1.1),
that is, a necessary and sufficient condition on these data to guarantee that the
corresponding potential belongs to a prescribed functional class, then conditions
A) and B) are always necessary for a real-valuedq to be inL1,1, the usual
class in the scattering theory, or other class for which the scattering theory is
constructed, and a condition of the type C) determines actually the class of
potentialsq. Conditions A) and B) are consequences of the unitarity of the
selfadjointness of the Hamiltonian, finiteness of its negative spectrum, and the
unitarity of theS−matrix. Our aim is to derive from equation (1.4) inequalities
for F andA. This allows one to describe the set ofq, defined by (1.5).

Let us assume:

(2.1) sup
y≥x

|F (y)| := σF (x) ∈ L1, F ′ ∈ L1,1.

The functionσF is monotone decreasing,|F (x)| ≤ σF (x). Equation (1.4) is of
Fredholm type inLp

x := Lp(x,∞) ∀x ≥ 0 andp = 1. The norm of the operator
in (1.4) can be estimated:

(2.2) ‖Fx‖ ≤
∫ ∞

x

σF (x+ y)dy ≤ σ1F (2x), σ1F (x) :=

∫ ∞

x

σF (y)dy.

Therefore (1.4) is uniquely solvable inL1
x for anyx ≥ x0 if

(2.3) σ1F (2x0) < 1.

http://jipam.vu.edu.au/
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This conclusion is valid for anyF satisfying (2.3), and conditions A), B), and
C) are not used. Assuming (2.3) and (2.1) and takingx ≥ x0, let us derive
inequalities forA = A(x, y). Define

σA(x) := sup
y≥x

|A(x, y)| := ‖A‖ .

From (1.4) one gets:

σA(x) ≤ σF (2x) + σA(x) sup
y≥x

∫ ∞

x

σF (s+ y)ds ≤ σF (2x) + σA(x)σ1F (2x).

Thus, if (2.3) holds, then

(2.4) σA(x) ≤ cσF (2x), x ≥ x0.

By c > 0 different constants depending onx0 are denoted. Let

σ1A(x) := ‖A‖1 :=

∫ ∞

x

|A(x, s)|ds.

Then (1.4) yieldsσ1A(x) ≤ σ1F (2x) + σ1A(x)σ1F (2x). So

(2.5) σ1A(x) ≤ cσ1F (2x), x ≥ x0.

Differentiate (1.4) with respect tox andy to obtain:

(2.6) (I + Fx)Ax(x, y) = A(x, x)F (x+ y)− F ′(x+ y), y ≥ x ≥ 0,

http://jipam.vu.edu.au/
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and

(2.7) Ay(x, y) +

∫ ∞

x

A(x, s)F ′(s+ y)ds = −F ′(x+ y), y ≥ x ≥ 0.

Denote

(2.8) σ2F (x) :=

∫ ∞

x

|F ′(y)|dy, σ2F (x) ∈ L1.

Then, using (2.7) and (2.4), one gets

||Ay||1 ≤
∫ ∞

x

|F ′(x+ y)|dy + σ1A(x) sup
s≥x

∫ ∞

x

|F ′(s+ y)|dy(2.9)

≤ σ2F (2x)[1 + cσ1F (2x)]

≤ cσ2F (2x),

and using (2.6) one gets:

‖Ax‖1 ≤ A(x, x)σ1F (2x) + σ2F (2x) + ‖Ax‖1 σ1F (2x),

so

(2.10) ‖Ax‖1 ≤ c[σ2F (2x) + σ1F (2x)σF (2x)].

Let y = x in (1.4), then differentiate (1.4) with respect tox and get:

(2.11) Ȧ(x, x) = −2F ′(2x) + A(x, x)F (2x)−
∫ ∞

x

Ax(x, s)F (x+ s)ds

−
∫ ∞

x

A(x, s)F ′(s+ x)ds.
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From (2.4), (2.5), (2.10) and (2.11) one gets:

(2.12) |Ȧ(x, x)| ≤ 2|F ′(2x)|+ cσ2
F (2x)

+ cσF (2x)[σ2F (2x) + σ1F (2x)σF (2x)] + cσF (2x)σ2F (2x).

