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ABSTRACT. This paper gives two distinct generalizations of the extended Hilbert’s integral in-
equality with the same best constant factor involving theβ function. As applications, we consider
some equivalent inequalities.
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1. I NTRODUCTION

If f, g ≥ 0, such that0 <
∫∞

0
f 2(x)dx < ∞ and0 <

∫∞
0

g2(x)dx < ∞, then the famous
Hilbert’s integral inequality is given by

(1.1)
∫ ∞

0

∫ ∞

0

f(x)g(y)

x + y
dxdy < π

{∫ ∞

0

f 2(x)dx

∫ ∞

0

g2(x)dx

} 1
2

,

where the constant factorπ is the best possible (see [2]). Inequality (1.1) had been generalized
by Hardy-Riesz [1] as:

If p > 1, 1
p

+ 1
q

= 1, 0 <
∫∞

0
fp(x)dx < ∞ and0 <

∫∞
0

gq(x)dx < ∞, then

(1.2)
∫ ∞

0

∫ ∞

0

f(x)g(y)

x + y
dxdy <

π

sin
(

π
p

) {∫ ∞

0

fp(x)dx

} 1
p
{∫ ∞

0

gq(x)dx

} 1
q

,

where the constant factor π
sin(π/p)

is the best possible. Whenp = q = 2, inequality (1.2) reduces
to (1.1). We call (1.2) Hardy-Hilbert’s integral inequality, which is important in analysis and its
applications (see [4]).

In recent years, by introducing a parameterλ and theβ function, Yang [7, 8] gave an exten-
sion of (1.2) as:
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2 BICHENG YANG

If λ > 2−min{p, q}, 0 <
∫∞

0
x1−λfp(x)dx < ∞ and0 <

∫∞
0

x1−λgq(x)dx < ∞, then

(1.3)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)λ
dxdy < kλ(p)

{∫ ∞

0

x1−λfp(x)dx

} 1
p
{∫ ∞

0

x1−λgq(x)dx

} 1
q

,

where the constant factorkλ(p) = B
(

p+λ−2
p

, p+λ−2
p

)
is the best possible (B(u, v) is theβ

function). Its equivalent inequality is (see [9, (2.12)]):

(1.4)
∫ ∞

0

y(λ−1)(p−1)

[∫ ∞

0

f(x)

(x + y)λ
dx

]p

dy < [kλ(p)]p
∫ ∞

0

x1−λfp(x)dx,

where the constant factor[kλ(p)]p =
[
B
(

p+λ−2
p

, p+λ−2
p

)]p
is the best possible.

Whenλ = 1, inequality (1.3) reduces to (1.2), and (1.4) reduces to the equivalent form of
(1.2) as:

(1.5)
∫ ∞

0

(∫ ∞

0

f(x)

x + y
dx

)p

dy <

 π

sin
(

π
p

)
p ∫ ∞

0

fp(x)dx.

Forp = q = 2, by (1.3), we haveλ > 0, and

(1.6)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)λ
dxdy < B

(
λ

2
,
λ

2

){∫ ∞

0

x1−λf 2(x)dx

∫ ∞

0

x1−λg2(x)dx

} 1
2

.

We define (1.6) as the extended Hilbert’s integral inequality. Recently, Yang et al. [10] pro-
vided an extensive account of the above results and Yang [6] gave a reverse of (1.4) with the
same best constant factor. The main objective of this paper is to build two distinct generaliza-
tions of (1.6), with the same best constant factor but different from (1.3). As applications, we
consider some equivalent inequalities.

For this, we need some lemmas.

2. SOME L EMMAS

We have the formula of theβ function as (see [5]):

(2.1) B(u, v) =

∫ ∞

0

tu−1

(1 + t)u+v
dt = B(v, u) (u, v > 0).

Lemma 2.1(see [3]). If p > 1, 1
p

+ 1
q

= 1, ω(σ) > 0, f, g ≥ 0, f ∈ Lp
ω(E) andg ∈ Lq

ω(E) ,
then the weighted Hölder’s inequality is as follows:

(2.2)
∫

E

ω(σ)f(σ)g(σ)dσ ≤
{∫

E

ω(σ)fp(σ)dσ

} 1
p
{∫

E

ω(σ)gq(σ)dσ

} 1
q

,

where the equality holds if and only if there exists non-negative real numbersA andB, such
that they are not all zero andAfp(σ) = Bgq(σ), a.e. inE.

Lemma 2.2. If r > 1, andλ > 0, define the weight functionωλ(r, x) as

(2.3) ωλ(r, x) := xλ(1− 1
r
)

∫ ∞

0

1

(x + y)λ
y(λ−r)/rdy.

Then we have

(2.4) ωλ(r, x) = B

(
λ

r
, λ

(
1− 1

r

))
.
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ON THE EXTENDED HILBERT’ S INTEGRAL INEQUALITY 3

Proof. Settingy = xu in the integral of (2.3), we find

ωλ(r, x) = xλ(1− 1
r )
∫ ∞

0

(xu)(λ−r)/r

xλ(1 + u)λ
xdu

=

∫ ∞

0

1

(1 + u)λ
u

λ
r
−1du.

By (2.1), we have (2.4) and the lemma is proved. �

Note. It is obvious that forp > 1, 1
p

+ 1
q

= 1 andλ > 0, one has

(2.5) ωλ(p, x) = B

(
λ

p
,
λ

q

)
= ωλ(q, x).

Lemma 2.3. If p > 1, 1
p

+ 1
q

= 1 and0 < ε < λ, one has

I1 :=

∫ ∞

1

y
λ−q−ε

q

∫ ∞

1

1

(x + y)λ
x

λ−p−ε
p dxdy

>
1

ε
B

(
λ− ε

p
,
λ

q
+

ε

p

)
−
(

p

λ− ε

)2

.(2.6)

Proof. Settingx = yu in I1, in view of (2.1), one has

I1 =

∫ ∞

1

y−1−ε

[∫ ∞

1/y

1

(1 + u)λ
u

λ−p−ε
p du

]
dy

=

∫ ∞

1

y−1−ε

[∫ ∞

0

1

(1 + u)λ
u

λ−ε
p
−1du

]
dy

−
∫ ∞

1

y−1−ε

[∫ 1
y

0

1

(1 + u)λ
u

λ−ε
p
−1du

]
dy

>
1

ε
B

(
λ− ε

p
,
λ

q
+

ε

p

)
−
∫ ∞

1

y−1

∫ 1
y

0

u
λ−ε

p
−1 dudy.

By calculating the above integral, one has (2.6). The lemma is proved. �

Lemma 2.4. If p > 1, 1
p

+ 1
q

= 1 and0 < ε < λ(p− 1), one has

I2 :=

∫ ∞

1

yλ−λ+ε
q
−1

∫ ∞

1

1

(x + y)λ
xλ−λ+ε

p
−1dxdy

>
1

ε
B

(
λ

q
− ε

p
,
λ

p
+

ε

p

)
−
(

λ

q
− ε

p

)−2

.(2.7)

Proof. Settingx = yu in I2, in view of (2.1), one has

I2 =

∫ ∞

1

y−1−ε

[∫ ∞

1/y

1

(1 + u)λ
uλ−λ+ε

p
−1du

]
dy

=

∫ ∞

1

y−1−ε

[∫ ∞

0

1

(1 + u)λ
uλ−λ+ε

p
−1du

]
dy

−
∫ ∞

1

y−1−ε

[∫ 1
y

0

1

(1 + u)λ
uλ−λ+ε

p
−1du

]
dy

>
1

ε
B

(
λ

q
− ε

p
,
λ

p
+

ε

p

)
−
∫ ∞

1

y−1

∫ 1
y

0

uλ−λ+ε
p
−1 dudy.
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4 BICHENG YANG