Thus,

(2.13) x|Ȧ(x, x)| ∈ L1,

provided thatxF ′(2x) ∈ L1, xσ2
F (2x) ∈ L1, andxσF (2x)σ2F (2x) ∈ L1. As-

sumption (2.1) implies xF ′(2x) ∈ L1. If σF (2x) ∈ L1, andσF (2x) > 0
decreases monotonically, thenxσF (x) → 0 asx → ∞. Thusxσ2

F (2x) ∈ L1,
andσ2F (2x) ∈ L1 because∫ ∞

0

dx

∫ ∞

x

|F ′(y)|dy =

∫ ∞

0

|F ′(y)|ydy <∞,

due to (2.1). Thus, (2.1) implies (2.4), (2.5), (2.8), (2.9), and (2.12), while (2.12)

and (1.5) imply q ∈ L̃1,1 whereL̃1,1 =
{
q : q = q,

∫∞
x0
x|q(x)|dx <∞

}
, and

x0 ≥ 0 satisfies (2.3).
Let us assume now that (2.4), (2.5), (2.9), and (2.10) hold, whereσF ∈ L1

andσ2F ∈ L1 are some positive monotone decaying functions (which have
nothing to do now with the functionF , solving equation (1.4)), and derive esti-
mates for this functionF . Let us rewrite (1.4) as:

(2.14) F (x+ y) +

∫ ∞

x

A(x, s)F (s+ y)ds = −A(x, y), y ≥ x ≥ 0.

http://jipam.vu.edu.au/
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Let x+ y = z, s+ y = v. Then,

(2.15) F (z) +

∫ ∞

z

A(x, v + x− z)F (v)dv = −A(x, z − x), z ≥ 2x.

From (2.15) one gets:

σF (2x) ≤ σA(x) + σF (2x) sup
z≥2x

∫ ∞

z

|A(x, v + x− z)|dv

≤ σA(x) + σF (2x) ‖A‖1 .

Thus, using (2.5) and (2.3), one obtains:

(2.16) σF (2x) ≤ cσA(x).

Also from (2.15) it follows that:

σ1F (2x) := ||F ||1 :=

∫ ∞

2x

|F (v)|dv(2.17)

≤
∫ ∞

2x

|A(x, z − x)|dz

+

∫ ∞

2x

∫ ∞

z

|A(x, v + x− z)||F (v)|dvdz

≤ ‖A‖1 + ||F ||1 ‖A‖1 ,

so
σ1F (2x) ≤ cσ1A(x).

http://jipam.vu.edu.au/
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From (2.6) one gets:∫ ∞

x

|F ′(x+ y)|dy = σ2F (2x)(2.18)

≤ cσA(x)σ1A(x) + ‖Ax‖+ c ‖Ax‖1 σ1A(x).

Let us summarize the results:

Theorem 2.1. If x ≥ x0 and (2.1) holds, then one has:

σA(x) ≤ cσF (2x), σ1A(x) ≤ cσ1F (2x),(2.19)

||Ay||1 ≤ σ2F (2x)(1 + cσ1F (2x)),

‖Ax‖1 ≤ c[σ2F (2x) + σ1F (2x)σF (2x)].

Conversely, ifx ≥ x0 and

(2.20) σA(x) + σ1A(x) + ‖Ax‖1 + ||Ay||1 <∞,

then

σF (2x) ≤ cσA(x), σ1F (2x) ≤ cσ1A(x),(2.21)

σ2F (x) ≤ c[σA(x)σ1A(x) + ‖Ax‖1 (1 + σ1A(x))].

In Section3 we replace the assumptionx ≥ x0 > 0 by x ≥ 0. The argument
in this case is based on the Fredholm alternative. In [5] and [6] a characteriza-
tion of the class of bounded and unbounded Fredholm operators of index zero
is given.
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3. Applications
First, let us givenecessary and sufficient conditions onS for q to belong to the
classL1,1 of potentials. These conditions are known [2], [3] and [4], but we give
a short new argument using some ideas from [4]. We assume throughout that
conditions A), B), and C) hold. These conditions are known to be necessary
for q ∈ L1,1. Indeed, conditions A) and B) are obvious, and C) is proved in
Theorems2.1and3.3. Conditions A), B), and C) are also sufficient forq ∈ L1,1.
Indeed if they hold, then we prove that equation (1.4) has a unique solution in
L1

x for all x ≥ 0. This is a known fact [2], but we give a (new) proof because it
is short. This proof combines some ideas from [2] and [4].