By calculating the above integral, one has (2.7). The lemma is proved. �

3. M AIN RESULTS AND APPLICATIONS

Theorem 3.1. If f, g ≥ 0, p > 1, 1
p

+ 1
q

= 1, λ > 0, such that0 <
∫∞

0
xp−1−λfp(x)dx < ∞

and0 <
∫∞

0
xq−1−λgq(x)dx < ∞, then

(3.1)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)λ
dxdy

< B

(
λ

p
,
λ

q

){∫ ∞

0

xp−1−λfp(x)dx

} 1
p
{∫ ∞

0

xq−1−λgq(x)dx

} 1
q

;

(3.2)
∫ ∞

0

yλ(p−1)−1

[∫ ∞

0

f(x)

(x + y)λ
dx

]p

dy <

[
B

(
λ

p
,
λ

q

)]p ∫ ∞

0

xp−1−λfp(x)dx,

where the constant factorsB
(

λ
p
, λ

q

)
and

[
B
(

λ
p
, λ

q

)]p
are all the best possible. Inequality (3.2)

is equivalent to (3.1). In particular, forλ = 1, one has the following two equivalent inequalities:

(3.3)
∫ ∞

0

∫ ∞

0

f(x)g(y)

x + y
dxdy <

π

sin
(

π
p

) {∫ ∞

0

xp−2fp(x)dx

} 1
p
{∫ ∞

0

xq−2gq(x)dx

} 1
q

;

(3.4)
∫ ∞

0

yp−2

(∫ ∞

0

f(x)

x + y
dx

)p

dy <

 π

sin
(

π
p

)
p ∫ ∞

0

xp−2fp(x)dx.

Proof. By (2.2), one has

J1 :=

∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)λ
dxdy

=

∫ ∞

0

∫ ∞

0

1

(x + y)λ

[(
xp−λ

yq−λ

) 1
pq

f(x)

][(
yq−λ

xp−λ

) 1
pq

g(y)

]
dxdy

≤

{∫ ∞

0

[∫ ∞

0

1

(x + y)λ

(
xp−λ

yq−λ

) 1
q

dy

]
fp(x)dx

} 1
p

×

{∫ ∞

0

[∫ ∞

0

1

(x + y)λ

(
yq−λ

xp−λ

) 1
p

dx

]
gq(y)dy

} 1
q

.(3.5)

If (3.5) takes the form of an equality, then by Lemma 2.1, there exist real numbersA andB,
such that they are not all zero, and

A
1

(x + y)λ

(
xp−λ

yq−λ

) 1
q

fp(x) = B
1

(x + y)λ

(
yq−λ

xp−λ

) 1
p

gq(y), a.e. in (0,∞)× (0,∞).

Hence we find

Axp−λfp(x) = Byq−λgq(y), a.e. in (0,∞)× (0,∞).
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ON THE EXTENDED HILBERT’ S INTEGRAL INEQUALITY 5

It follows that there exists a constantC, such that

Axp−λfp(x) = C, a.e. in (0,∞);

Byq−λgq(y) = C, a.e. in (0,∞).

Without loss of generality, suppose thatA 6= 0. One has

xp−λ−1fp(x) =
C

Ax
, a.e. in (0,∞),

which contradicts the fact that0 <
∫∞

0
xp−1−λfp(x)dx < ∞. Hence, (3.5) takes the form of

strict inequality, and by (2.3), we may rewrite (3.5) as

(3.6) J1 <

{∫ ∞

0

ωλ(q, x)xp−1−λfp(x)dx

} 1
p
{∫ ∞

0

ωλ(p, y)yq−1−λgq(y)dy

} 1
q

.

Hence by (2.5), one has (3.1).

For0 < ε < λ, setting
∼
f(x) and

∼
g(y) as:

∼
f(x) =

∼
g(y) = 0, x, y ∈ (0, 1);

∼
f(x) = x

λ−p−ε
p ,

∼
g(y) = y

λ−q−ε
q , x, y ∈ [1,∞),

then we find

(3.7)

{∫ ∞

0

xp−1−λ
∼
f

p

(x)dx

} 1
p
{∫ ∞

0

xq−1−λ∼g
q
(x)dx

} 1
q

=
1

ε
.

If there existsλ > 0, such that the constant factor in (3.1) is not the best possible, then there

exists a positive numberK ( with K < B
(

λ
p
, λ

q

)
), such that (3.1) is still valid if one replaces

B
(

λ
p
, λ

q

)
by K. In particular, one has

εI1 = ε

∫ ∞

0

∫ ∞

0

∼
f(x)

∼
g(y)

(x + y)λ
dxdy

< εK

{∫ ∞

0

xp−1−λ
∼
f

p

(x)dx

} 1
p
{∫ ∞

0

xq−1−λ∼g
q
(x)dx

} 1
q

.

Hence by (2.6) and (3.7), one has

B

(
λ− ε

p
,
λ

q
+

ε

p

)
− ε

(
p

λ− ε

)2

< K,

and thenB
(

λ
p
, λ

q

)
≤ K (ε → 0+). This contradicts the fact thatK < B

(
λ
p
, λ

q

)
. It follows

that the constant factor in (3.1) is the best possible.
Since0 <

∫∞
0

xp−1−λfp(x)dx < ∞, there existsT0 > 0, such that for anyT > T0, one has

0 <
∫ T

0
xp−1−λfp(x)dx < ∞. We set

g(y, T ) := yλ(p−1)−1

[∫ T

0

f(x)

(x + y)λ
dx

]p−1

,
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6 BICHENG YANG

and use (3.1) to obtain

0 <

∫ T

0

yq−1−λgq(y, T )dy

=

∫ T

0

yλ(p−1)−1

[∫ T

0

f(x)

(x + y)λ
dx

]p

dy

=

∫ T

0

∫ T

0

f(x)g(y, T )

(x + y)λ
dxdy

< B

(
λ

p
,
λ

q

){∫ T

0

xp−1−λfp(x)dx

} 1
p
{∫ T

0

yq−1−λgq(y, T )dy

} 1
q

.(3.8)

Hence we find

0 <

[∫ T

0

yq−1−λgq(y, T )dy

]1− 1
q

=

{∫ T

0

yλ(p−1)−1

[∫ T

0

f(x)

(x + y)λ
dx

]p

dy

} 1
p

< B

(
λ

p
,
λ

q

){∫ T

0

xp−1−λfp(x)dx

} 1
p

.(3.9)

It follows that0 <
∫∞

0
yq−1−λgq(y,∞)dy < ∞. Hence (3.8) and (3.9) are strict inequalities as

T →∞. Thus inequality (3.2) holds.
On the other hand, if (3.2) is valid, by Hölder’s inequality (2.2), one has∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)λ
dxdy

=

∫ ∞

0

[
y

λ+1−q
q

∫ ∞

0

f(x)

(x + y)λ
dx

] [
y−

λ+1−q
q g(y)

]
dy

≤
{∫ ∞

0

yλ(p−1)−1

[∫ ∞

0

f(x)

(x + y)λ
dx

]p

dy

} 1
p
{∫ ∞

0

yq−1−λgq(y)dy

} 1
q

.(3.10)

Hence by (3.2), one has (3.1). It follows that (3.2) is equivalent to (3.1).
If the constant factor in (3.2) is not the best possible, one can get a contradiction that the

constant factor in (3.1) is not the best possible by using (3.10). The theorem is thus proved.�

Theorem 3.2. If f, g ≥ 0, p > 1, 1
p
+ 1

q
= 1, λ > 0, such that0 <

∫∞
0

x(p−1)(1−λ)fp(x)dx < ∞
and0 <

∫∞
0

x(q−1)(1−λ)gq(x)dx < ∞, then

(3.11)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)λ
dxdy

< B

(
λ

p
,
λ

q

){∫ ∞

0

x(p−1)(1−λ)fp(x)dx

} 1
p
{∫ ∞

0

x(q−1)(1−λ)gq(x)dx

} 1
q

;

(3.12)
∫ ∞

0

yλ−1

[∫ ∞

0

f(x)

(x + y)λ
dx

]p

dy <

[
B

(
λ

p
,
λ

q

)]p ∫ ∞

0

x(p−1)(1−λ)fp(x)dx,

where the constant factorsB
(

λ
p
, λ

q

)
and

[
B
(

λ
p
, λ

q

)]p
are the best possible. Inequality (3.12)

is equivalent to (3.11). In particular, forλ = p > 1, one has the following two equivalent
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inequalities:

(3.13)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)p
dxdy <

1

p− 1

{∫ ∞

0

fp(x)

x(p−1)2
dx

} 1
p
{∫ ∞

0

gq(x)

x
dx

} 1
q

and

(3.14)
∫ ∞

0

yp−1

[∫ ∞

0

f(x)

(x + y)p
dx

]p

dy <

(
1

p− 1

)p ∫ ∞

0

fp(x)

x(p−1)2
dx.