Theorem 3.1. If A), B), and C) hold, then (1.4) has a solution inL1
x for any

x ≥ 0 and this solution is unique.

Proof. SinceFx is compact inL1
x, ∀x ≥ 0, by the Fredholm alternative it is

sufficient to prove that

(3.1) (I + Fx)h = 0, h ∈ L1
x,

impliesh = 0. Let us prove it forx = 0. The proof is similar forx > 0. If
h ∈ L1, thenh ∈ L∞ because‖h‖∞ ≤ ‖h‖L1 σF (0). If h ∈ L1 ∩ L∞, then
h ∈ L2 because‖h‖2

L2 ≤ ‖h‖L∞ ‖h‖L1 . Thus, ifh ∈ L1 and solves (3.1), then
h ∈ L2 ∩ L1 ∩ L∞.

Denoteh̃ =
∫∞

0
h(x)eikxdx, h ∈ L2. Then,

(3.2)
∫ ∞

−∞
h̃2dk = 0.

http://jipam.vu.edu.au/
mailto:A.G. Ramm
http://jipam.vu.edu.au/


Inequalities for the
Transformation Operators and

Applications

A.G. Ramm

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 22

J. Ineq. Pure and Appl. Math. 4(4) Art. 69, 2003

http://jipam.vu.edu.au

SinceF (x) is real-valued, one can assumeh to be real-valued. One has, using
Parseval’s equation:

0 = ((I + F0)h, h)

=
1

2π
‖h‖2 +

1

2π

∫ ∞

−∞
[1− S(k)]h̃2(k)dk +

J∑
j=1

sjh
2
j ,

hj :=

∫ ∞

0

e−kjxh(x)dx.

Thus, using (3.2), one gets

hj = 0, 1 ≤ j ≤ J, (h̃, h̃) = (S(k)h̃, h̃(−k)),

where we have used the real-valuedness ofh, i.e. h̃(−k) = h̃(k),∀k ∈ R.
Thus,(h̃, h̃) = (h̃, S(−k)h̃(−k)), where A) was used. Since‖S(−k)‖ = 1,

one has‖h‖2 =
∣∣∣(h̃, S(−k)h̃(−k))

∣∣∣ ≤ ‖h‖2, so the equality sign is attained in

the Cauchy inequality. Therefore,h̃(k) = S(−k)h̃(−k).
By condition B), the theory of Riemann problem (see [1]) guarantees ex-

istence and uniqueness of an analytic inC+ := {k : =k > 0} function
f(k) := f+(k), f(ikj) = 0, ḟ(ikj) 6= 0, 1 ≤ j ≤ J, f(∞) = 1, such that

(3.3) f+(k) = S(−k)f−(k), k ∈ R,

andf−(k) = f(−k) is analytic inC− := {k : Im k < 0}, f−(∞) = 1 in
C−, f−(−ikj) = 0, ḟ−(−ikj) 6= 0. Here the propertyS(−k) = S−1(k), ∀k ∈
R is used.

http://jipam.vu.edu.au/
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One has

ψ(k) :=
h̃(k)

f(k)
=
h̃(−k)
f(−k)

, k ∈ R, hj = h̃(ikj) = 0, 1 ≤ j ≤ J.

The functionψ(k) is analytic inC+ andψ(−k) is analytic inC−, they agree on
R, soψ(k) is analytic inC. Sincef(∞) = 1 and h̃(∞) = 0, it follows that
ψ ≡ 0.

Thus, h̃ = 0 and, consequently,h(x) = 0, as claimed. Theorem3.1 is
proved.

The unique solution to equation (1.4) satisfies the estimates given in Theo-
rem2.1. In the proof of Theorem2.1 the estimatex|Ȧ(x, x)| ∈ L1(x0,∞) was
established. So, by (1.5), xq ∈ L1(x0,∞).

The method developed in Section2 gives accurate information about the
behavior ofq near infinity. An immediate consequence of Theorems2.1 and
3.1 is:

Theorem 3.2. If A), B), and C) hold, thenq, obtained by the scheme (1.3),
belongs toL1,1(x0,∞).

Investigation of the behavior ofq(x) on(0, x0) requires additional argument.
Instead of using the contraction mapping principle and inequalities, as in Sec-
tion 2, one has to use the Fredholm theorem, which says that‖(I + Fx)

−1‖ ≤ c
for any x ≥ 0, where the operator norm is forFx acting inLp

x, p = 1 and
p = ∞, and the constantc does not depend onx ≥ 0.

Such an analysis yields:

http://jipam.vu.edu.au/
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Theorem 3.3. If and only if A), B), and C) hold, thenq ∈ L1,1.

Proof. It is sufficient to check that Theorem2.1 holds withx ≥ 0 replacing
x ≥ x0. To get (2.4) with x0 = 0, one uses (1.4) and the estimate:

‖A(x, y)‖ ≤
∥∥(I + Fx)

−1
∥∥ ‖F (x+ y)‖(3.4)

≤ cσF (2x), ‖·‖ = sup
y≥x

|·| , x ≥ 0,

where the constantc > 0 does not depend onx. Similarly:

(3.5) ‖A(x, y)‖1 ≤ c sup
s≥x

∫ ∞

x

|F (s+ y)|dy ≤ cσ1F (2x), x ≥ 0.

From (2.6) one gets:

||Ax(x, y)||1 ≤ c[||F ′(x+ y)||1 + A(x, x)||F (x+ y)||1](3.6)

≤ cσ2F (2x) + cσF (2x)σ1F (2x), x ≥ 0.

From (2.7) one gets:

(3.7) ||Ay(x, y)||1 ≤ c[σ2F (2x) + σ1F (2x)σ2F (2x)] ≤ σ2F (2x).

Similarly, from (2.11) and (3.3) – (3.6) one gets (2.12). Then one checks (2.13)
as in the proof of Theorem2.1. Consequently Theorem2.1holds withx0 = 0.
Theorem3.3 is proved.
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4. Compactly Supported Potentials
In this section,necessary and sufficient conditions are given forq to belong to
the class

La
1,1 :=

{
q : q = q, q = 0 if x > a,

∫ a

0

x|q|dx <∞
}
.

Recall that the Jost solution is:

(4.1) f(x, k) = eikx +

∫ ∞

x

A(x, y)eikydy, f(0, k) := f(k).

Lemma 4.1. If q ∈ La
1,1, thenf(x, k) = eikx for x > a, A(x, y) = 0 for

y ≥ x ≥ a, F (x+ y) = 0 for y ≥ x ≥ a (cf. (1.4)), andF (x) = 0 for x ≥ 2a.

Thus, (1.4) with x = 0 yieldsA(0, y) := A(y) = 0 for x ≥ 2a. The Jost
function

(4.2) f(k) = 1 +

∫ 2a

0

A(y)eikydy, A(y) ∈ W 1,1(0, a),

is an entire function of exponential type≤ 2a, that is,|f(k)| ≤ ce2a|k|, k ∈ C,
andS(k) = f(−k)/f(k) is a meromorphic function inC. In (4.2) W l,p is the
Sobolev space, and the inclusion (4.2) follows from Theorem2.1.

Let us formulate the assumption D):
D) the Jost functionf(k) is an entire function of exponential type≤ 2a.

Theorem 4.2.Assume A),B), C) and D). Thenq ∈ La
1,1. Conversely, ifq ∈ La

1,1,
then A),B), C) and D) hold.
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Proof. Necessity.If q ∈ L1,1, then A), B) and C) hold by Theorem3.3, and D)
is proved in Lemma4.1. The necessity is proved.
Sufficiency.If A), B) and C) hold, thenq ∈ L1,1. One has to prove thatq = 0 for
x > a. If D) holds, then from the proof of Lemma4.1 it follows thatA(y) = 0
for y ≥ 2a.

We claim thatF (x) = 0 for x ≥ 2a.
If this is proved, then (1.4) yieldsA(x, y) = 0 for y ≥ x ≥ a, and soq = 0

for x > a by (1.5).
Let us prove the claim.
Takex > 2a in (1.2). The function1 − S(k) is analytic inC+ except forJ

simple poles at the pointsikj. If x > 2a then one can use the Jordan lemma and
residue theorem to obtain:

(4.3) FS(x) =
1

2π

∫ ∞

−∞
[1− S(k)]eikxdk = −i

J∑
j=1

f(−ikj)

ḟ(ikj)
e−kjx, x > 2a.