Proof. By (2.2), one has

J1 =

∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)λ
dxdy

=

∫ ∞

0

∫ ∞

0

1

(x + y)λ

[(
x(q−λ)/q2

y(p−λ)/p2

)
f(x)

][(
y(p−λ)/p2

x(q−λ)/q2

)
g(y)

]
dxdy

≤

{∫ ∞

0

[∫ ∞

0

1

(x + y)λ

(
x(q−λ)p/q2

y(p−λ)/p

)
dy

]
fp(x)dx

} 1
p

×

{∫ ∞

0

[∫ ∞

0

1

(x + y)λ

(
y(p−λ)q/p2

x(q−λ)/q

)
dx

]
gq(y)dy

} 1
q

.(3.15)

Following the same manner as (3.6), one has

(3.16) J1 <

{∫ ∞

0

ωλ(p, x)x(p−1)(1−λ)fp(x)dx

} 1
p
{∫ ∞

0

ωλ(q, x)x(q−1)(1−λ)gq(x)dx

} 1
q

.

Hence by (2.5), one has (3.11).

For0 < ε < λ(p− 1), setting
∼
f(x) and

∼
g(y) as:

∼
f(x) =

∼
g(y) = 0, x, y ∈ (0, 1);

∼
f(x) = xλ−1−λ+ε

p ,
∼
g(y) = yλ−1−λ+ε

q , x, y ∈ [1,∞),

by Lemma 2.4 and the same way of Theorem 3.1, we can show that the constant factor in (3.11)
is the best possible.

In a similar fashion to Theorem 3.1, we can show that (3.12) is valid, which is equivalent to
(3.11). By the equivalence of (3.11) and (3.12), we may conclude that the constant factor in
(3.12) is the best possible. The theorem is proved. �

Remark 3.3. (i) For p = q = 2, both inequalities (3.1) and (3.11) reduce to (1.6). Inequal-
ities (3.1) and (3.11) are distinct generalizations of (1.6) with the same best constant

factorB
(

λ
p
, λ

q

)
, but different from (1.3).

(ii) Since inequalities (3.3) and (1.2) are different, we may conclude that inequality (3.1) is
not a generalization of (1.3).

(iii) Since all the given inequalities are with the best constant factors, we have obtained some
new results.
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[4] D.S. MITRINOVIĆ, J.E. PĚCARIĆ AND A.M. FINK, Inequalities Involving Functions and their
Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991.

[5] ZHUXI WANG AND DUNRIN GUO , An Introduction to Special Functions, Science Press, Bei-
jing, 1979.

[6] BICHENG YANG, A reverse of Hardy-Hilbert’s integral inequality,Journal of Jilin University
(Science Edition),42(4) (2004), 489–493.

[7] BICHENG YANG, On a general Hardy-Hilbert’s inequality with a best value,Chinese Annals of
Math., 21A(4) (2000), 401–408.

[8] BICHENG YANG, On Hardy-Hilbert’s integral inequality,J. Math. Anal. Appl., 261(2001), 295–
306.

[9] BICHENG YANG AND L. DEBNATH, On the extended Hardy-Hilbert’s inequality,J. Math. Anal.
Appl., 272(2002), 187–199.

[10] BICHENG YANG AND Th.M. RASSIAS, On the way of weight coefficient and research for the
Hilbert-type inequality,Math. Inequal. and Applics., 6(4) (2003), 625–658.

J. Inequal. Pure and Appl. Math., 5(4) Art. 96, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction
	2. Some Lemmas
	3. Main Results and Applications
	References