Sincef(k) is entire, the Wronskian formula

f ′(0, k)f(−k)− f ′(0,−k)f(k) = 2ik

is valid onC, and atk = ikj it yields:

f ′(0, ikj)f(−ikj) = −2kj,

becausef(ikj) = 0. This and (4.3) yield

Fs(x) =
J∑

j=1

2ikj

f ′(0, ikj)ḟ(ikj)
e−kjx = −

J∑
j=1

sje
−kjx = −Fd(x), x > 2a.
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Thus,F (x) = Fs(x) + Fd(x) = 0 for x > 2a. The sufficiency is proved.
Theorem4.2 is proved.

In [2] a condition onS, which guarantees thatq = 0 for x > a, is given
under the assumption that there is no discrete spectrum, that isF = Fs.
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5. Square Integrable Potentials
Let us introduce conditions (5.1) – (5.3):

(5.1) 2ik

[
f(k)− 1 +

Q

2ik

]
∈ L2(R+) := L2, Q :=

∫ ∞

0

qds,

(5.2) k

[
1− S(k) +

Q

ik

]
∈ L2,

(5.3) k[|f(k)|2 − 1] ∈ L2.

Theorem 5.1. If A), B), C), and any one of the conditions (5.1) – (5.3) hold,
thenq ∈ L2.

Proof. We refer to [3] for the proof.
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6. Invertibility of the Steps in the Inversion
Procedure

We assume A), B), and C) and prove:

Theorem 6.1.The steps in (1.3) are invertible:

(6.1) S ⇐⇒ F ⇐⇒ A⇐⇒ q.

Proof.

1. StepS ⇒ F is done by formula (1.2). StepF ⇒ S is done by tak-
ing x → −∞ in (1.2). The asymptotics ofF (x), asx → −∞, yields
J, sj, kj, 1 ≤ j ≤ J , that is,Fd(x). ThenFs = F −Fd is calculated, and
1 − S(k) is calculated by taking the inverse Fourier transform ofFs(x).
Thus,

2. StepF ⇒ A is done by solving (1.4), which has one and only one solution
in L1

x for anyx ≥ 0 by Theorem3.1. StepA ⇒ F is done by solving
equation (1.4) for F . Letx+ y = z ands+ y = v. Write (1.4) as

(I +B)F := F (z) +

∫ ∞

z

A(x, v + x− z)F (v)dv(6.2)

= −A(x, z − x), z ≥ 2x ≥ 0.

The norm of the integral operatorB in L1
2x is estimated as follows:

||B|| ≤ sup
v>0

∫ v

0

|A(x, v + x− z)|dz(6.3)
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≤ c sup
v>0

∫ v

0

σ

(
x+

v − z

2

)
dz

≤ 2

∫ ∞

0

σ(x+ w)dw = 2

∫ ∞

x

σ(t)dt,

where the known estimate [2] was used:|A(x, y)| ≤ cσ
(

x+y
2

)
, σ(x) :=∫∞

x
|q|dt. It follows from (6.3) that ||B|| < 1 if x > x0, wherex0 is large

enough. Indeed,
∫∞

x
σ(s)ds → 0 asx → ∞ if q ∈ L1,1. Therefore,

for x > x0 equation (6.2) is uniquely solvable inL1
2x0

by the contraction
mapping principle.

3. StepA ⇒ q is done by formula (1.5). Stepq ⇒ A is done by solving the
known Volterra equation (see [2] or [3]):

(6.4) A(x, y) =
1

2

∫ ∞

x+y
2

q(t)dt+

∫ ∞

x+y
2

ds

∫ y−x
2

0

dtq(s− t)A(s− t, s+ t).

Thus, Theorem6.1 is proved.

Note that Theorem6.1 implies that if one starts with aq ∈ L1,1, computes
the scattering data (1.1) corresponding to thisq, and uses the inversion scheme
(1.3), then the potential obtained by the formula (1.5) is equal to the original
potentialq.

If F (z) is known forx ≥ 2x0, then (6.2) can be written as a Volterra equation
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with a finite region of integration.

(6.5) F (z) +

∫ 2x0

z

A(x, v + x− z)F (v)dv

= −A(x, z − x)−
∫ ∞

2x0

A(x, v + x− z)F (v)dv,

where the right-hand side in (6.5) is known. This Volterra integral equation
on the intervalz ∈ (0, 2x0) is uniquely solvable by iterations. Thus,F (z) is
uniquely determined on(0, 2x0), and, consequently, on(0,∞).
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